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ABSTRACT: Zeolitic Imidazolate Frameworks (ZIFs) are the new frontier in the field of metal�organic materials. They
incorporate the confining properties of the more traditional aluminosilicate zeolites together with the catalytic activity provided by
transition metal ions and organic links. Computation of atomic point charges for these hybrid materials is important in the field of
molecular simulations for substantial prediction of experimental results. However, due to the structural complexity of advanced
materials in general, studies involving derivation of point charges for these materials are truly scarce. In this article, we have derived the
atomic point charges of ZIF�8 through fitting of the quantum electrostatic potential obtained systematically from density functional
theory (DFT) calculations both on finite clusters of increasing size and on the periodic system. For the periodic system, fluctuations
on the atomic charges have been studied through ab initio molecular dynamics simulations. Using the latter approach, we have
extended the study to ZIF�2 and ZIF�3, where it has been found that charge fluctuations are, as well as for ZIF�8, very narrow,
therefore justifying the use of the point charge approximation for these materials.

I. INTRODUCTION

Microporous andnanoporousmaterials like zeolites are capturing
increasingly large interest, especially in recent times, due to their
high relevance in environmental, technological, and chemical ap-
plications. Among these nanoporous materials, Metal Organic
Frameworks (MOFs)1 are devised with tetrahedrally coordinated
transition metal ions (e.g., Co, Cu, Zn, etc.) bridged by organic
ligands. Covalent Organic Frameworks (COFs)2 are also rela-
tively new nanoporous materials where the nonmetal atoms (like
B, C, O, Si, H, etc.) are linked by strong covalent bonds. Because
of the wide choice of possible metal ions and organic ligands, the
porosity and functionality of these materials can be tuned. As a
drawback of their high tunability, performing an exhaustive
experimental study of their gas adsorption/separation proper-
ties is not always an easy process. Metal�organic frameworks
where zinc is tetrahedrally connected to imidazolate ligands,
known as Zeolitic Imidazolate Frameworks (ZIFs), resemble zeolites
but offer wider porosity and exceptional thermal and chemical
stability and are very promising for gas storage and separation.3�6

Molecular simulation methods represent a relevant investiga-
tion tool in the research of these materials, since they support
advanced experimental applications. In simulation methods, a
proper choice of force field parameters and site partial charges is im-
portant to mimic the true adsorbate�adsorbent interactions and
hence the adsorption properties of these materials.7 In addition,

to get a transferable set of force field parameters, one has to rely
on the accurate treatment of electrostatic interactions. In fact,
computational simulations not considering accurate partial charges
on the whole framework may yield unrealistic results.

Model force fields with fixed partial atomic charges have been
proposed for simple molecular systems, whereas they are scarce
for supramolecular systems such as ZIFs. Since long-range elec-
trostatic interactions significantly contribute to the total interac-
tion energy, robust numerical methods for computing partial
charges in ZIFs are needed. Partial charges convey a chemically
intuitive picture of how the electronic density within a molecule
is distributed and are fundamental to describing the electrostatic
interaction in classical simulations. Nevertheless, it should be
noticed that they do not correspond to any quantum mechanical
observable; thus there are many methods to partition the density
into localized partial charges, some of them being more success-
ful in reproducing the system properties in the simulations. In
recent studies, Rankin et al.8 and Liu et al.9,10 have computed the
charges on ZIF�68, ZIF�69, and ZIF�70 using, respectively,
the Bader charge decomposition method11 and the Mulliken
charge partitioning scheme12 from periodic density functional
theory (DFT) calculations. It should be noticed though that the
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Bader theory of atoms in molecules13 could be sensitive to sub-
stituents and structural modifications in supramolecular struc-
tures; a comparison between the cluster-based charge calculation
of atomic charges and periodic DFT calculation employing the
Bader charge decomposition method11 has shown a substantial
error for the MOF HKUST-1.14 Furthermore, it is known that
the Mulliken charge analysis method based on periodic DFT cal-
culation is highly sensitive toward the basis set,15,16,9 and hence care
should be taken in handling the values of the resulting charges.

Numerical methods have been developed for fitting the partial
charges to atomic sites to reproduce the quantum chemical elec-
trostatic potential (ESP), considering grid points lying outside
the molecule.17�20 Nonetheless, it should be stressed that the
ESP charge analysis technique, usually applicable to molecular
systems, suffers from serious technical faults for buried atoms.
This is particularly true for atomically dense lattices, in which the
shortage of empty volume makes difficult the definition of valid
grid points outside the van der Waals radii. To eliminate this
problem, the RESP method19 introduces a penalty term in the
fitting procedure. In this context, several sampling schemes,21�24

e.g., MK, CHELP, and CHELPG, allow one to find the set of
point charges or multipoles capable of most closely reproducing
the electrostatic potential obtained from quantum chemical cal-
culations. Framework charges have also been derived from the
fragments of the periodic lattice through ESP fitting;25,26 special
care has to be taken to fulfill the valency of all atoms or charge
neutrality of the isolated fragment. It is worth mentioning that
the potential derived from charge calculation usingMK, CHELP,
and CHELPG methods has been tested by Maciel and Garcia27

who pointed out that CHELPG and MK outperform CHELP.
Subsequently, theCHELPG scheme has widely been used in charge
calculations for various molecular and lattice substances.28�30,14,8

When dealing with periodic electronic structure calculation, a
fundamental problem arises since the electrostatic potential for
infinite periodic systems is ill-defined.Only recently has amethod to
overcome this flaw been developed (REPEAT: Repeating Elec-
trostatic Potential Extracted Atomic—vide infra),31 which allows
for RESP-like charge fits in DFT periodic calculations. As we will
show in this article, it is a robust and relatively cheap method to
also extract indirect information about the electronic density
fluctuations in the framework.

The scope of this contribution is two-fold: first, we compare
the results of some of the above-mentioned methods on the ex-
perimental X-ray structure of ZIF�8, a well studied porous
material for the absorption ofH2 andCO2 andother flue gases;

32�39

then, we look into partial charge fluctuation during MD simula-
tions of ZIF�8, ZIF�2, and ZIF�3. The manuscript is orga-
nized as follows: in section II, the computational approach used is
explained; in section III, the results are shown, followed by our
conclusions in section IV.

II. MODEL AND SIMULATION DETAILS

The reference structure for ZIFs have been reconstructed from
the X-ray crystal data collected from the Cambridge Crystal-
lographic Data Centre. The building unit for the fragments of
ZIF�8 is a methyl-imidazolate group (mIm) coordinating two
Zn atoms; hence, the nomenclature of atoms in the supramole-
cular structure is straightforward. The methyl-imidazolate ring
has three types of carbon atom differing in bonding connectivity:
the sp2 carbon atom attached to the CH3 group (hereby denoted
as C1), two (chemically equivalent) sp2 carbons belonging to the

ring (C2), and the sp3 carbon atomof themethyl group (C3). H2
and H3 refer to the hydrogen atoms bonded respectively to C2
and C3 carbons. Nitrogen and zinc atoms do not need any kind
of special numbering because they are unique.

The building unit of ZIF�2 and ZIF�3 is an imidazolate
group (Im) coordinating two Zn atoms. Similarly to themIm group
in ZIF�8, the Im group in ZIF�2 and ZIF�3 has atom types
named C1 and C2 to which H1 and H2 are bonded.
A. Cluster Calculations. Cluster calculations have been per-

formed on fragments of ZIF�8. The crystal is characterized by
the presence of square and hexagonal windows around the main
cavity (see Figure 1). Thus, we considered portions of the periodic
lattice located around these two types of windows. The rationale
behind the choice of studying clusters of increasing size is that we
aim to look for the minimum dimension of an isolated fragment
to get converged values for the charges. In our study, Zn atoms at
the vertices of square or hexagonal windows are bonded either to
mIm groups or to NH3 molecules. The need of using different
groups coordinating zinc atoms originates from the fact that all of
the fragments are charged. The overall charge cannot be neu-
tralized while keeping the symmetry of the fragments at the same
time; conserving the symmetry is of high importance because it
allows the electronic density to be evenly shared on the core atoms,
thus leading to more reliable results on the computed charges.
On the other hand, it could be argued that the resulting charges
would be affected by the total charge being different from zero.
This considerations led us to perform calculations also on the
periodic system, which is completely uncharged (see below). The
clusters have been built up in such a way that the cleaved square
(hexagonal) fragments can be grown symmetrically by adding
further square (hexagonal) windows; a graphical intuitive repre-
sentation of the systems studied is shown in Figure 2. For the sake of
clarity, we name the fragments F�NZn

tot�NZn
core�L, where NZn

tot is
the total number of Zn atoms in the cluster, NZn

core is the number
of core Zn atoms (with the respective methyl-imdazolate group)
considered for computing the charge, and L is the name of the
terminal ligand (either mIm or NH3). For example, the
F�4�4�mIm cluster is the square fragment formed by four Zn
atoms, all of them considered in charge calculation.
DFT and ab initio calculations on supramolecular fragments

have been performed using the Gaussian 0340 (only for the
building unit) and Turbomole41,42 (for all fragments) software
packages. The meta-GGA TPSS functional43 was used together
with Gaussian basis sets; considering that big clusters imply a high
computational cost, the SVP basis set was used for all fragments
studied. The convergence of results was assessed against calcula-
tions on small clusters with the TZVP and QZVP basis sets. The
atomic charges were computed after having relaxed all structures
to their equilibrium geometries. In all calculations, we used the
Multipole Accelerated Resolution of the Identity (MARI-J),
which involves the evaluation of the Coulomb interaction
using auxiliary basis sets through the multipole expansion for

Figure 1. Unit cells for (a) ZIF�2, (b) ZIF�3, and (c) ZIF�8.



1577 dx.doi.org/10.1021/ct100685p |J. Chem. Theory Comput. 2011, 7, 1575–1582

Journal of Chemical Theory and Computation LETTER

nonoverlapping charge distributions without any significant loss
of accuracy.44,45

The sampling of the points at which ESPs are evaluated is
accomplished using the spherical shells at specified multiples of
an atom’s van derWaals radius around each atom andwith a density
of 1 point/Å2, as described in the MK sampling scheme.21,22 ESP
calculations have been performed with the same programs used
for the electronic structure calculations. The van der Walls radii
for Turbomole calculations are 1.39 Å, 1.55 Å, 1.70 Å, and 1.09 Å,
respectively, for Zn, N, C, and H, as taken from http://www.
ccdc.cam.ac.uk/products/csd/radii/.
B. Periodic Structure. Periodic DFT calculations have been

carried out for infinite crystalline ZIFs. The CPMD46 (only for
ZIF�8) and cp2k47 packages have been used in order to explore
two different types of basis function, namely, plane waves and
Gaussian basis sets. The electronic structure calculations were done
using both the BLYP48,49 and PBE50 functionals. Norm-conser-
ving Troullier�Martins51 (TM), Goedecker�Teter�Hutter52�54

(GTH), and Vanderbilt ultrasoft55 (VDB) pseudopotentials were
tested for single point calculations. As in a recent article on
MOFs,56 we used the TZV2P basis set for C, N, andH atoms, and
the TZV for Zn. Molecular dynamics simulations were run for
1 ps in the microcanonical ensemble, after having equilibrated
the system with massive Nose�Hoover57 chain (NHC) thermo-
stats at 300 K for 1 ps; massive thermostatting consists of applying a
NHC to each degree of freedom of the system, thus yielding to
energy equipartition in a short time.
BothCar�Parrinello (CP) andBorn�Oppenheimer (BO)mol-

ecular dynamics58,59 were run. In the former case, a time step of
4 au was used, and the fictitious mass of electron was set to 400
au. In the latter case, the time step was set to 0.5 fs. The orbital
transformation (OT) minimizer60 was used in wave function
optimization for BO calculations.
During production runs, the electrostatic potential was stored

for subsequent analysis with the REPEATmethod31 (see below),

allowing us to compute the atomic charges and their time evolution
along the simulation. The REPEAT author’s code was used to
evaluate the REPEAT charges. In the fitting procedure, we have
not used any rescaling factor. The van der Waals radii used are
1.38 Å, 1.83 Å, 1.93 Å, and 1.44 Å, respectively, for Zn, N, C, and
H, as taken from Universal Force Field.61 The FFT grid meshes
used for the fitting are the defaults from periodic DFT calcula-
tions. The valid grid points are always considered outside the
unscaled van der Waals radii for each atom.
C. Computation of Atomic Charges. The method used for

evaluating the atomic charges for both types of systems studied is
based on the restrained fitting of the DFT electrostatic potential.
Let us indicate asΨqm, the electrostatic quantum potential and as
Ψcal, the electrostatic potential obtained iteratively from the initial
guess of atomic point charges through the Coulomb equation by
minimizing the following functional form in least-squares fit:

ΦðqiÞ ¼ ∑
grid

ðΨgrid
qm �Ψgrid

cal Þ2 þ λð∑
i
qi � qtotalÞ ð1Þ

where qi is the set of N point charges, qtotal is the total molecular
charge, and λ is the Lagrange multiplier, ensuring that the sum of
atomic charges is equal to the total charge of the system. The
Coulomb interaction for infinite periodic replicas of point charges is
handled by using the Ewald method.62�64 The conventional ESP
charge fitting procedure for molecular systems, eq 1, yields un-
satisfactory charges for periodic systems.65 Taking into considera-
tion the wide charge fluctuations of buried atoms due to the ill-
defined reference state, amodified penalty function is adopted in the
least-squares fit technique. This is expressed in the following form:

Φðfqi, δψgÞ ¼ ∑
grid

ðΨgrid
qm �Ψgrid

cal þ δψÞ2 þ λð∑
i
qi � qtotalÞ

þ ∑
i
ξiPi ð2Þ

Figure 2. Structures of the clusters studied using a minimal representation for atoms and bonds. In the second and third clusters, the appearance of
square and hexagonal windows can be appreciated.
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where ξi and Pi are respectively the Lagrange multiplier and the
penalty function for buried atoms (the latter is given by expanding
the energy of an atom as a function of charge up to the second
order) and δψ is the difference between the quantum chemical
electrostatic potential and calculated electrostatic potential based on
atom centered point charges, averaged over grid points. This is the
basis for the REPEAT method.31

III. RESULTS AND DISCUSSIONS

A. Clusters. As a first step for the study of increasing size
fragments, we validated the density functional calculations against
Hartree�Fock and MP2 ab initio calculations on the building
block (F�2�2�mIm). Atomic charges were derived using both
the MK21,22 and the CHELPG24 sampling schemes. The results
are shown in Table 1. It can be seen that charges obtained with
DFT calculations are slightly shifted (ca. 5%) with respect to the
values obtained with ab initio methods. Similar results were
obtained with both hybrid and non-hybrid functionals using both
the TZVP and 6-311þþg(d,p) basis sets. In passing, we would
like to highlight that the differences between the MK and
CHELPG schemes are always negligible. Thus, we are confident
that any of the two methods together with DFT calculations are
capable of giving reliable results. This is of the utmost importance
for this study since it provides us with sound machinery to study
huge fragments, without losing accuracy and increasing compu-
ter time. Before showing the results on the clusters, we should
mention that the results shown proved to be highly dependent on
the cluster structure. Geometry and wave function optimizations
have been done with strict convergence criteria using fine grids
for DFT calculations. This has caused the calculations to be very
time-consuming, mainly for bigger fragments where the number
of atoms is higher than 400.
As a first approach, we computed the charges on small systems

formed by one zinc atom and two or four mIm molecules (re-
spectively in a linear and tetrahedral arrangement). Though such
a small size allowed us to perform calculations with large basis
sets, the results were not reliable; in fact, the atoms of mIm ex-
perience an inhomogenous environment which does not resem-
ble the crystal structure situation, causing the charges on chemically
equivalent atoms to be highly different. Hence, the main problem
in this kind of calculation is to compute the charges on atoms
which “experience” a coordination structure similar to that of the
crystal. For this reason, we build up highly symmetric fragments
of increasing size. In Table 2, we show the atomic site charges for
various molecular ion fragments of ZIF�8, namely, F�4�4�
mIm, F�6�6�mIm, F�12�4�NH3, F�18�6�NH3, and
F�12�4�mIm, estimated through the MK method. Unfortu-
nately, we were not able to converge the calculations on F�18�
6�mIm given the high number of atoms (546).

A distinguishable trend can be identified in the results. If we
consider fragments built on square windows, we can see that the
charge on Zn steadily increases, as well as on C2 and C3 atoms,
while that for N and H3 decreases; the behavior of C1 and H2 is
not as linear as for the other atoms. If we focus only on zinc, it can
been seen how the value of the charge is almost doubled on
passing from the small cluster to the big one. It should be stressed
that, only in case of F�12�4�L fragments have we considered
the core atoms; we think that this situation would be more
comparable to the case of zinc atoms in the crystal, which
experience a symmetric electron cloud distribution. According
to this point of view, the results of the F�12�4�mIm
fragment should be considered more reliable than those of
F�12�4�NH3, given that the species bonded to external zinc
atoms resemble those of the crystal. A similar trend is also
evident for the clusters with hexagonal windows. The values of
the charges show the same trend, and we expect that, if we
would have been able to compute them for the F�18�
6�mIm cluster, we would have obtained results similar to
those of F�12�4�mIm. The values obtained for the latter
fragment are in fair agreement with the ones obtained in the
calculations of the periodic system (see below), the largest
difference being the charge on C3.
Care should be taken, though, in considering these results as

being conclusive; in fact, we should stress that the overall charge
of the biggest fragments is (12, depending on the nature of
terminal ligand L (the sign is positive for L = NH3, while it is
negative for L = mIm). From the analysis of localized charges, we
have found that the excess charge is localized at the periphery of
the cluster. In the case of the F�12�4�mIm, for example, the
sum of the charges on the 48 core atoms is 1.26e, while the charges
on the rest of atoms adds up to �13.26e. Although from this
analysis we get insight into the way the excess charge is being
distributed within the cluster, we are not aware of any straight-
forward method to verify the effect of such an excess charge on
the electronic density distribution on core atoms. Hence, we are
not able to claim with certainty that the computed charges on
core atoms actually resemble those in the neutral crystal struc-
ture. These doubts on the reliability of our results move us to the
following subsection where calculations on the fully periodic
structure have been performed; the results will be useful also to
assess the problem of computing partial charges on electrically
charged clusters.
B. Periodic System. DFT calculations have been performed

on the periodic structure using both plane waves and Gaussian
basis sets.
We first tested for different pseudopotentials and functionals

only with plane waves; single point energy calculations on the
crystal structure were done using either PBE and BLYP func-
tionals with TM, GTH, and VDB pseudopotentials. The average
value of the charge of an atom type and the standard error were
calculated as a function of the pseudopotential cutoff for the wave

Table 1. Partial Charges on All Atoms for the BuildingUnit of
ZIF�8 Computed with Different Methods

method Zn N C1 C2 C3 H2 H3

HF-MK 1.78 �1.10 1.02 0.22 �0.91 0.12 0.27

HF-CHELPG 1.77 �1.10 1.09 0.24 �0.91 0.10 0.26

MP2-MK 1.74 �1.10 1.01 0.30 �0.91 0.09 0.27

MP2-CHELPG 1.72 �1.07 1.04 0.30 �0.90 0.08 0.26

DFT-MK 1.67 �0.98 0.92 0.25 �0.86 0.11 0.27

DFT-CHELPG 1.66 �0.94 0.94 0.24 �0.84 0.10 0.26

Table 2. Partial Charges on Core Atoms of the Fragments of
Increasing Size Grown on Square and Hexagonal Windows

fragment Zn N C1 C2 C3 H2 H3

F�4�4�mIm 0.3961 �0.2402 0.3699 �0.1849 �0.5943 0.1302 0.1685
F�12�4�NH3 0.4995 �0.2530 0.3371 �0.1829 �0.4239 0.1672 0.1273
F�12�4�mIm 0.6955 �0.3294 0.3822 �0.1554 �0.4115 0.1393 0.1136
F�6�6�mIm 0.3130 �0.1120 0.1434 �0.2102 �0.5168 0.1497 0.1480
F�18�6�NH3 0.4691 �0.1876 0.2227 �0.1997 �0.3884 0.1726 0.1207



1579 dx.doi.org/10.1021/ct100685p |J. Chem. Theory Comput. 2011, 7, 1575–1582

Journal of Chemical Theory and Computation LETTER

function. The results are reported in Figure 3; it can be noticed
that the difference among the results obtained with two func-
tionals while using the same pseudopotentials is less than 1%.
The standard error for most calculations is negligible (on the
scale used for representing the results for Zn, it is even not dis-
tinguishable from the thickness of the line!); only when VDB
pseudopotentials are used did we obtain huge error bars, hinting
that these calculations with these pseudopotentials do not guarantee
reliable results. All of the charge values converge to a stable value
for a cutoff of 150 Ry, which coincides with the values for energy
convergence; hence, the convergence of charges at this value of
cutoff is related to the convergence of DFT calculations and not
with the grid point used for the REPEAT fit. This analysis suggests
that both GTH and TMpseudopotentials together with PBE and
BLYP yield converged results for the charges with a small error.
Using Gaussian basis sets, we have tested again the convergence
of the charges with the pseudopotential cutoff for the density; in
this case, only PBE with GTH pseudopotentials was tested in a
cutoff range between 320 and 3000 Ry. We found that the
convergence of atomic charge (as well as of total energy) is
attained at 700 Ry; this result is in agreement with a recent study
on MOFs.56

We would like to highlight that the values of the charges
obtained with the REPEAT method are similar to the ones com-
puted on the biggest cluster (F�12�4�mIm), as discussed
in the previous section. In Table 3, we show the absolute
difference Δq bewteen the charges computed with REPEAT
and the respective entries in Table 2 for the F�12�4�mIm
cluster. It can be seen that the only noticeable deviation between
the two methods is found for the charge on C3, which differs by
ca. 0.19e. The differences in all of the other charges are
negligibile. The fact that the two methods converge to similar
values is an important check of their reliability. Moreover, it
seems that the calculation of partial charges on core atoms of
highly charged clusters is not affected by the presence of the

excess charge, thus confirming that the core atoms of big clusters
experience an electronic environment similar to that of the neutral
crystal structure. Although the two approaches give similar re-
sults, it should be noticed that the computational cost for the
evaluation of atomic charges from calculations on large clusters is
more than 1 order of magnitude higher, compared to the DFT
plus REPEAT calculations on the periodic structure. This feature,
besides rendering the REPEAT method an optimal choice for
this type of calculation, makes it a suitable technique for addressing
other issues, such as charge fluctations during dynamics (see below).
Up to now, methods used to compute partial charges for mol-

ecules or for supramolecular assemblies have always relied on
static ab initio calculations for the minimum energy structure.
Though, at the condensed phase, many-body interactions could
cause the electronic density to be polarized and to heavily fluctuate
around an average value; this has been recently shown for halide
ions in water.66 Accounting for electron cloud polarization in
classical molecular dynamics simulations implies the use of multi-
polar expansions or fluctuacting charges, with a noticeable com-
putational overhead. Nevertheless, there are cases where a simple
point charge approximation gives a fair representation of the
system. DFT-based molecular dynamics simulations are the ideal
test tool to look into electronic density fluctuations in the system.
To get a deeper insight into this issue, we computed the atomic
charges every 10 fs during a 1 ps simulation; in this case, GTH
pseudopotentials were used because they guarantee reliable re-
sults at a lower computational cost than TM pseudopotentials.
Average charges q and standard error Sq have been computed for
all atom types with both PBE and BLYP functionals. The results
for PBE using both CP and BOmolecular dynamics are shown in
Table 2. In Table 4, we also report results for ZIF�2 and ZIF�3,
for which we used the same setup for the calculations on ZIF�8.
Results of CPMD with the BLYP functional are in agreement
(within the error) with the ones obtained with PBE and are not
shown here. It can be seen that the values of the atomic charges
converge to similar values, the largest differences being around
5%. Moreover, the fluctuations are almost negligible, hinting that
using a simple point charge approximation for classical molecular
dynamics simulations of ZIFs is sensible. We would like to notice
that the calculations with plane waves (CPMD) and with Gaussian
basis sets (BOMD) give basically the same results. Thus, both of
them constitute sound methods to compute electrostatic poten-
tials inside ZIFs. A comparison of the results obtained for the
three different ZIFs considered here immediately highlights that

Figure 3. Values of the point charges for representative atoms as a
function of the cutoff for the functional and pseudopotentials tested.
Blue, red, and green are used respectively for GTH, TM, and VDB
pseudopotentials. Solid lines: PBE functional. Dashed lines: BLYP
functional.

Table 3. Partial Charges q of ZIF�8 fromGaussian and Plane
Wave Periodic DFT Calculations with the Relative Standard
Errors (Sq)

a

Zn N C1 C2 C3 H2 H3

CPMD

q 0.6894 �0.2800 0.4184 �0.1910 �0.5726 0.1536 0.1481

Sq 0.0016 0.0017 0.0027 0.0011 0.0025 0.0007 0.0007

Δq 0.0061 0.0494 0.0362 0.0356 0.1611 0.0143 0.0345

BOMD

q 0.7362 �0.3008 0.4339 �0.1924 �0.6042 0.1585 0.1572

Sq 0.0014 0.0014 0.0024 0.0008 0.0021 0.0005 0.0005

Δq 0.0407 0.0286 0.0517 0.0370 0.1927 0.0192 0.0436
a For each method, the differenceΔq = |q� q(F�12�4�mIm)| is also
reported.
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the values for the point charges are quite different. Therefore, it is
advisible that, to perform molecular dynamics calculations on
these materials, instead of taking standard values from generic force
fields, point charges should be carefully calculated for any of them.
While this manuscript was under revision, a similar study was

published where point charges were computed with the REPEAT
method on ZIF�8.67 By applying different scaling factors γ to
the van der Walls radii, the authors found that the value of the
point charges varies over a large interval, ranging, in the case of
Zn, from 0.69e forγ= 1 to�2.58e forγ = 2. Although the authors
conclude that it is hard to attach any physical interpretation to the
REPEAT charges, nevertheless, it should be considered that large
values of exclusion radii, such as the ones just mentioned, are
never used in ESP charge methods. In addition, it should be
noted that, by using γ = 1, the values of point charges are in good
agreement with our cluster calculations, with recent calculations
made on biosystems containing building blocks similar to that of
ZIF�8,69,68 and with DDEC and CBAC results reported in the
same article of Watanabe and co-workers.67 Therefore, we re-
commend the use of the REPEAT method with γ = 1.
It is interesting to notice that, from the latter study, it seems

that the adsorption isoterms calculated with Grand Canonical
Monte Carlo simulations are independent of the values chosen
for charges. Considering this result, it is certainly of interest to
assess the role played by the point charges in driving the dynamics of
the system and in reproducing other experimental properties. In
our group, we have started to address this issue with the use of
force field molecular dynamics simulations.

IV. CONCLUDING REMARKS

Force-field-based calculations (Monte Carlo or molecular
dynamics) rely on a reduced description of the system electronic
density by means of atomic partial charges. In our study, we
explored different approaches to derive them for zeolite imida-
zolate frameworks (ZIFs). The usual approach to compute partial
charges for molecular systems is based on ab initio calculations
on small clusters, followed by a fitting of the quantum chemical
electrostatic potential. Among the many methods, we chose the
Merz�Kollman sampling scheme, which has been shown to give
reliable results; we also found that, for computing partial charges,
density functional theory calculations yield values comparable to
the ones obtained withHartree�Fock and perturbativemethods.

Partial charges computed for molecules give a fair description
of the electronic density of the isolated system, which is considered
to be slightly perturbed in the condensed phase; thus, values cal-
culated for the isolated systems are transferred to liquid/solid
simulation with a negligible loss of accuracy. This approximation
does not hold for crystal systems such as ZIFs; in fact, every

atom/molecule in the supramolecular structure feels the crystal-
line environment, which should be somehow included in the
description. Thus, for example, computing partial charges on the
cluster formed by one zinc atom coordinated by four methyl-
imidazolium molecules would make sense if we were interested
only in the zinc charge. On the other hand, if we need to know the
charges on N, we should consider a symmetric structure around
the molecule.

To this end, we have explored two different methodological
approaches to compute partial charges on ZIF�8 from first
principles calculations. The first approach has been based on the
building up of isolated clusters resembling the structure and
symmetry of the crystal. We have observed that, in order to
obtain converged results, the size of the cluster should be around
400�500 atoms, which renders this approach extremely compu-
tationally expensive. The second method is based on evaluating
the REPEAT charges on the periodic crystal structure. In order to
define an operative protocol to compute partial charges on
ZIF�8 (which would be extended to similar materials), we
compared the results obtained with two different functionals
and six pseudopotentials. We found that ultrasoft Vanderbilt
pseudopotentials give larger errors compared to norm-conser-
ving Troullier�Martins or Goedecker�Teter�Hutter pseudo-
potentials. The results obtained with both PBE and BLYP
functionals are in fair agreement, hinting that the computed proper-
ties are well described with the two of them. The convergence of
results has been checked against the value of the pseudopoten-
tials’ cutoff. In the case of plane wave calculations, the partial charges
converge at 150 Ry for the wave function cutoff, while for a mixed
plane wave and Gaussian basis sets treatment, we found a density
cutoff of 700 Ry to be the ideal choice. In passing, we notice that the
values obtained for Zn and N are in agreement with those from
recent studies67�69 on ZIFs and on systems of biological interest.

The values of REPEAT charges are also in agreement with
those computed, at a much higher computational cost, on large
isolated clusters. Given the reliability of the method, and con-
sidering its relatively low computational overhead, in the second
part of the article, we looked into the fluctuations of charges, by
propagating the system with DFT-based molecular dynamics
simulations of the periodic structure. REPEAT charges have been
computed for many configurations of three zeolite imidazolate
frameworks, slightly differing among them in the structure and
substituents: ZIF�8, ZIF�2, and ZIF�3.

For ZIF�8, both Car�Parrinello and Born�Oppenheimer
molecular dynamics simulations show that the value obtained in
single point calculations are in agreement with the average value
during the time evolution of the system. The common feature to
the three ZIFs studied is that the fluctuations in the charges of
every atom are small. To our knowledge, this represents the first
study of atomic partial charges where the fluctuations are taken
into account; our results justify the choice of using the point
charge approximation for these kinds of materials, given that the
fluctuations are negligible. Nevertheless, if highly charged or
polarizable absorbates interact with the framework, the inclusion
of polarization could be important in the description of physical
chemical properties of ZIFs. Further studies in this direction are
now in progress in our group.
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Table 4. Partial Charges q with the Relative Standard Errors
(Sq) of ZIF�2 and ZIF�3 Born�Oppenheimer Molecular
Dynamics Simulations

Zn N C1 C2 H1 H2

ZIF�2

q 0.6100 �0.1798 �0.0384 �0.1341 0.1042 0.1285

Sq 0.0021 0.0006 0.0014 0.0006 0.0003 0.0015

ZIF�3

q 0.6082 �0.1913 0.0208 �0.1511 0.0823 0.1388

Sq 0.0011 0.0011 0.0018 0.0005 0.0006 0.0003
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ABSTRACT: Prolyl oligopeptidase (POP), a member of the prolyl endopeptidase family, is known to play a role in several
neurological disorders. Its primary function is to cleave a wide range of small oligopeptides, including neuroactive peptides. We have
used force biased molecular dynamics simulation to study the binding mechanism of POP. We examined three possible binding
pathways using Steered Molecular Dynamics (SMD) and Umbrella Sampling (US) on a crystal structure of porcine POP with
bound Z-pro-prolinal (ZPP). Using SMD, an exit pathway between the first and seventh blade of the β-propeller domain of POPwas
found to be a nonviable route. US on binding pathways through the β-propeller tunnel and the TYR190-GLN208 flexible loop at the
interface between both POP domains allowed us to isolate the flexible loop pathway as the most probable. Further analysis of that
pathway suggests a long-range covariation of the interdomain H-bond network, which indicates the possibility of large-scale domain
reorientation observed in bacterial homologues and hypothesized to also occur in human POP.

1. INTRODUCTION

Endopeptidases are a class of proteases that hydrolyze internal,
i.e., nonterminal, peptide bonds. Prolyl oligopeptidase (POP) is a
proline-specific endopeptidase that cleaves oligopeptides (<30-
mer) at the C-side of an internal proline. In vitro analysis found
that a wide variety of neuroactive peptides substrates can be
cleaved by POP,1�5 and in vivo analysis indicates that these are its
actual metabolic substrates.2 It has been found, although some-
what inconsistently, that certain POP inhibitors can reverse
memory loss caused by amnesic agents, neurological disorders,
and aging, making POP an important drug target.6,7 In addition,
an alteration in POP enzyme activity has beenmeasured in serum
samples taken from patients suffering from Parkinson’s and
Alzheimer’s disease8 and multiple sclerosis.9 Experimental evi-
dence exists that POP might have a role beyond its peptidase
function. Examples of this include protein�protein interactions,2,10

intracellular transport,11 inflammation,12,13 angiogenesis,14 and
cancer development.14,15 The biochemical role of POP and its
inhibitors has been reviewed in refs 1�5, 7, and 16.

Several fundamental questions regarding access to the active
site, gating, selection, and the detailed inhibition mechanisms
remain unanswered. Recent studies have combined a number
of experimental and simulation techniques to address the
details of inhibition mechanisms17 as well as binding and gating
mechanisms,18 and progress has been made in developing com-
binatorial libraries for POP.19

In this paper, our focus is on the active site access (exit)
pathways. This is a fundamental question in understanding
the peptidase function. What makes this question particularly

challenging is its dynamic nature: entry and exit involve dynamic
response. Hence, docking studies and short time-scale density
functional calculations are not able to address this question. We
study porcine POP, crystallized with a bound ZPP inhibitor
described by F€ul€op et al.20 (PDB database ID 1QFS). The
structure is composed of two domains: the protease catalytic
domain with an R�β hydrolase fold composed of amino acids
1�71 and 436�710 and the seven-bladed β-propeller, com-
prised of amino acids 72�435. The active site is on the surface of
an internal cavity between the two protein domains. The ZPP
inhibitor has a hydrophobic head that sterically blocks the active
site and an aldehyde tail that forms a reversible covalent hemi-
acetal bond with the SER554 residue of the catalytic domain. The
β-propeller domain has an unusual, mostly hydrophobic inter-
action between the first and seventh blades. This is called the
“velcro rip” and has been proposed to act as a filter to the active
site.20�23 Later studies have demonstrated that the domain by
itself is more stable than in conjunction with the catalytic
domain.24 This finding is in agreement with a small scale com-
putational study carried out by Fuxreiter et al.25 and our previous
computational work on POP with an unbound inhibitor in the
binding cavity:26 both indicate that the β-propeller is a highly
stable structure. It was suggested that the entry point is most
likely through the H-bonded network of loosely structured loops
that connect the two protein domains, in particular the location
of the TYR190-GLN208 flexible loop.
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Recent electron microscopy experiments suggest that the
interdomain region offers a wider entry point than the
β-propeller tunnel.18 For example, Shan and collaborators find
that the crystal structure of a distant POP relative, Sphingomonas
capsulata (SC; PDB database ID 1YRZ), displays an open
conformation in absence of the inhibitor, where the two domains
are separated, exposing the catalytic triad to the solvent.27

Experimental evidence of an open form of a homologous protein
has also been captured by X-ray diffraction crystallography of
Aeromonus punctata prolyl endopeptidase.28 In that study, Li et al.
captured the closed form of the protein after soaking the open
form of the crystallized protein in a bath of the inhibitor. By
maintaining the protein in this open form using glutaraldehyde
driven lysine cross-linking, they obtained a complete absence of
activity. This interdomain large-scale motion has not yet been
observed in experiments performed on mammalian POP. Cy-
steine cross-linking experiments binding the two domains to-
gether have, however, been shown to lead to strongly reduced
protein activity.29

Elucidating the mechanism through which substrates gain
access to the active site, i.e., identifying the ligand entry pathway,
would be beneficial for the development of new classes of
inhibitors for mammalian POP. It is important to perform full
MD simulations with explicit solvent since water can access the
active site and in some cases even have a decisive role.30 To study
the entry pathways, it is necessary to test the various possible
trajectories directly. In this paper, we use SMD and US to
measure the free energies of the three postulated exit/entry
pathways of the ZPP inhibitor. Once we have determined the
correct entry/exit pathway, we then study the interaction be-
tween inhibitor and the elements of the protein structure that
comes in contact with it. Although SMD is first used to generate
rough pathways, the bulk of our results are obtained using US.
Using these methods, we determine that the most probable exit
pathway is through the loosely structured loops between the two
domains opposite the interdomain hinge.

2. METHODS

2.1. Software, Model, and Simulation Parameters. All
simulations were performed using the GROMACS 4.0 simula-
tion package31 at constant pressure (1 bar) and temperature
(310 K; NPT). Temperature was maintained using the Nos�e�
Hoover thermostat32,33 and pressure using the Parrinello�
Rahman barostat.34 The coupling time constants were set to
0.1 and 1.0 ps for thermostat and barostat, respectively, and the
protein and solvent were thermalized separately. Electrostatic
interactions were computed using the Particle-Mesh-Ewald
method (PME).35,36 The Lennard-Jones interactions were cut
off at 1.0 nm. The same cutoff was used for the real-space part of
PME. Charge groups were chosen to be small to avoid artifacts
that may arise if the charge groups are spatially too large.37

To parametrize the POP and ZPP molecules and the solution
ions, we used the OPLS-AA (Optimized Parameters for Liquid
Simulations, AA stands for all-atom) potential set.38 Partial
charges on ZPP were taken from our previous work.26 For water,
the TIP3P model was used.39

The initial structure was taken from our previous 100 ns MD
study of POPwith the ZPP inhibitor unbound in the active site.26

POP was solvated in a box of water of size 10 � 10 � 10 nm.
Potassium and chlorine ions were added to neutralize the system

to model physiological conditions (140 mM salt concentration).
The solvated simulation box contained a total of 100 468 atoms.
Analysis and visualization were performed using the VMD

(Visual Molecular Dynamics) package40 and GROMACS31,41

analysis tools. Pathways were generated and evaluated using
SMD and US, as described in the following sections.
2.2. SMD and US. In SMD, an external force, called force bias,

FBfb, is applied to a single atom or a group of chosen atoms,
through their center of mass. SMD is an irreversible approach,
and its use is based on the Jarzynski equality Æexp[ �W/kBT]æ =
exp[ �ΔG/kBT], where kB is the Boltzmann constant, T is
temperature, andW is the total nonreversible work done on the
system by FBfb during a nonequilibrium transition between two
states connected by a reaction coordinate λ.42�44 The free energy
difference between these two states is given by ΔG t ΔG(λ).
The angular brackets stand for an ensemble average taken by
repeating the simulation many times along the path connecting
the initial and final states, λ1 and λ2. The essence of the Jarzynski
equality is that it links rigorously the work done in a none-
quilibrium process to the change in the equilibrium free energy
difference. This method has been used in small systems, e.g.,
single molecule conformational changes,45�47 and, more rarely,
in larger systems involving, e.g, protein�protein interactions.48

We define the direction of FBfb as r̂fb. All other degrees of
freedom are allowed to react freely to this force. To drive the
system, we apply a harmonic force

FBfbðλÞ ¼ kfbðλ rBfb � rBcmÞ ð1Þ
where kfb is the force constant and rBcm is the center of mass. A
force bias with a fixed value of kfb is introduced with λ increasing
from zero to one at a continuous rate as the simulation proceeds.
This rate is known as the pulling rate.
It has been shown by Park and Schulten49 that the Jarzynski

equality is equivalent to calculating the free energy difference
from the first and the second-order cumulants of the work done
by the biasing force:

ΔG ¼ ÆWæ� ÆW2æ� ÆWæ2

2kBT
ð2Þ

While both the Jarzynski equality and eq 2 are formally correct
in the thermodynamic limit, finite sampling leads to potential
problems since ΔG depends exponentially on W; the result is
easily dominated by the extremal values of the distribution.50,51

The impact of this sensitivity to rare pathways can be evaluated
by comparing results obtained from these two methods.
US52,53 obtains the free-energy difference between two states

from a set of equilibrated simulations. Like in SMD, a force bias is
applied. However, now the configuration is equilibrated at each
step, which we refer to as window. The value of the harmonic
force constant used for each window is independent and can be
set to a value that optimizes the efficiency with which the phase
space is sampled. Parameters ki and λ must be selected in such a
way as to ensure that the phase space sampled by adjacent
windows overlaps sufficiently, forming a continuous pathway
between the initial and the final state. Results from all windows
can then be combined using the weighted histogram analysis
method (WHAM)54 to provide the full thermodynamical evolu-
tion along the reaction coordinate.
Examples exist of systems where US has been successfully

applied to include ion channels,55,56 unfolding of the I27 titin
domain,57 and the evaluation lipid transfer and peptide penetration



1585 dx.doi.org/10.1021/ct1007058 |J. Chem. Theory Comput. 2011, 7, 1583–1594

Journal of Chemical Theory and Computation ARTICLE

in cellular membranes.58,59 SMD andUS have been compared for
ligand binding in the gramicidin A channel and Kv11.1 (also
known as hERG) potassium channel.60 Several comprehensive
reviews are available.61,62

2.3. Application of SMD and US to the Study of Our
System. SMD employing the Jarzynski equality was performed
on the system with the applied bias force dislocating the ZPP
molecule from the binding pocket along the three proposed
pathways shown in Figure 1a. We generated one pull vector each
for the pathways through the β-propeller tunnel and the flexible
loop. For the third pathway, the velcro-rip junction between the
first and seventh blade of the β-propeller, three different pull
vectors (see Figure 1a) were attempted to test this suggested exit
pathway.20�23

Since the center of mass and the orientation of the protein are
not inherently conserved properties for the simulated system
(proteinþ ZPPþ solvent), it was necessary to add restraints to
conserve the position and orientation of the protein. This was
achieved by restraining the positions of a small number of
R-carbon atoms positioned far from the sampled ZPP exit
pathway with harmonic restoring forces with a force constant
of 10 kJ/(mol� nm2). Two sets of weak restraints were selected,
for the flexible loop exit and β-propeller tunnel pathways, and in
both cases the harmonic force constant on these restraints
was 2�3 orders of magnitude smaller than the restraining
force bias applied to the ZPP ligand. For the β-propeller tunnel
pathway, the restrained residues PRO7-ASP35, ASP431-GLY464,

TYR510-LYS546, and ILE610-GLN629 were all located on the
catalytic domain and did not form part of the inner cavity. For the
flexible loop exit, the atoms selected for restraint span both
domains: on the catalytic domain, the R-carbon atoms of the
residues VAL427-LYS458 were restrained, and on the beta-
propeller, they were placed on amino acids TYR73-GLY108
and GLY288-LYS458. Although, formally, this position on both
domains affects allosteric communication between the two
domains, the restraints are weak enough and dispersed enough
to minimize this possibility. With the orientation of the protein
maintained, the force bias is relative to the center of mass of the
protein, and the expression for the force bias vector becomes

FBfb ¼ kfbðλ rBfb � ð rBcm�ZPP � rBcm�proteinÞÞ ð3Þ

Following the work of Tskhovrebova et al.,63 we first com-
puted the free-energy barriers for the different exit pathways
using SMD. This was performed with a harmonic force constant
kfb = 5 MJ/(mol � nm2) and pulling rates of 0.5 nm/ns, as was
used in previous work,64 and also of 0.1 nm/ns. To make it
possible for the ZPP to exit POP, the simulation box was
extended by 2.0 nm in the direction of the force bias for the
β-propeller tunnel pulling vector, which brings the total number
of atoms in the periodic box to 130 004.
For our US, we used states obtained from the SMD as starting

configurations. For each window, we selected a state where the
value of the component of the displacement vector (the vector

Figure 1. (a) SMDZPP-pulling vectors for the flexible loop exit (red), theβ-propeller tunnel exit (green), and three possible exits through the velcro-rip
of the β-propellor (golden arrows). The ZPP inhibitor inside is in orange. (b) Zoom on the ZPP with carbons colored by our definition of its three
regions: PHE (yellow), PRO1 (green), and PRO2 (cyan) groups. In its inhibition mode, the PRO2 aldehyde group is involved in a covalent bond to the
SER554 of the protein. Oxygen and nitrogen atoms are left in red and dark blue, respectively.
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connecting the centers of mass of the POP and ZPP along the
direction of the force bias) matched the value of λ for the
window.
Only the flexible loop and the β-propeller exit pathways were

studied with US. The pathways were divided into 46 and 48
windows, respectively, with the reaction coordinate values sepa-
rated by 0.1 nm. In each window, kfb = 2.5 MJ/(mol� nm2), and
force biased MD was performed for 10 ns and 8�9 ns,
respectively. These initial simulations were started using con-
formations obtained from the SMD, as shown in Tables 1 and 2.
To ensure sufficient overlap between distributions sampled in
adjacent windows, undersampled regions were identified, and
simulations were launched in these windows.
For the loop opening, 14 extension windows were added in

regions where the resistance to sampling was particularly high
(energy barrier regions); the sampling was extended by 5�8 ns,
performed with a higher force constant of 5�10 MJ/
(mol � nm2) to obtain a minimum sampling of 50 000 confor-
mations per bin of size 0.01 nm along the reaction coordinate.
For the β-propeller tunnel exit, 20 extension simulations with a
force constant of 5 MJ/(mol � nm2) of length 5 ns each were

added to reach a minimum sampling of 100 000 conformations
per bin of size 0.0095 nm. From this data, the free energy difference
profile of ZPP-POP unbinding was computed using WHAM,54 as
implemented in GROMACS 4.5.3.65 These extension windows
were initiated with the last conformation of a nearby window, as
indicated by the “source” columns of Tables 1 and 2.

3. RESULTS

In order to describe the ZPPmolecule and its interactions with
its environment, we use the same formalism as in our previous
publication26 to define the structure of the ZPP molecule in
terms of three atomic groups. As shown in Figure 1b, PHE
represents the aromatic phenyl head, PRO1 the middle proline,
and PRO2 the terminal proline containing the aldehyde group
(involved in the hemiacetal bond with SER554). In the following
section, we describe our SMD results followed by the US results,
and an analysis of the exit pathway.
3.1. Exploration of the Exit Pathways Using SMD. As the

first attempt to estimate the free energy barriers associated with
the exit pathways, we conducted a set of three SMD simulations

Table 1. Umbrella Sampling Windows Parameters for the Flexible Loop Exita

window z (nm) T (ns) kfb (MJ/(mol � nm2)) source window z (nm) T (ns) kfb (MJ/(mol � nm2)) source

1 0.3 10 2.5 SMD 18b 1.95 7.2 10 18

2 0.4 10.1 2.5 SMD 19 2.1 10.1 2.5 SMD

3 0.5 10 2.5 SMD 20 2.2 10.1 2.5 SMD

4 0.6 10.1 2.5 SMD 20b 21.4 10.1 10 20

5 0.7 10 2.5 SMD 21 2.3 10.1 2.5 SMD

6 0.8 10 2.5 SMD 22 2.4 5 2.5 SMD

7 0.9 10 2.5 SMD 23 2.5 10 2.5 SMD

8 1 10 2.5 SMD 24 2.6 10 2.5 SMD

8b 1 8.4 10 8 25 2.7 10.1 2.5 SMD

9 1.1 10 2.5 SMD 26 2.8 10.1 2.5 SMD

9b 1.05 8.4 10 9 27 2.9 7 2.5 SMD

9c 1.1 7.1 10 9 28 3 10 2.5 SMD

10 1.2 10.1 2.5 SMD 29 3.1 10 2.5 SMD

10b 1.15 8.4 10 10 30 3.2 10 2.5 SMD

10c 1.2 8.4 10 10 31 3.3 10 2.5 SMD

11 1.3 10 2.5 SMD 32 3.4 10 2.5 SMD

12 1.4 10 2.5 SMD 33 3.5 10 2.5 SMD

13 1.5 10 2.5 SMD 34 3.6 10 2.5 SMD

13b 1.47 10 10 13 35 3.7 10 2.5 SMD

14 1.6 10.1 2.5 SMD 36 3.8 10 2.5 SMD

15 1.7 10.1 2.5 SMD 37 3.9 10 2.5 SMD

15b 1.65 8.4 10 15 38 4 10 2.5 SMD

15c 1.7 8.5 10 15 39 4.1 10 2.5 SMD

16 1.8 10 2.5 SMD 40 4.2 10 2.5 SMD

16b 1.75 7.1 10 16 41 4.3 11 2.5 SMD

16c 1.8 8.5 10 16 42 4.4 10 2.5 SMD

17 1.9 10 2.5 SMD 43 4.5 10 2.5 SMD

17b 1.85 7.2 10 17 44 4.6 10 2.5 SMD

17c 1.9 7.1 10 17 45 4.7 10 2.5 SMD

18 2 10 2.5 SMD 46 4.8 10 2.5 SMD
a z is the reaction coordinate, the equilibrium distance between the ZPP and protein’s center of mass for each window. kfb is the force constant of the
spring restraining the ZPP at distance z.T is the length of time of the window’sMD simulation. The “source” column indicates what was the source of the
initial conformation of the window, where SMDmeans it was extracted from the close position in the steered molecular dynamics and where a number
points to the US window for which the last conformation was extracted.



1587 dx.doi.org/10.1021/ct1007058 |J. Chem. Theory Comput. 2011, 7, 1583–1594

Journal of Chemical Theory and Computation ARTICLE

with a pulling rate of 0.1 nm/ns and 35 SMD simulations at a rate
of 0.5 nm/ns for both the flexible loop and the β-propeller exit
pathways with a total simulation time near 250 ns per pulling
direction. The work (W) required to move the ZPP over the
entire path was calculated for each run. We computed the free
energy difference from the distribution ofW values using the two
separate methods discussed previously and found a significant
discrepancy between their results. The pull rate was found to
strongly influence the sampled pathways: in all 35 SMD trajec-
tories with the higher pulling rate along the loop exit pathway, the
ligand exited either around or through the TYR190�GLN208
flexible loop, while two of the three slower SMD pathways
favored a concerted opening of the same loop. Moreover, the
orientation of the ZPP at the exit of these two trajectories was
reversed. The trajectory requiring the lowest work hadZPPoriented
such that the phenyl group PHE was directed toward the catalytic
domain and the PRO2 proline group toward the β-propeller.

The second trajectory showing a concerted opening of the
flexible loop had a value ofW that was greater by 40 kJ/mol than
the previous pathway. In this case, ZPP exited the protein in a
reversed orientation with the PHE and PRO2 groups directed
toward the β-propeller and catalytic domain, respectively. The
lack of convergence in the sampled work obtained at the slow
pulling rate of 0.1 nm/ns indicates that a slower pulling rate
would be required for the ZPP to adopt the preferred conforma-
tion in most pulling trials. Given the large number of trials
necessary for sufficient statistics, and the high computational cost
of each pulling trial, this option was not retained.
We also used SMD to investigate a third possible exit pathway

proposed by a number of groups, which involves ZPP moving
through the velcro-rip between the first and seventh blades of the
β-propeller domain (see Figure 1).20�23 We generated three
SMD simulations using three different pulling vectors (gold
vectors in Figure 1) and a pulling rate of 0.5 nm/ns. In all three

Table 2. Umbrella Sampling Windows Parameters for the β-Propeller Exita

window z (nm) T (ns) kfb (MJ/(mol � nm2)) source window z (nm) T (ns) kfb (MJ/(mol � nm2)) source

1 �0.15 9.1 2.5 SMD 27b 2.19 9.5 5 27

2 �0.05 9.7 2.5 SMD 28 2.35 5 2.5 SMD

3 0.05 8.6 2.5 SMD 29 2.45 7.3 2.5 SMD

4 0.15 9.4 2.5 SMD 29b 2.36 8.3 5 29

5 0.25 9.3 2.5 SMD 30 2.55 8.3 2.5 SMD

5b 0.2 5 5 5 30b 2.48 5 5 30

6 0.35 9.3 2.5 SMD 31 2.65 7.9 2.5 SMD

7 0.45 9.3 2.5 SMD 31b 2.59 5 5 31

8 0.55 9 2.5 SMD 32 2.75 6.3 2.5 SMD

9 0.65 9.4 2.5 SMD 33 2.85 7.8 2.5 SMD

10 0.59 5 5 SMD 34 2.95 8.7 2.5 SMD

11 0.75 8.5 2.5 SMD 34b 2.88 5 5 34

12 0.85 8.1 2.5 SMD 35 3.05 8.6 2.5 SMD

12b 0.8 5 5 12 35b 3 5 5 35

13 0.95 8.2 2.5 SMD 36 3.15 8.6 2.5 SMD

14 1.05 7.8 2.5 SMD 37 3.25 8.3 2.5 SMD

15b 1 5 5 15 38 3.35 8.5 2.5 SMD

16 1.15 9.2 2.5 SMD 38b 3.31 5 5 38

17 1.25 7.9 2.5 SMD 39 3.45 8.2 2.5 SMD

18 1.35 8.1 2.5 SMD 39b 3.5 5 5 39

18b 1.3 5 5 18 40 3.55 8.6 2.5 SMD

19 1.45 8.2 2.5 SMD 40b 3.6 5 5 40

20 1.55 7.7 2.5 SMD 41 3.65 8.4 2.5 SMD

21 1.65 5 2.5 SMD 41b 3.7 5 5 41

21b 1.6 8.2 5 21 42 3.75 8.5 2.5 SMD

22 1.75 5 2.5 SMD 42b 3.8 5 5 42

22b 1.72 9.2 5 22 43 3.85 8.7 2.5 SMD

23 1.85 8.9 2.5 SMD 44 3.95 8.8 2.5 SMD

24 1.95 5 2.5 SMD 45 4.05 8.5 2.5 SMD

24b 1.95 9.3 5 24 45b 4.05 5 5 45

25 2.05 5 2.5 SMD 46 4.15 8.5 2.5 SMD

25b 2.05 8.4 5 25 47 4.25 8.8 2.5 SMD

26 2.15 9.3 2.5 SMD 48 4.35 8.6 2.5 SMD

27 2.25 5 2.5 SMD
a z is the reaction coordinate, the equilibrium distance between the ZPP and protein’s center of mass for each window. kfb is the force constant of the
spring restraining the ZPP at distance z.T is the length of time of the window’sMD simulation. The “source” column indicates what was the source of the
initial conformation of the window, where SMDmeans it was extracted from the close position in the steered molecular dynamics and where a number
points to the US window for which the last conformation was extracted.
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cases, the ZPP molecule failed to pass through the velcro rip,
either exiting by the β-propeller exit or through the hinge region
linking the catalytic and the β-propeller domains. Clearly, the
velcro-rip is extremely stable. This result is consistent with
previous simulation results that indicated that the β-propeller
domain is highly stable.26,25 Thus, this exit pathway was ruled out
and the rest of our analysis focused only on the two remaining
candidate pathways.
While SMD can serve to rule out a proposed exit pathway, this

method requires too many simulations to converge. We did,
however, use the configurations from generated pathways as
starting points for US trajectories.
3.2. Free Energy Difference Calculations with US. The

initial configurations for launching MD in all of the US windows
were obtained from the SMD pathways. US for both the flexible
loop and the β-propeller exit pathways was performed as de-
scribed previously. The sum of all simulation times (i.e., includ-
ing all windows) is equivalent to 539 ns of MD for the loop exit
and 499 ns for the β-propeller exit. In all individual simulation
windows, statistics were accumulated after an initial 2 ns equili-
bration with positions, simulation times, and force constants as
listed in Tables 1 and 2. To evaluate convergence toward
equilibrium, we computed the root-mean-square deviation
(rmsd) of the protein for each window. After 4 ns, the rmsd
values converged, on average, to 0.20 nm(0.02 nm for the loop
exit and 0.20 nm(0.01 nm for the β-propeller pathway Figure 2.
Figure 3 shows the number of configurations sampled along

the reaction coordinate for the loop and the β-propeller exit
pathways, respectively, with bins of sizes 0.01 and 0.0095 nm.
The smallest count for the loop exit is 50 585 conformations at
z = 1.45 nm and 122 193 conformations at z = 1.27 nm for the
β-propeller. They correspond to visiting times of 101 and 245 ps,
respectively.
The resulting potential of mean force obtained from WHAM

for the loop exit and β-propeller exit is presented in Figure 4. The
error bars give the standard deviation as calculated using 100
iterations of statistical bootstrapping using the histogram Baye-
sian bootstrap available in Gromacs version 4.5.3.65 For the loop
exit, we find the lowest free energy at position 0.8 nm in the
cavity, the transition peak at 1.8 nm, and the solvated free energy
at 4.15 nm in the reaction coordinate. This reveals a free energy
difference between the bound and free ZPP conformations of

�18.5 ( 8.2 kJ/mol with a transition energy barrier of 25.1 (
8.1 kJ/mol in the entry direction. For this interaction, we can
calculate a constant of inhibition Ki = 0.8 mM using the formula:

Ki ¼ ½1M� e�ΔG=RT ð4Þ

where R is the perfect gas constant and T is the absolute
temperature. The accuracy of ΔG was calculated to be (8.2
kJ/mol, on the basis of one standard deviation on the binding free
energy difference; thus our the confidence interval for Ki is
[32 μM, 18 mM]. This inhibition constant is much wzeaker than
the empirical value ofKi = 0.35 nM

66 since it does not include the
formation of the favorable hemiacetal bond, an event not
simulated in our study. However, the Ki found in our study is
on the same order as other inhibitors who do not form a
hemiacetal bond like suc-Gly-Pro-Nan with a Ki = 0.278 (
0.35 mM at pH 5.6 and Z-Gly-Pro-OH with a Ki = 0.253 (
0.18 mM at pH 8 or Ki = 21.2 ( 0.5 μM at pH 7.35.67

Figure 2. Average root-mean-square deviation evolution in the loop
exit (black) and the β-propeller (red) as a function of displacement from
the binding site. Error bars express the standard deviation.

Figure 3. Histogram of the reaction coordinate along the loop exit as a
function of displacement from the binding site using a bin size of 0.01 nm
(black) and along the β-propeller tunnel exit using a bin size of
0.0095 nm (red).

Figure 4. Potential of mean force for the loop exit (black) and
β-propeller tunnel exit (red) as a function of displacement from the
binding site. The red curve was shifted vertically for better legibility.
Error bars express the standard deviation.
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For the β-propeller tunnel exit, a WHAM analysis performed
on the US data (Figure 4 in red) yielded a free energy minimum
at�0.05 nm and a transition free energy of�101.6( 4.7 kJ/mol,
corresponding to a plateau starting at z = 4.0 nm, at which point
the ZPP is free in the solvent. Contrary to the loop exit, this
pathway shows no global minimum, rising systematically as the

ZPP moves out of the protein. Furthermore, the free energy
barrier corresponds to a Ki of 7.6 � 10�18 M with a confidence
interval [1.2 aM, 50 aM] based on one standard deviation of the
free energy difference, 9 orders of magnitude smaller than the
experimental value, hence very strong binding.
These two observations suggest that the β-propeller exit is not

sampled sufficiently, in spite of a total of 499 ns ofMD simulation
dedicated to this pathway. We hypothesize that the cause of this
undersampling is the pathway’s extreme constriction, which leads
to very low mobility of the ZPP in the windows, with a ZPP
position ranging from z = 1.95 nm to z = 2.95 nm, presented in
Figure 6, making it almost impossible to fully sample the
accessible conformations along the trajectory. Thus, even though
the displacement may vary and overlap with neighboring win-
dows, the phase space along the exit path is not properly sampled
due to the strong dependence on initial conditions for the MD
run in each window. To verify this hypothesis, we compared the
average radius of gyration of ZPP for both the loop and the
β-propeller pathways, the number of conformation clusters
adopted by ZPP based on a rmsd clustering and the standard
deviation of the angular distribution of ZPP as a function of the
position along the reaction coordinate (Figure 7).
The above quantities are associated with the mobility and the

conformational entropy for ZPP as each new window is explored.
For all three properties, the window-to-window fluctuations are
20 to 30% larger for the β-propeller exit than the flexible-loop
exit. Since there is sufficient overlap between neighboring
windows, we would expect that these three properties evolve
smoothly from window to window, along the reaction coordi-
nate. The large fluctuations observed for the β-propeller exit
indicate rather that there is an imperfect overlap in the

Figure 5. Main amino acids (colored by type) making contact with ZPP
from the windows. z = 1.0 nm (a), z = 1.3 nm (b), z = 1.6 nm (c), and z =
3.0 nm (d).

Figure 6. Constriction of the β-propeller exit pathway. Position of the ZPP is presented (a) in red for window z = 1.95 nm and (b) in orange for z =
2.95 nm, with the ZPP from window z =� 0.15 nm in blue as a reference to the starting position. The bottom view of the β-propeller tunnel is presented
in c and d, respectively. The protein’s surface was computed from a volumetric density map averaged over the trajectory of the respective window.
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configuration samples within adjacent windows leading to sharp
conformational transitions between windows. The overlap of the
position of the center of mass of ZPP between neighbor windows
does not translate to a POP�ZPP complex conformation over-
lap of the same windows. This suggests that the visited states are
strongly influenced by the initial configuration selected for each
window. While we cannot, under these conditions, extract an
accurate free-energy barrier for the β-propeller exit pathway, the
sampling difficulties observed can be directly associated with the
presence of a significant free-energy barrier. This suggests that the
pathway is significantly less favorable than the loop exit. It is thus not
unreasonable to conclude that this will not be the access pathway to
the active site, leaving the loop exit as the only feasible pathway.

3.3. Interaction between ZPP Inhibitor and POP in Loop-
Exit Pathway. Now that the loop exit, associated with three
loosely structured loops between the two protein domains, has
been identified as the most probable entrance/exit pathway, we
investigate this pathway in further detail.
We investigated the relation between the free energy as a

function of displacement z along the pathway with various
structural properties to understand the nature of the energy
barrier. As seen in Figure 4, two free energy peaks exist, at z = 1.46
and 1.8 nm, of approximately the same height, separated by a
relatively deep local free-energy minimum at z = 1.65 nm. While
it is difficult to determine the exact nature of these free-energy
features, they are well correlated with specific alterations in the
contacts and the H-bond network. Variation in the amino acids
making contact with the different parts of ZPP can be linked to
these transitions and are listed for the PRO2 (Table 3), PRO1
(Table 4), and PHE (Table 5) groups. As the ZPP moves out of
the protein, and z approaches 1.3 nm, it comes into contact with
the cavity wall, in particular, a group of hydrophobic side chains:
MET235, ILE591, PHE173, and TRP595. ZPP makes contact
predominantly with positively charged ARG252 and ARG643,
positioned on each side of the ligand (see Figure 5a). As it moves
through this constrained region, however, the ligand also forms
contact with hydrophobic amino acids PHE173, ILE591, and
MET235 Figure 5b, as well as with hydrophilic amino acids of the
TYR190�GLN208 flexible loop (Figure 5c), strongly reducing
ZPP’s access to the solvent.
The ligand’s outward displacement along the reaction coordi-

nate is sterically constricted by a group of amino acids that block
ZPP’s direct access to the flexible loop. Looking more specifically
at the configurations sampled around the free energy peak at z =
1.46 nm, we see that ZPP is sterically constrained between
THR590 on one side of the PHE group and TRP150, LYS172,
and ARG643 on the other side. This reduces significantly the
PRO1 and PRO2 groups’ conformation flexibility, thus lowering
the entropy available to the ZPP and raising the free energy
difference.
The drop in free energy, as ZPP moves past z = 1.46, is

associated with a decrease in the average number of H bonds of
1.6 ( 0.4 (relative to the average number of H bonds for the
region z = 0.3 to z = 1.25 nm) between the whole protein and its
TYR190�GLN208 loop, easing ZPP’s diffusion pathway

Figure 7. (a) Average radius of gyration of ZPP as a function of the
displacement from the binding site. (b) Average number of conforma-
tion clusters using a rmsd clustering algorithm of cluster size 0.07 nm. (c)
Standard deviation of the angular distribution of ZPP as a function of
displacement. Error bars in a and c are obtained through a 5000
bootstrap evaluation of 10% of the available data and a confidence
probability of 95%.

Table 3. Average Probability of Existence of the Most Persistent Contacts in Three Regions of the Reaction Coordinate z for the
PRO2-Body Contacts and PRO2-Loop Contacts

PRO2-body PRO2-loop

region 0.3�1.3 nm region 1.4�2.0 nm region 2.1�3.7 nm region 0.3�1.3 nm region 1.4�2.0 nm region 2.1�3.7 nm

MET235 0.62 PHE173 0.85 PHE173 0.42 TYR190 0.41 TYR190 0.84 GLN192 0.42

PHE173 0.44 MET235 0.79 MET235 0.34 GLN208 0.32 ALA189 0.45 SER197 0.34

ILE591 0.35 ILE591 0.61 LYSH172 0.27 ASN205 0.15 ASN205 0.43 GLY195 0.30

ASN188 0.32 LYSH172 0.45 ILE591 0.26 SER203 0.06 GLN192 0.33 LYSH196 0.23

ARG252 0.31 ASN188 0.28 TRP150 0.19 LEU206 0.03 GLN208 0.31 ASP194 0.23

GLY236 0.26 SER174 0.20 ARG170 0.16 ALA189 0.01 SER203 0.18 GLN193 0.23

CYSH175 0.20 TRP234 0.19 ASN188 0.12 GLY195 0.04 ASP198 0.17

SER174 0.19 TRP150 0.15 SER174 0.09

TRP234 0.19 ALA594 0.14 TRP234 0.06

ALA594 0.18 TRP595 0.05 VAL171 0.04

GLY237 0.17 LYSH233 0.02 ALA594 0.04

LYSH172 0.15 GLU169 0.03
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(Figure 8). Table 6 gives a list of H bonds between the above loop
and the rest of the protein that are modulated by the passage of
ZPP through position z g 1.46 nm. For z < 1.46, the
TYR190�GLN208 loop maintains an average of 11.75 (
0.12 H bonds with the rest of the protein. There are only 17
pairs of atoms forming H bonds between the above loop and the
protein that exist for more than 25% of the simulation time and
another 28 pairs of atoms present between 5% and 25% of that
simulation time.
The second free energy barrier (z = 1.8 nm) can be linked with

the breaking of H bonds that connect the β-propeller and
catalytic domains. The average number of H bonds between
these two domains increases from 15.5 ( 0.22 at z = 1.6 nm to
19.4 ( 0.15 at z = 1.8 nm and falling back to 15.1 ( 0.26 at z =
1.95 nm (Figure 8), which correlates well with the observed
energy peak at z = 1.8 nm. The bulk of the variation in the
H-bond network between the two domains is not directly linked
to the opening of the flexible loop into the solvent since we can
see that the number of H bonds between the TYR190�GLN208
loop and the catalytic domain varies only slightly, going from
1.5 ( 0.1 H bonds at z = 1.6 nm to 1.8 ( 0.1 at z = 1.8 nm and
decreases to 1.3 ( 0.1 at z = 1.95 nm (data not presented).
To identify the H bonds modulated by the position of ZPP,

we calculated the correlation coefficient between the average

number of H bonds per US window and the probability of
existence of each individual H bond for that window. We define
this probability of existence as the percentage of time over the
length of a window for which the H bond exists. Table 7 presents

Table 5. AverageWindow Probability of Existence of theMost Persistent Contacts in Three Regions of the Reaction Coordinate z
for the PHE-Body Contacts and PHE-Loop Contacts

PHE-body PHE-loop

region 0.3�1.3 nm region 1.4�2.0 nm region 2.1�3.7 nm region 1.4�2.0 nm region 2.1�3.7 nm

ILE591 0.84 THR590 0.92 TRP150 0.17 SER197 0.68 LYSH196 0.38

ARG643 0.87 LYSH172 0.81 ARG170 0.12 GLY199 0.61 SER197 0.38

PHE173 0.57 VAL645 0.56 PHE173 0.08 SER203 0.30 GLN192 0.32

TRP595 0.46 PHE173 0.53 THR590 0.06 ASP198 0.28 ASP198 0.31

THR590 0.36 ILE591 0.47 LYSH172 0.05 GLU201 0.23 GLY195 0.29

ASN555 0.24 ASP642 0.40 TYR589 0.03 THR202 0.12 SER203 0.24

HISB680 0.24 ARG643 0.36 LYSH23 0.03 THR200 0.08 GLU201 0.22

ASP149 0.23 TYR589 0.33 LYSH196 0.06 ASP194 0.18

LYSH172 0.22 VAL644 0.29 GLN192 0.05 ASN205 0.17

PHE476 0.21 VAL580 0.21

ILE478 0.11 TRP150 0.19

SER554 0.11 TRP595 0.06

Table 4. Average Window Probability of Existence of the Most Persistent Contacts in Three Regions of the Reaction Coordinate
z for the PRO1-Body Contacts and PRO1-Loop Contacts

PRO1-body PRO1-loop

region 0.3�1.3 nm region 1.4�2.0 nm region 2.1�3.7 nm region 0.3�1.3 nm region 1.4�2.0 nm region 2.1�3.7 nm

ILE591 0.67 ASN205 0.77 TRP150 0.25 TYR190 0.092 SER203 0.75 GLN192 0.44

MET235 0.56 TRP150 0.70 ASN205 0.14 LEU206 0.048 TYR190 0.57 LYSH196 0.40

TRP595 0.48 LYSH172 0.66 PHE173 0.10 SER203 0.031 GLN192 0.51 GLY195 0.36

PHE173 0.46 THR590 0.51 LYSH172 0.07 SER197 0.50 SER197 0.34

ALA594 0.36 ILE591 0.45 ILE591 0.05 GLU201 0.32 ASP198 0.18

ILE478 0.26 PHE173 0.29 VAL171 0.04 THR204 0.13 ARG170 0.18

ARG252 0.21 MET235 0.11 MET235 0.04 ASP194 0.13 ASP194 0.18

PHE476 0.16 TYR589 0.03 THR590 0.01 LYSH196 0.10 TYR190 0.16

Figure 8. Number of H bonds formed between the two domains of
POP (black) and between the TYR190�GLN208 flexible loop and the
protein body (red) as a function of the spring equilibrium length.
Maximum errors evaluated to (0.26 and (0.18, respectively, are
obtained through a 5000 bootstrap evaluation of 10% of the available
data and a confidence probability of 95%.
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those H bonds with (absolute value) minimum correlation
coefficients of 0.4 for windows around the energy peaks. When
combined, the fluctuations of this group of H bonds (including
those with negative correlation coefficients) explains 75% of all of
the interdomain H-bond fluctuations. Although a few H bonds
are formed and broken in the vicinity of the ZPP (SER148�
ASP642, ARG128�ASP641, LYSH172�ASP642), many are
located opposite the loop opening in the interface region near
the velcro-rip (THR686�ASN96, LYSH75�TYR71, LEU94�
ASP72, LYSH428�GLU69 in Figure 9).
Once the ZPP has moved past the second free energy

maximum, it gradually loses contact with the body of the protein,
only keeping contact with the TYR190�GLN208 loop
Figure 5d. Due to the higher mobility of the solvent-exposed
ZPP, no strong contact dominates in this region. As the ZPP is
pulled outward, the flexible loop adopts an extended conforma-
tion to maintain contacts with it. The amino acids having the
most frequent contacts with the ligand are those situated on the
192�198 segment of the loop, which can conformationally
extend the furthest into the solvent.
When examining the evolution of the H-bond network

between the two domains of POP, we can see a drop in the
average number of H bonds as the ZPP moves outward from the
second free energy peak (z = 1.8 nm), starting from 19.4( 0.15

and decreasing to 13.9 ( 0.17 at z = 2.1 nm. This number then
increases as the ZPP moves further along the trajectory up to a
value of 18.4 ( 0.22 at z = 3.0 nm. This increase of 4.5 ( 0.4 H
bonds from z = 2.1 nm to z = 3.0 nm is mainly due to an increase
of 1.9 ( 0.3 H bonds between the flexible loop and the catalytic
domain, indicating that the TYR190�GLN208 loop is folding
back onto the protein. A correlation analysis between the
presence of each individual H bond and the average number of
H bonds (Table 8) shows fewer H bonds forming atom pairs
with high correlations: Specifically, all of the H-bond forming
pairs with an absolute value minimum correlation of 0.3 had to be
selected to explain 75% of the variation of the average number of
H bonds.
Interestingly, we observed a prolonged interaction between

the TYR190�GLN208 loop and ZPP in the zwindow, where the
inhibitor is completely solvated. Starting from a ZPP�POP
distance of z = 2.7 nm, and moving further outward from the
protein, the large majority of the ligand’s contacts are with amino
acids on the flexible loop, even though ZPP’s motion is only
constrained along the reaction coordinates and the ligand can
move freely in the perpendicular hyperplane. For example, in the
3.2 < z < 3.7 nm region, ZPPmakes contacts with 5.4 amino acids
compared to 12.6 contacts on average for the 0.3 < z < 2.0 nm
region of the trajectory (data not presented). Small in number,
these interactions are nevertheless sufficient to stabilize ZPP’s
position and keep it in contact with the loop for at least 80% of
the simulation time. This suggests that the role of the flexible
loop is not simply to open up and leave a pathway open for the
ZPP entrance. The TYR190�GLN208 loop could play an active
role in recruiting the ZPP ligand by binding to it in the solvent
and directing it to the entry pathway, helping the ZPP to go
through a first free energy barrier at z = 1.8 nm.

4. DISCUSSION

In this work, we identify the most probable pathway for
binding ZPP to POP. Using SMD and US simulations, we
eliminated two proposed pathways: first, through the velcro-rip
and, second, through the β-propeller tunnel. The first pathway is
ruled out because we were unable to even generate a pathway
using SMD, demonstrating the extreme resistance to this path.

Table 6. Average Window Probability of Existence of the
Most Persistent H Bonds between the TYR190�GLN208
Loop and Protein Body in the 0.3 nm to 1.8 nm Section of the
Loop Exit Pathway

donor acceptor presence time ratio

SER203N LYS588O 0.42

HIS593N THR204OG 0.37

TYR190O TRP234O 0.36

GLN208NE TRP234O 0.33

LYS196NZ GLU169O 0.31

ASN188ND2 GLN208OE1 0.30

SER203OG THR590O 0.30

TRP234N TYR190O 0.28

LYS196NZ TRP150O 0.28

Table 7. Hydrogen Bonds Located at the Interdomain Interface with Activity Modulated by the Position of Zpp on the Reaction
Coordinate As Identified by the Pearson’s Correlation Coefficient against the Average Number of H Bonds for Two Regions,
z = [1.3, 2.0] and z = [1.05, 2.1]a

Hydrogen bond

Region z = [1.3,2.0] Region z = [1.05,2.1]

Correl.(p-val.) Prob. Std-dev Correl.(p-val.) Prob. Std-dev

GLN439NE2-GLN439HE22-ASP356O 0.51(0.044) 0.30 0.08 0.39(0.060) 0.32 0.09

THR597OG1-THR597HG1-GLY254O 0.50(0.049) 0.16 0.34 0.33(0.115) 0.11 0.28

THR686OG1-THR686HG1-ASN96OD1 0.45(0.080) 0.34 0.42 0.52(0.009) 0.32 0.42

SER148OG-SER148HG-ASP642OD2 0.44(0.088) 0.29 0.31 0.31(0.140) 0.27 0.35

LYSH75NZ-LYSH75HZ3-TYR71OH 0.43(0.096) 0.28 0.42 0.39(0.060) 0.27 0.42

SER148OG-SER148HG-ASP642OD1 0.41(0.114) 0.26 0.35 0.20(0.349) 0.26 0.32

LYSH677NZ-LYSH677HZ3-ASP122OD1 0.40(0.125) 0.33 0.37 0.26(0.220) 0.36 0.38

ARG128NH1-ARG128HH12-ASP641OD1 �0.40(0.125) 0.16 0.33 �0.40(0.053) 0.16 0.30

LYSH172NZ-LYSH172HZ3-ASP642OD2 �0.43(0.096) 0.16 0.27 0.07(0.745) 0.22 0.32

LYSH428NZ-LYSH428HZ3-GLU69OE1 �0.54(0.031) 0.77 0.31 �0.31(0.140) 0.81 0.26

LEU94N-LEU94H-ASP72OD1 �0.54(0.031) 0.19 0.35 �0.06(0.780) 0.23 0.38
a In both cases, the average probability of existence and standard deviation of each h-bond in their respective subset of windows is also given.
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The resulting β-propeller exit trajectory free energy difference
profile was unphysical. Detailed analysis suggests that this
unphysical profile is associated with very constrained regions of
the pathways where sampling is particularly difficult. On the basis
of this evidence, we were also able to eliminate this pathway. The
appropriate behavior of the ZPPwhen pulled through the flexible
loop region and the physical nature of the free energy difference
profile indicate that this is the correct access pathway.

Whether or not the access to the binding cavity involves a large
domain reconfiguration could not be definitively resolved by our
study. The natural substrates of POP, peptides of length <30
residues, are much larger than the ZPP inhibitor. Thus, the access
mechanism of ZPP may not be the general pathway involved in
its catalytic activity. The long-range destabilization of theH-bond
network that was seen to occur as the ZPP left the binding cavity

could possibly be interpreted as evidence of the large scale
interdomain motion27 that has been hypothesized to play a role
in the access pathway. In addition, the prolonged association of
the TYR190�GLN208 loosely structured loop with the ZPP as it
left the protein provides evidence that this region of the protein
could possibly have a role in ligand recognition and recruitment.
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ABSTRACT:All-atom normal mode analysis (NMA) is an efficient way to predict the collective motions in a givenmacromolecule,
which is essential for the understanding of protein biological function and drug design. However, the calculations are limited in time
scale mainly because the required diagonalization of the Hessian matrix by Householder-QR transformation is a computationally
exhausting task. In this paper, we demonstrate the parallel computing power of the graphics processing unit (GPU) in NMA by
mapping Householder-QR transformation onto GPU using Compute Unified Device Architecture (CUDA). The results revealed
that the GPU-accelerated all-atom NMA could reduce the runtime of diagonalization significantly and achieved over 20� speedup
over CPU-based NMA. In addition, we analyzed the influence of precision on both the performance and the accuracy of GPU.
Although the performance of GPU with double precision is weaker than that with single precision in theory, more accurate results
and an acceptable speedup of double precision were obtained in our approach by reducing the data transfer time to a minimum.
Finally, the inherent drawbacks of GPU and the corresponding solution to deal with the limitation in computational scale are also
discussed in this study.

’ INTRODUCTION

Predicting collective structural changes in biological macro-
molecules is essential in the understanding of protein function
and drug design.1 In addition to the experimental approaches
such as X-ray crystallography,2 NMR spectroscopy,3 and single-
molecule biophysical techniques,4 some theoretical methods
including molecular dynamics (MD) simulations5 and normal
mode analysis (NMA)6 are available to explore the protein
motions. Compared to MD simulation, NMA eliminates time-
integration and explicit solvent degrees of freedom with a
considerable computational advantage.7 This enables NMA to
be used for much larger systems8 including viral capsids,9

molecular motors,10 and the ribosome.11 Except for prediction of
macromolecules’ dynamic motions, another important applica-
tion of NMA is to calculate the entropy change in the well-known
MM/PBSA method, which is a relatively accurate but computa-
tionally expensive approach to calculate the binding free energy
of the protein�protein or protein�ligand complex and is
deemed more accurate than conventional scoring functions for
molecular docking.12�14

Classical all-atom NMA assumes that protein motions, in-
cluding large-scale/low-frequency and small-scale/high-
frequency motions, can be described by a quasi-harmonic
approximation around a local minimum on the protein energy
surface,15 and the low frequency modes can well describe large
conformational changes relevant to protein function that are
observed experimentally, such as the hinge opening and closing
motions.16 The approach of NMA is to diagonalize the Hessian
matrix, of which 3N� 3N (N is the number of atoms) elements
represent the second derivative of the potential energy function
along the Cartesian coordinates.17,18 However, the application of

all-atom NMA has been limited due to intensive memory
consumption (O(N2)) and cubic CPU time complexity
(O(N3)) in the case of a protein with N atoms and the resulting
dramatic increase in sampling time. Even though the storage of a
Hessian matrix has become less of an obstacle due to the
introduction of sparse matrix techniques, the diagonalization of
the all-atommatrix is still a challenge to date. Therefore, all-atom
NMA is normally applied to protein systems containing at most a
few hundred residues. On the other hand, the entropy change
calculation is often ignored in the application of the large-scale
virtual screening with MM/PBSA approach because of the
repeated and extremely time-consuming NMA calculation for
all of the protein�ligand complexes during the process of
molecular docking,19 which undermines the accuracy of the
calculated binding free energies as well as the ranks of the hit
compounds.

To solve the time-consumption problem, several coarse-grain
methods, such as block normal mode (BNM)20 and elastic
network model (ENM),21 have been put forward to reduce the
size of Hessian matrix and the computational time. The BNM
starts from an energy-minimized system described by an all-atom
force field but considers each residue as a rigid block20 with six
translation�rotation degrees of freedom, which reduces the size
of the Hessian matrix to 6N� 6N in the case of a protein with N
residues.22,23 The ENM approximation regards the protein as an
elastic network,24�26 and only the CR atoms of the individual
residues are considered as nodes and connected by uniform
springs.21,22 On the basis of ENM, the size of the Hessian matrix

Received: December 20, 2010
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is reduced to only 3N� 3N in the case of a protein withN residues.
In spite of outstanding computational efficiency, the accuracy
of the coarse-grained NMA result is undermined because the
modes with high frequencies are eliminated.22 Therefore, more
efforts have been made to improve the computational effi-
ciency for all-atom NMA to preserve the explicit representa-
tion of atomic degrees of freedom through reducing the time of
diagonalizing the all-atom Hessian matrix.7

It is well-known that conventional supercomputers are typi-
cally large in size and very expensive in terms of manufacturing
and maintenance. Fortunately, over the past few years, the
graphics processor unit (GPU), which has tremendous raw
computing power, has been rapidly evolving from a fixed-function
pipeline into a programmable processor.27 A contemporary GPU
can achieve as much as 1000 GFLOPS peak performance28 and a 1
order of magnitude speedup for single-precision arithmetic over
corresponding CPU code. Due to the advantages of speed, cost,
and accessibility, GPUs have been applied in many scientific
computation fields, such as electrostatics,29 molecular dynamics,30

quantum chemistry,31 and so on. The GPU is suitable for handling
problems involving large data sets and computationally intensive
calculations32 and has the potential to revolutionize computational
biology by changing the conventional batch-mode computational
jobs into interactive tasks.33

The Householder-QR transformation algorithm is generally
used to find the eigenvalues and eigenvectors of a real matrix. This
algorithm has been implemented in successive parallel versions of
popular linear algebra libraries such as Linear Algebra Package
(LAPACK), Parallel Linear Algebra for Scalable Multicore Archi-
tectures (PLASMA), and so on. The Householder-QR transfor-
mation implemented in LAPACK leverages the idea of blocking
to limit the amount of bus traffic in favor of a high reuse of the data
that is present in the higher level memories, which are also the
fastest ones.34 In PLASMA, the algorithm can be represented as a
sequence of small tasks that operate on square blocks of data.
These tasks can be dynamically scheduled for execution based on
the dependencies among them and on the availability of compu-
tational resources.35 In this study, the Householder-QR transfor-
mation algorithm for the Hessian matrix in GROMACS was
reimplemented to map onto a GPU which is amenable to
parallelization on single-instruction multiple-data (SIMD) archi-
tectures using the CUDA programming toolkit.36 CUDA adopts
an extension of the C/Cþþ programming language, which
consists of a set of keywords and a runtime library to allow the
execution of parallel code and memory control on the GPU.
Through evaluating the performance of GPU-accelerated NMA
on some benchmark molecules with various numbers of atoms
and comparing the runtimes against the single-core CPU-based
NMA in GROMACS, the GPU-accelerated NMA outperforms
the CPU-based one with a higher computational efficiency and
achieves over 20� speedup with competitive accuracy, which
highlights the GPU’s potential to perform all-atom NMA on a
desktop workstation in a fast and accurate way.

’MATERIALS AND METHODS

Graphics Processing Unit Overview. A typical parallel
program can be generalized in three parts in CUDA: (1) apply
and release the memory storage; (2) execute the parallel parts as
so-called kernel functions; (3) transfer data between host
memory and device memory.37 There is a scalable number of
streaming multiprocessors (SMs) on a GPU, each containing

eight streaming processor (SP) cores. The SMs execute a data-
parallel problem which is decomposed into independent work
items called threads in CUDA.
Threads are executed together in cooperative work groups

called blocks, which are grouped into grids. The computation of a
grid corresponds to exactly one GPU kernel invocation.28,38 To
achieve a decent performance increase compared to a CPU
calculation, it is important to take three aspects into account.
First, in order to fully occupy the device and provide sufficiently
many threads of execution to hide various sources of latency, it
requires a huge data parallel workload.33 Second, memory access
is much slower than arithmetic calculations on a GPU, and the
data transfer between the host and the device has to be mini-
mized. Third, to maximize the number of simultaneous running
threads, appropriate thread usage of registers and synchroniza-
tion between threads have to be determined due to the limitation
of the memory size of local registers, which is only 64 KB per SM
in the NVIDIA Geforce series of GPUs.39

Normal Mode Analysis. The harmonic approximation of the
potential energy function around a minimum energy conforma-
tion is the underlying hypothesis in normal mode calculations.40

The quadratic form of the potential energy function V(r) can be
obtained by a Taylor expansion using r0 (a vector consisting of
the 3N atomic Cartesian coordinates):24,41�43

VðrÞ � Vðr0Þ þ ∑
3N

i¼ 1
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 !
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The reference point r0 is chosen to correspond to a minimum
of the potential energy function, where (∂V/∂ri) = 0. In addition,
the potential energy can be defined relative to this reference
point, and the constant term V(r0) can be taken as zero. As a
result, eq 1 in matrix notation can be expressed as follows:

VðrÞ � 1
2
rTHr ð2Þ

where H = ∑i,j = 1
3N (∂2V/∂rirj), r=(ri-ri

0).
At the same time, the kinetic energy K also has a quadratic

form, which can be expressed as

K ¼ 1
2
_rTM_r ð3Þ

whereM is a diagonal matrix of 3N� 3N atomic masses and _r is
the time derivative of r. The equations of motions of a molecule
in a harmonic well can be inferred from eqs 2 and 3:

M::r ¼ �Hr ð4Þ
where ::r is the second time derivative of r, and the vector r can be
resolved by adopting the general form, which can be expressed as
a function of time:

rðtÞ ¼ r0 þ A cosðvtÞ ð5Þ
v is the fundamental vibration frequency, andA is the amplitude of
the vibration. Taking the second derivative of the extension gives

ν2MA ¼ HA ð6Þ
where M consists of a diagonal matrix whose elements are the
atomic masses, and ν2 andA are the eigenvalues and eigenvectors,
respectively. The eigenvectors of this matrix are the normal
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modes, and the eigenvalues are the squares of the associated
frequencies. Notice that when expressed in Cartesian space, a
normal coordinate describes an internal collective change of the
structure, except for the first six modes that correspond to global
translations and rotations of the molecule with eigenvalues equal
to zero.21 Therefore, the calculation of NMA is reduced to the
diagonalization of the Hessian matrix H.
Hessian Matrix Diagonalization. Generally speaking, an effi-

cient algorithm for the diagonalization of a symmetric matrix usually
consists of the following two stages: the original matrix is first
reduced to a tridiagonalmatrixT, which is also called theHessenberg
matrix, by a sequence of orthogonal similarity transformed as follows:
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ð7Þ
Then, we need to accurately calculate its eigenvalues and eigenvec-
tors based on QR, bisection, or divide-and-conquer algorithms etc.
The general scheme of Householder transformationmethod is

as follows:44,45

Step 1 Establish symmetricmatrixA= {aij|aij= aij, and i,j∈ [1,n]}.
Step 2 Iterate from eq 8 to 12 with k = 1, 2, 3, ..., n � 1.

σkþ1 ¼ signðakþ1, kÞð ∑
n

i¼ k þ 1
ðaikÞ2Þ1=2 ð8Þ

Fkþ1 ¼ σkþ1ðσkþ1 þ akþ1, kÞ ð9Þ

Uðk þ 1Þ ¼ ð0, :::0, σkþ1 þ akþ1, k, akþ2, k, :::, ankÞ
ð10Þ

Q kþ1 ¼ I� 1
Fkþ1

Uðk þ 1ÞðUðk þ 1ÞÞT ð11Þ

Q kþ1AQ kþ1¼A ð12Þ

The first step establishes the raw Hessian matrix, which is
tridiagonalized by multiplying it with the orthogonal matrix
Q i calculated in the second step.

Implementation Details. In order to accelerate NMA utilizing
GPU, the primary step is to verify the time distribution in each part of
the whole process in NMA. In GROMACS 4.0,46 the process can be
divided into four subroutines, and the corresponding runtimes
against five protein systems with various numbers of atoms
are shown in Figure 1A. The “pdb2gms” and “grompp” modules
(preparation of coordinates and topology files) only occupy a small
fraction of the overall computational time (less than 1.5%). Though
the “mdrun” module (energy minimization and building a Hessian
matrix from single conformation) costs about 30% of the computa-
tional time, it can be accelerated in parallel with conventional Parallel
Virtual Machine (PVM) or Message Passing Interface (MPI)
mechanisms across multiple CPUs.47 The profiles of the five bench-
mark cases illustrate that the “g_nmeig” module (calculation of a
Hessian matrix’s eigenvalues) is the most computationally expensive
part, which accounts for over 64% of the inclusive execution time.
The calculation of theHessianmatrix eigenvalues can be further

divided into two steps, whose runtime profiling against the five
benchmark systems is shown in Figure 1B. The tridiagonalization
process (ssytrd module) costs the dominant fraction of the
computational time (over 90%) in the Hessian matrix eigenvalues
calculation process. So far, it can be concluded that the most time-
consuming part inNMA is theHouseholder transformation, which
reduces theHessianmatrix to the tridiagonal form. For this reason,
the NMA calculation on GPU is reduced to the determination of
theHessianmatrix eigenvalues and further to the tridiagonalization
according to the characteristics of CUDA technically.

Algorithm 1. Orthogonal vector con-
struction on CPU
set N as the order of matrix A
for i = 1 to N

//Compute the norm of vector in row i, column i toN of
matrix A.
ri = sign(ai,jþ1)||A[i][i þ 1:N]||;
//Compute the orthogonal vector U
U[0:i � 1] = 0;
U[i]= U[i] þ sqrt(ri);
U[i þ 1: N] = A[i][i þ 1: N];
//Compute the adjusted parameter t.
t = 1/sqrt(ri þ sqrt(ri)U[i]);
Execute tridiagonalization function on GPU;
//Replace the vector inmatrixA needed in next iteration.
A[i þ 1][i þ 1: N] = U[i þ 1: N];

end for

Figure 1. Runtime decomposition results of (A) the modules in the NMA calculation and (B) the subroutines of the Hessian matrix eigenvalues
calculation in GROMACS 4.0. The protein test systems are 2WFU, 3CLN, 1A7R, 4AKE, and 1ATN.
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The details of Householder transformation implemented on a
hybrid GPU-based architecture are described in Algorithms 1
and 2. Algorithm 1 gives the pseudocode for the orthogonal
vector construction on the CPU. The orthogonal vector is used
to create the reflector, which is essential in the tridiagonalization
process. Algorithm 2 gives the tridiagonalization process imple-
mented on CUDA, which completes the reflector and converts
the original matrix into the tridiagonal form. The instructions in
Algorithm 2 are operated on a number of threads within all of the
blocks scheduled on each stream processor in parallel.

Algorithm 2. Tridiagonalization func-
tion on GPU
set block_size = 64; //64 threads per block.
number_of_blocks = N/block_size;
//All blocks on SMs executed in parallel.
for each block do

set shared_memory_size = block_size;
Load vector Ui to shared memory of blocki;
Ui’ = (Ui)

T; //Compute the transpose of the orthogonal
vector.
Load vector Ui’ to shared memory of blocki;
Hi = t(UiUi’);
Hi = Ii � Hi; //Compute the reflector.
Load matrix Ai and Hi to shared memory of blocki;
Ai = AiHi; //Tridiagonalize the original matrix.

until all blocks are traversed;
U[i þ 1: N] = A[i þ 1][i þ 1: N]; //Return the vector
needed in next iteration.

The CUDA implementation of the Householder transforma-
tion was executed on a single NVIDIA GeForce GTX295 (1.2
GHz), which held 480 stream processors to compute in parallel.48

For comparison, the NMAmodule of GROMACS 4.0 (built with
GCC 4.3.2 compilers in serial mode) was performed on a 2.50
GHz Quad-Core Intel Xeon E5420 CPU (running RedHat AS
6.0). The frequency of the CPU is more than twice higher than
that of the GPU, so that it has a much better performance than a
GPU on single-instruction single-data (SISD) architectures, and
the random access memory (RAM) size (8 GB) is nearly 4 times
larger than that of the GPU (1.7 GB). Meanwhile, we also
compared the peak performance of the QR factorizations im-
plemented in LAPACK, PLASMA, and CUDA. The block size
was set to 64 in LAPACK and CUDA implementation to achieve
the best performance. The number of cores in PLASMA was set
to 16 with respect to the sizes of the test systems.

’RESULTS AND DISCUSSION

Optimization of the Implementation. The GPU implemen-
tation was optimized from three perspectives which utilize higher
level memories, minimize the amount of data transferred, and
select the appropriate thread block size. In kernel functions,
reading or writing global memory incurs about 400�600 clock
cycles of latency, while it just needs one clock cycle of latency in
shared memory.49 In order to reduce the frequency of global
memory access, we divided the huge matrix into submatrices
which can be stored in the shared memory with a size of 16 KB
per SM.50 However, themaximumnumber of threads per block is
reduced to 256 in our method, which is one-third of the
maximum value in principle due to the limited size of the register
memory.51 Subsequently, only the lower triangle (or upper
triangle) in eq 11 needs to be calculated, which can effectively
enhance the computational speed and save the memory size,
utilizing the symmetrical property of the initial matrix and the
orthogonal matrix. The loop sequence should be recorded in the
kernel function to get the new temporary vector generated by the
tridiagonalization process. We measured the kernel runtime of
different GPU implementations with different memory accessing
types (as shown in Figure 2A). The performance of the shared
memory implementation did not improve remarkably (by only
twice compared with the global memory implementation)
because the load latency was covered by intensive arithmetic
calculations of abundant threads.
On the other hand, since data transfer incurs many more clock

cycles than arithmetic calculations on GPU threads, it would be
effective to minimize the data transfer between the host and
the GPU to increase speed performance. The Household-QR
algorithm implemented on GPU consists of n�1 loops (n is the
matrix order), each of which calculates one row/column in the
Hessenberg matrix. Though the Hessian matrix is totally changed
after one loop, only one vector of the Hessian matrix is needed in
the next loop. A temporary vector storing the results from the
previous loop is set to avoid transferring the whole matrix and
minimize the time spent in data transfer between the GPU and
CPU. Therefore, we also measured the time needed to transfer a
wholematrix and a vector between the host andGPU(Figure 2B).
The cost of transferring a wholematrix is much higher than that of
transferring a vector decomposed from the same matrix, which
cost over 60 and 0.038ms, respectively, resulting in transferring of
the vector alone between the device memory, and the host
memory can improve the performance significantly.

Figure 2. Optimization results of the GPU-accelerated QR Housholder decomposition: (A) kernel runtimes with different memory locations for data
storage, (B) kernel runtimes with different data structure for transfer (the vertical axis is scaled in log�linear coordinates), and (C) kernel runtimes with
varying numbers of threads per block.
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Furthermore, the number of local registers in each thread is
very limited, and they are often used as the index of blocks and
threads, which are essential for kernel functions’ ability to control
each thread. However, in the process of transposing the vector,
we import the argument Fi in eq 9 to occupy one register of each
thread. Then, we complete the argument and vector multi-
plication on the GPU for the purpose of reducing the time
complexity from O(2n) to O(1) by duplicating the argument to
each thread. It is important to synchronize all threads in the same
block if there are conditional statements and loops in kernel
functions on the GPU. The transposing operations on GPU are
complemented by exchanging the horizontal coordinates and
vertical coordinates of elements in each thread. This section also
reduces the time complexity fromO(n) toO(1) for n elements in
the vector U.
In addition, the block size of the threads also impacts the

performance of kernel implementation on the GPU. The number
of threads per block should be chosen as much as possible for
better time slicing and full usage of computing resources.
However, the more threads per block, the fewer registers that
are available per thread. In addition, the size of shared memory
per stream multiprocessor (SM) is 16 KB, which is organized
into 16 banks.52 If all running threads access different banks,
there are no bank conflicts, and the shared memory is the same
speed as the register. If multiple threads access the same bank, the
sharedmemory accessing time will be as long as the time required
for themaximum number of threads simultaneously accessed to a
single bank.53 In order to avoid memory bank conflicts, the
number of threads per block has to be set as a multiple of 32 (32,
64, 128, and 256 threads in our test), which is the minimum value
of task scheduling and executing on SMs. The active thread block
size cannot exceed 512 due to insufficient register memory size
(64 KB per SM).54 The blocks of 256 threads cost the most
kernel runtime (see Figure 2C). The implementation with the
blocks of 32 threads performed better than the one with 128
threads in the case of a smaller system, but the superiority got
weaker when the test system grew larger. However, the effects on
the kernel execution time are not obvious because the kernel
execution time only occupies a small fraction of the total runtime.
The final size of threads per block was set to 64 to achieve the best
performance by avoiding the bank conflicts of shared memory
and covering the load latency by assigning several active blocks
on each SM.
Performance and Speedup. First, we compared the peak

performance of GPU-accelerated Householder-QR factoriza-
tions with conventional (LAPACK) and parallel (PLASMA)
implementation in the popular linear algebra libraries on the
CPU (as shown in Figure 3). The peak performance House-
holder-QR factorizations implemented in CUDA can reach up to
180.6 Gflop/s on a single NVIDIA GeForce GTX295 on the
average, which is much higher than that of LAPACK and
PLASMA on a single CPU (the peak performances of LAPACK
and PLASMA are 2.2 Gflop/s and 23.8 Gflop/s, respectively).
The performance deteriorated slightly to 109.6 Gflop/s when the
size of the matrix was below 3000, but it is still remarkably
superior to LAPACK and PLASMA. The results indicated that
the CUDA implementation of Householder-QR factorizations is
much faster than conventional serial (LAPACK) and parallel
(PLASMA) CPU implementations and lays a promising founda-
tion for NMA acceleration on the GPU architecture.
To investigate the performance of the GPU-accelerated

NMA calculation, five proteins were selected as the benchmark

systems: theD14A variant of theDrosophila insulin-like peptide 5
(2WFU, 335 atoms), calmodulin (3CLN, 1126 atoms), adeny-
late kinases (4AKE, 3313 atoms), actin (1ATN, 4946 atoms),
and alcohol dehydrogenase (1ADB, 6783 atoms). Table 1 sum-
marizes the execution time of GROMACS 4.0 on a CPU in serial
mode and our GPU implementation at both single and double
data precisions. The benchmark results revealed that the GPU-
accelerated Householder transformation did not show a perfor-
mance advantage over the CPU for the small systems (2WFU)
with 335 atoms, which can be attributed to the fact that for such a
small protein system, the computational resources of GPU are
not fully utilized, and the extra cost of multithread scheduling and
synchronization occupies a relatively large fraction of the overall
runtime. However, the GPU code achieved a more than 20�
speedup over the CPU for the Householder transformation of
larger systems in the cases of 4AKE, 1ATN, and 1ADB. Un-
fortunately, the NVIDIAGeForceGTX295 used in our study can
only access a maximum of 1.7 GB VRAM, which limits the upper
size of the simulation system to 7000 atoms with single precision
and 5000 atoms with double precision, correspondingly. The
tridiagonalization process of the largest protein 1ADB in the test
with single precision costs more than 1.6 h on the CPU in serial
mode, but it only costs about 219 s on the GPU in the multi-
thread parallel mode. At the same time, the second largest protein
1ATN with double precision costs more than 1.1 h on the CPU,
while it costs only 165 s on the GPU in our study. Although the
20� speedup of our GPUNMA implementation is not as high as
those observed for GPU-accelerated MD simulations and may
not be enough to make an abiding difference in NMA calculation
for single protein systems, the speed advantage of GPU-acceler-
ated NMA is promising for repeated and intensive NMA
calculations involved in the MM/PBSA approach for large-scale
virtual screening.
One of the determinants of the GPU-accelerated performance

was the size of the intensive data. The speedup of GPU
calculation increased with increasing size of the matrix for single
and double precisions because a huge workload can fully utilize
the computational resources of the GPU and hide various
sources of latency including memory access and thread synchro-
nization. Although the benchmark system size is limited by the
global memory size in our study, the scale of the performance can

Figure 3. Comparing the peak performances of the QR factorization
algorithm implemented in LAPACK, PLASMA, and CUDA. The
vertical axis is scaled in log�linear coordinates.
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be maintained for larger protein systems on more powerful GPU
cards with larger global memory as the latest Fermi architecture
provided byNVIDIA (asmany as 6 GB). Actually, the speedup of
the GPU implementation over the CPU one could be even
greater for larger systems in principle because the performance
cannot be simply scaled by the number of atoms between the
GPU and the CPU calculations. For the CPU case, the scaling is
very close toO(N3), indicating that Householder transformation
of the Hessian matrix is the dominant cost. However, the
speedup of the GPU over the CPU increased faster than linearly
with the number of atoms, which can be attributed to the time
complexity of O(1) as mentioned above if the latencies incurred
from data transfer are ignored because the intensive data were
loaded to the GPU and operated across all available cores
simultaneously regardless of the data size involved.
The double precision code is expected to be more time-

consuming because the number of single precision cores (32
bits) on the GPU is about 8 times more than that of the double
precision cores (64 bits).55 As shown in Figure 4, the transfer
time of the double precision implementation increases almost
twice, and the kernel runtime costs about 5�8 times more than
the single precision one. The differences became more apparent

for larger test systems. The differences in speed for the single and
double codes are reasonable given that the double type is twice
longer than the single one in storage and transfer, and there are
8 times more single precision cores in the GPU. However, as
shown in Table 1, the speedup for double precision only
descends slightly compared with the single precision, which
can be attributed to the fact that the kernel execution time on
GPU only occupies a very small fraction in the overall program
runtime, especially with larger protein systems.
Accuracy. Another important consideration in evaluating all-

atom NMA implementation is the accuracy of the modes it
produces. Previous work has shown that single precision float
point is sufficient to produce high quality results in molecular
dynamics,56 but in practice, double precision is always used in the
calculations in a way that avoids an unnecessary loss of accuracy.
Since double precision code reduced the performance by about
8 times compared to the single precision one, as expected, it is
worth investigating whether any potential error may have
resulted from the precision truncation to make a compromise
between the efficiency and accuracy.
To test the accuracy of our CUDA implementation, we

performed the Householder transformation calculation of the
Hessian matrix from the NMA of adenylate kinase (4AKE) with
single and double precisions and generated the structural snap-
shots of correspondingmodes withGROMACS from the decom-
position results. The root-mean-square deviation (RMSD)
between the snapshots of corresponding modes from the GPU
code and GROMACS calculated on CPU were compared to
evaluate the accuracy of the GPU implementation. Thirty snap-
shots from the 10 lowest-frequency vibration modes (modes
7�16) calculated by GROMACS were chosen as the reference of
the NMA results. The average RMSD values of the 30 snapshots
in each mode between single/double precision code and the
reference structures were calculated. The average RMSDs be-
tween the modes generated by double precision code and
GROMACS are in the range of 0.0021�0.042 Å (Figure 5A),
and most of the heavy atoms’ position deviations between the
most different snapshot conformations of node 8 from the GPU
and CPU are below 0.1 Å (as shown in Figure 5B). Considering
that the resolution of the crystal structure (4AKE) is as high as
2.20 Å, the tiny structural deviations between the GPU and CPU
NMA calculation results can be almost ignored. However, the
average RMSDs calculated from single precision modes are
higher than the double precision one and up to about 0.25 Å.

Table 1. Performance Comparison of the Runtime of Householder Transformation with Single andDouble Precision on the CPU
and GPU

single precision double precision

PDB ID number of residues number of atoms CPU runtime (s) GPU runtime (s) speedup CPU runtime (s) GPU runtime (s) speedup

2WFU 46 335 1.031 2.491 <1 2.167 2.699 <1

3CLN 143 1126 44.584 10.127 4.402 63.542 15.103 4.207

4AKE 428 3313 1774.563 82.119 21.609 2162.016 103.157 20.959

1ATN 630 4946 2881.651 114.558 25.155 4029.183 164.954 24.426

1ADB 748 6783 5943.227 219.386 27.09

The speedup is the runtime of Householder transformation on the GPU versus the runtime of the Householder transformation routines in
GROMACS on the CPU. The GPU runtime was measured from the CUDA implementation of the Householder transformation (the double-type
version was compiled by the nvcc compiler using option -arch compute_13, -code sm_13). The CPU runtime was measured by Householder
transformation subroutines “ssytrd” with single precision and “dsytrd” with double precision in the lapack library of GROMACS 4.0.

Figure 4. The distribution of data transfer and kernel runtime of the
single (float) and double precisions Householder transformation im-
plementation on GPU. Note that the vertical axis is scaled in log�linear
coordinates.
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Although the accuracy of the faster single precision code is about
100 times lower than the double precision one, the errors of the
results are still acceptable considering the resolutions of most of
the crystal structures used for NMA calculation are higher than
1.0 Å, indicating that the results obtained from GPU with both
single and double precisions are as accurate as the equivalent
calculated from common CPU implementation in GROMACS.
Application.NMA is widely applied to predict the functional

collective motions of the large macromolecules. Although the
previous study of Tirion evidenced that a hypothetical force field
with uniform (single-parameter) harmonic potentials (like
ENM) yields global modes, which are almost indistinguishable
from those obtained from a detailed force field with specific
nonlinear terms,48 all-atom NMA is still considered more
accurate than the coarse-grained one because the magnitude of
the excursions along the normal modes is almost unknown, and
more attention must be paid when interpreting the resulted
motions.8 We analyzed the allosteric conformational changes
observed between the free (1GGG) and substrate-bound
(1WDN) forms of the glutamine-binding protein with GPU-
accelerated all-atom NMA.57,58 This ellipsoidal protein has two
globular domains connected by two hinges and exhibits a large-
scale movement of the two hinges connecting the two globular
domains upon glutamine binding (as shown in Figure 6A and B).
From the superposition of intermediate structures for mode 7 of
the ligand-free structure (as shown in Figure 6C), the collective
motion trend of the two domains around the hinges can be
apparently observed to close the deep binding cleft for glutamine
binding, which corresponds well with the most deviated regions
between the ligand-free and ligand-bound regions, as shown in
Figure 6A. Moreover, the hinge regions with less structural
excursion variances are also apparent and coincide well with
the crystal structures, which is more accurate and distinct than
that of the ENM results (as shown in Figure 6C and D).

’CONCLUSION AND FUTURE WORK

We have implemented Householder-QR transformation for
Hessian matrix on GPU, which is the most time-consuming step
in all-atom NMA. As expected, GPU implementation achieved
an acceptable speedup compared with CPU. The results revealed

Figure 5. Accuracy comparison of t NMA calculation on GPU and CPU. (A) Average RMSD values of the top 10 modes of 4AKE (modes 7�16)
between the results of GPU (double precision) and CPU implementation. (B) Distribution of pairwise distances for the heavy atoms between the most
different snapshot conformations in mode 8 of 4AKE from GPU and CPU.

Figure 6. Collective motion prediction results for the allosteric con-
formational changes observed between (A) free (1GGG) and (B)
substrate-bound (1WDN) forms of the glutamine-binding protein with
(C) GPU-accelerated all-atom NMA and (D) ENM. The structure of
the free glutamine-binding protein is colored according to the atom
position deviations aligned onto the substrate-bound form: red color for
deviation as high as 14.4 Å and blue color for deviation as low as 0.7 Å.
The glutamine is represented in the sphere model. The superposition of
intermediate structures for modes 7 from theGPU and ENM calculation
are displayed. The two hinge regions are shown circled in red.
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that the performance of GPU improved with the increasing
computational workload, which can fully occupy the idle com-
putational units and hide various sources of latency. At the same
time, the influence of the data precision was also verified from the
perspectives of both speed and accuracy. Data transfer and the
amount of processing cores significantly impacted the perfor-
mance of GPU when the precision of data type increases. The
results of our calculations illustrate that all-atom NMA may be
suitable for GPU acceleration for large systems without any
coarse-grained approximation. The GPU code has been inte-
grated into the GROMACS package as a standalone module to
provide seamless acceleration of all-atomNMA for the molecular
modeling community, which can be provided on request.
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ABSTRACT: We present an ab initio molecular dynamics study of bare and hydrated (101) surfaces of KDP. We examine the
dynamical nature of the hydrogen bonding in the high and low temperature phases of bulk KDP and find evidence to support the
theory that hydrogen atoms oscillate between two off-center positions in the high-temperature phase. We report the translational
relaxation of the surface species on the (101) surface and find good agreement with experimental results, particularly with reference
to the direction of the relaxation. We find a strongly hydrogen bound water layer close to the KDP surface, comparing closely to a
highly ordered water layer observed experimentally. Overall, there is good agreement with the results of nanoscale experimental
studies, demonstrating the effectiveness of ab initio molecular dynamics calculations at simulating bulk and surface properties.

’ INTRODUCTION

Potassium dihydogenphosphate (KDP) is one of the first
materials to be used and exploited for its nonlinear optical
properties.1 At room temperature, KDP forms a paraelectric
phase in the tetragonal I42d space group.2 KDP undergoes a
phase transition at 122 K3 to a ferroelectric phase in the
orthorhombic C2v

19 I-setting space group, as described by Baur.4

The structure of KDP and its phase change from a ferroelectric to
a paraelectric material has been the subject of numerous diffrac-
tion and scattering studies, as reviewed elsewhere.2,5 Surface
X-ray diffraction (SXRD) studies have examined the relaxation of
atoms on the (101) surfaces of KDP.6�8 The surface structure
under aqueous conditions suggests that there are several “ice-
like” ordered water layers on the surface.8 The ice-like phenom-
ena of water adsorption on surfaces has been reported in a wide
range of mineral systems, such as mica.9,10 In recent years, Vlieg
and co-workers11�13 have further examined the (101) and (100)
surfaces of KDP with SXRD to determine the affect of pH on the
surface structure and relaxations. They find the (100) surface is
insensitive to pH, but the (101) surface is pH dependent, with a
competition between Kþ and H3O

þ.
On-going advances in parallel efficiency and linear scaling

algorithms now make it possible to simulate larger and more
complex systems using quantum mechanics. There have only
been a limited number of quantum mechanical studies of bulk
KDP.1,14�18 A number of these studies have examined the nature
of the ferroelectric�paraelectric phase transition and attribute
the ferroelectricity of KDP as predominantly a redistribution of
charge density caused by a change of the P�O distance and a
coupled P�O motion, and also a coordinated motion of the
heavier P and K atoms. There are very few theoretical studies of
the surfaces of KDP. Stack et al.19 have used DFT to study the
(100) surface of KDP, in particular relating to the adsorbing/
detaching of growth units. We have previously published a
density functional theory study of (101) surfaces of KDP.18 In
this previous work, we employed static surface calculations of

(101) surfaces under vacuum, nitrogen, and aqueous conditions.
In general, we found good agreement with the results from
experimental SXRD studies.

There is still a large gap in understanding between our static
model used to examine surfaces of KDP and the experimental
surface studies. Molecular dynamics provides us with another
step of complexity toward a better description of the interactions
that determine the surface structure of KDP. In this work, we
present an ab initio molecular dynamics (MD) study of both the
bare and hydrated (101) surfaces of KDP.

’METHODOLOGY

Ab initio density functional theory (DFT) calculations were
carried out using the SIESTA code.20 A double-ζ basis set with
polarization functions was used for all atoms except oxygen,
which had a triple-ζ basis set with polarization functions. Core
electrons are represented by norm-conserving pseudopoten-
tials,21 and electron exchange-correlation was treated using the
generalized gradient approximation (GGA:PBE22). For potas-
sium atoms, we explicitly include the 3p orbital in the valence
configuration of the pseudopotential. Hartree and exchange-
correlation energies were evaluated on a uniform real space grid
of points with a defined maximum kinetic energy of 200 Ry. The
numerical atomic orbitals were confined to an extent that induces
an energy shift in each orbital of 0.01 Ry.

We used ab initio molecular dynamics (MD) calculations to
examine both the high and low temperature phases of KDP. We
generated a 2� 2� 2 supercell of bulk KDP and used a 3� 3� 3
Monkhorst Pack k-grid for reciprocal space integration. A
temperature of 20 K was used to simulate the low temperature
ferroelectric phase and 298 K for the high temperature para-
electric phase. Variable cell dynamics were performed with the
temperature controlled Nose thermostat, enabling us to optimize

Received: December 24, 2010
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the lattice vectors at internal coordinates of the low and high
temperature phases. A step size of 1 � 10�15 s was used for all
MD calculations, with each simulation running for approximately
10 000 steps. In all cases, dynamical equilibrium (based on
energies and/or volume) appeared to be reached in typically
500�2000 steps. Time-averaged MD structures were generated
by averaging the coordinates of each atom over approximately
2000 fs for surface calculations and 5000 fs for bulk calculations.

Using the averaged cell parameters and atomic positions of the
high temperature 298 K phase, we then cleaved a (101) surface of
KDP. There are two possible ways to cut the (101) surface: one
produces a cation (Kþ) terminated surface, and the other
produces a dihydrogenphosphate (H2PO4

�) terminated surface.
From our previous ab initio density functional calculations,18 we
have shown that the Kþ terminated surface is significantly more
stable than the H2PO4

� surface. Surface X-ray diffraction studies
of KDP by de Vries et al.6,7 have also confirmed this. As a result,
we only consider the Kþ terminated (101) surface in our ab initio
molecular dynamics calculations. Constant temperature (fixed cell)
MD calculations were performed on the pure (101) surface with
a temperature of 298 K, controlled by the Nose thermostat. The
simulation was run for approximately 10 000 steps. Using the
relaxed surface, the simulation cell was then filled with water
molecules, and the MD calculation was repeated with the
simulation running for approximately 10 000 steps.

Note that these calculations are extremely computer intensive,
which severely restricts the time frame that can be accessed with
ab initiomolecular dynamics calculations compared to molecular
dynamics calculations using interatomic potentials.

’RESULTS AND DISCUSSION

The calculated lattice parameters of KDP at 20 and 298 K are
compared to those of the experimentally observed paraelectric
and ferroelectric phases, and other theoretical studies in Table 1.

From the results in Table 1, we find the calculated cell
parameters of the low temperature ferroelectric phase and the
high temperature paraelectric phase compare closely to experi-
mentally reported cell parameters. In both cases, the calculated
structures are slightly smaller than experimental results. GGA

functionals of inorganic solids typically lead to an overestimation
of cell volumes by a few percent; however, GGA functionals are
also known to overestimate the strength of hydrogen bonds in
strongly hydrogen-bonded systems.24 This overestimation of the
strength of hydrogen bonds between the H2PO4

� groups leads
to a slight contraction in the cells.

There has been debate over the KDP ferroelectric�para-
electric phase transition relating to the ordering of the hydrogen
in the high temperature phase. Neutron diffraction studies show
that in the paraelectric structure, hydrogen atoms occupy two off-
center site positions between the oxygen atoms on neighboring
phosphates, with 50% probability.25 The debate relates to how
this 50% occupation occurs. One common theory is that above
the phase transition temperature there is a disordered arrange-
ment of H2PO4

� groups, while below there is an ordered
arrangement.2 The other main theory is that the protons oscillate
between the two equivalent sites between the oxygen atoms.26

Recent neutron Compton scattering studies of KDP27 show
clearly that the proton is coherent over both sites in the
paraelectric phase, a result that invalidates the commonly ac-
cepted disorder�order picture of the transition. Using our
molecular dynamics results from the low and high temperature
phases, we have investigated the nature of the occupation of
hydrogen atoms in the off-center positions. We first examine the
time-averaged MD high and low temperature structures and
calculate the radial distribution function (g(r)) for oxygen to
hydrogen distances. This is illustrated in Figure 1.

The low temperature ferroelectric phase (20 K) shows two
distinct peaks/regions in Figure 1a. The smaller region from 1.0
to 1.2 Å corresponds to O�H bonds in the KDP, while the
1.3�1.5 Å region corresponds to the hydrogen bond O 3 3 3H
distances. As expected, the two peaks in the time-averaged MD
structure are sharper than the peaks for the MD structure over
the 5000 fs, due to the dynamical nature of the calculations. The
high temperature paraelectric phase (Figure 1b) shows a single
broad peak/region from 1.15 to 1.3 Å for the time-averaged MD
structure. The MD structure shows a broad hump extending
approximately 1.0 to 1.6 Å. There are small crests in this broad
hump at approximately 1.1 Å and 1.4 Å, which correspond to
typical O�H bond and O�H hydrogen distances. The broad

Table 1. Calculated Cell Parameters and Bond Lengths, Distances, and Angles for Ferroelectric and Paraelectric KDP

ferroelectric paraelectric ferroelectric

MD Expt. MD expt. static calculations

20 K 102 Ka 298 K 293 Ka 0 Kb 0 Kc 0 Kd

a (Å) 7.40 7.46 7.43 7.45 7.60 7.52 7.56

b (Å) 7.39 7.40 7.43 7.45 7.58 7.45 7.55

c (Å) 6.85 6.93 6.91 6.97 6.98 7.01 6.93

P�O (Å) 1.60 1.52 1.59 1.54 1.57 1.49 1.56

P�OH (Å) 1.65 1.58 1.59 1.54 1.63 1.55 1.63

OH�H (Å) 1.11 1.10 1.22 1.07 1.08 1.06 1.07

OH 3 3 3H (Å) 1.38 1.44 1.22 1.43 1.39 1.42 1.42

OH 3 3 3O (Å) 2.51 2.49 2.44 2.49 2.48 2.48 2.49

OH�P�OH (deg) 107.7 106.9 109.5 110.5 106.1 106.5 105.8

O�P�O (deg) 111.8 114.8 109.5 110.5 114.3 114.8 115.7

OH�H 3 3 3O (deg) 178.8 177.6 178.6 177.2 177.1 178.3
aResults from Nelmes et al.2 bDFT GGA-PBE results from Koval et al.14 cDFT GGA-PBE results from Zhang et al.23 dDFT GGA-PBE results from
Carter et al.18
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hump in the paraelectric phase is caused by the dynamical nature
of the simulations, and in particular the oscillation of the
hydrogen atom between the two equivalent off-center positions.
If there was a simple disorder mechanism in the paraelectric
phase, Figure 1b for the MD structure would have shown two
distinct peaks (similar to that observed for the ferroelectric phase
at 20 K).

The O�H bond length and O 3 3 3H hydrogen bond distances
of 1.22 Å for the 298 KMD structure differ from the experimental
structure reported in Table 1. As discussed above, the position of
the hydrogen atom is dynamical and typically occupies two off-
center positions and can oscillate between them throughout the
course of simulation. So to calculate the O�H bond and O 3 3 3H
hydrogen bond distances for the 298 K structure, we use the
time-average MD structure (as illustrated in Figure 1b).

To further illustrate the dynamical behavior of the hydrogen
atom position, in Figure 2, we illustrate the positions of oxygen
and hydrogen atoms along an O 3 3 3H 3 3 3O bond/hydrogen
bond over a simulation time of 5000 fs, for the 20 and 298 K
structures. From Figure 2, one can see that the hydrogen atom in
the low temperature (20 K) ferroelectric phase oscillates about
its equilibrium off-center position along the O 3 3 3H 3 3 3O hy-
drogen bond, at approximately 1.1 Å from the nearest oxygen
atom. The hydrogen atom in the high temperature (298 K)
paraelectric phase exhibits much larger oscillations about its
equilibrium position. These oscillations correspond to the hydro-
gen atomoscillating from one equivalent off-center site to the other
(i.e., oscillating from PdO 3 3 3H�O�P to P�O�H 3 3 3O = P).
If the ferroelectric�paraelectric mechanism was an order�
disorder reaction, then the 298 K paraelectric results would have
looked very much like the low temperature results with only
minimal oscillations around the equilibrium value. The MD
results support the theory that hydrogen atoms oscillate between
the two off-center positions in the paraelectric phase and are the

cause of the observed 50% occupation of the off-center positions
in this phase.

The paraelectric�ferroelectric transition in KDP is not just
related to the hydrogen ordering, but in the low temperature
ferroelectric phase, there are also small displacements of potas-
sium and phosphorus atoms along the c axis. For the KDP bulk at
20 K, the average displacement in the c direction is 0.04 Å for
both the phosphorus and the potassium atoms. Neutron diffrac-
tion studies by Nelmes et al.2 report that the experimental
displacements for the low temperature phase of KDP of potas-
sium and phosphorus at 102 K are approximately 0.05 Å. Energy
minimization density functional calculations by Zhang et al.23

report the displacement of phosphorus is 0.06 Å and that of
potassium is 0.03 Å. Thus, the calculated displacements of
potassium and phosphorus closelymatch the experimental values
from neutron diffraction studies and the calculated values from
planewave density functional calculations.

We also examined the electronic structure of theMD averaged
paraelectric temperature phase. Examining the band structure,
we find an insulator with a band gap of 5.54 eV. Density
functional studies of bulk KDP have previously reported band
gaps ranging from 4.2 to 6.0 eV.17,23,28 The band gap of KDP
has also been determined experimentally to have values ranging
from 7.0�8.8 eV.29 In general, band gaps calculated using
density functional theory are systematically underestimated
when compared to experimental values, and this is the case
again here.

To quantify the surface relaxations in our simulations of the
cation terminated surface, we use the approach taken in the
experimental studies of de Vries et al.,6,7 where a H2PO4

� ion is
treated essentially as a fixed group, and movements of the central
atom in this group (phosphorus) were measured. The displace-
ments of atoms (in the z direction) are then calculated by
comparing the positions in the relaxed and unrelaxed surfaces.

Figure 1. Radial distribution function (g(r)) of oxygen to hydrogen
distances over 5000 fs (MD) and the time-averaged molecular dynamics
structure for the (a) low (20 K) and (b) high (298 K) temperature
phases of bulk KDP.

Figure 2. Displacement of a hydrogen atom between two oxygen atoms
over 5000 fs for the low (20 K) and high (298 K) temperature phases of
bulk KDP.
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The 3D periodic simulation cells contain eight layers of Kþ and
H2PO4

� ions but have two surfaces (in the z direction); hence
for each species, there are four unique layers (layers 1 and 8 are
equivalent, 2 and 7 are equivalent, etc.). The surface relaxations
are reported in Table 2 with a negative (�) displacement
referring to inward relaxation and a positive (þ) displacement
referring to an outward relaxation. In Table 2, we compare the
layer by layer relaxation for our molecular dynamics calculations
versus the results for static surface calculations from our previous
study.18 In Table 2, layer 1 refers to the outermost layer and layer
4 refers to the layer closest to the center of the KDP slab, and
error ranges are shown as one standard deviation of the mean
value. In experimental SXRD studies, a single site model is used
for each surface layer; however, for the static calculations, there
are two symmetry-unique positions for each layer, so we report
an average relaxation value in Tables 2 and 3 (with the actual
values given in parentheses). In the molecular dynamics calcula-
tions reported here, there are no longer two symmetry-unique
positions for each layer, so we use a single site model for
each layer.

One of the most obvious differences in the surface relaxation
values for the vacuum surface in Table 2 is the direction of the Kþ

species in the outermost layer (layer 1), with static calculations
producing a large inward relaxation andMD calculations producing

a small outward relaxation. The (101) surfaces are terminated
with Kþ ions, so the outermost H2PO4

� layer (layer 1) is below
the surface of the outermost Kþ layer. Under vacuum conditions
and at 0 K, the Kþ ions have to contract inward toward the
surface.When the temperature is 298 K and the surface is allowed
to evolve over time using molecular dynamics, the outermost Kþ

layer has a small expansion from its initial configuration. Coupled
with this, we also see in MD calculations that there is an outward
relaxation of the second and third layers, in contrast to the static
calculations where there is negligible change. The relaxations of
the H2PO4

� layers for the static and MD calculations are similar
in both magnitude and direction.

The layer-by-layer relaxations for the hydrated surfaces in
Table 2 show similar trends for the static and MD calculations in
terms of the direction of the translational relaxations, although
the actual magnitudes do vary. The static calculations of Kþ and
H2PO4

� layers only appear to be significant in the outermost
layer (layer 1), with the other layers having a negligible change.
This was also observed in the vacuum surface calculations. InMD
calculations of the hydrated surface, the second H2PO4

� layer
and the second and third Kþ layers also show a noticeable
relaxation. The static and MD calculations on the hydrated
surface both show an outward movement of the outermost
(layer 1) Kþ and H2PO4

� layers (see Figure 3 for MD averaged
hydrated surface of KDP). The magnitudes of the relaxations of
both species in the MD calculations are slightly larger than for
static calculations. The static 0 K calculations consisted of 12
explicit water molecules above a surface and a simple geometry
minimization to find a minimum energy. In MD calculations, the
surface structure and interactions with the water molecules are
allowed to time-evolve at a finite temperature, and thus we expect
that the magnitudes of the surface relaxations will vary compared
to the static calculations. Lateral relaxations of surface atoms in
the directions parallel to the surface are approximately 0.04 Å and
suggest that there are no large excited surface phonons.

MD simulations enable us to further examine the dynamical
behavior of the (101) surface and its interactions with the water
molecules. Examining the hydrated surfaces, we find a number
of strong hydrogen bonds between the closest water molecules
and the (101) surface with typical values of 1.4�1.7 Å. We
also examined the position of the hydrogen atoms of surface

Table 2. Translational Relaxations of Species Perpendicular to the (101) Surface of KDP from Static and Molecular
Dynamics Calculations

vacuum surface hydrated surface

relaxations (Å) statica MD statica MD

Kþ

layer 1 �0.25 (�0.29, �0.25) þ0.06( 0.05 þ0.14 (þ0.17, þ0.11) þ0.25( 0.12

layer 2 �0.01 (�0.02, þ0.01) þ0.11( 0.05 þ0.05 (þ0.08, þ0.02) þ0.13( 0.05

layer 3 0.00 (�0.01, þ0.01) þ0.13( 0.05 �0.01 (�0.02, 0.00) þ0.13( 0.04

layer 4 0.00 (�0.01, þ0.01) þ0.00( 0.02 0.00 (�0.01, þ0.01) 0.00( 0.03

H2PO4
�

layer 1 þ0.12 (þ0.18, þ0.06) þ0.26( 0.10 þ0.08 (0.00,þ16.00) þ0.24( 0.09

layer 2 �0.06 (�0.07, �0.05) þ0.10( 0.03 �0.03 (�0.06, 0.00) þ0.18( 0.08

layer 3 0.00 (�0.01, þ0.01) 0.04( 0.03 þ0.01 (�0.02, þ0.04) þ0.04 ( 0.06

layer 4 0.00 (�0.01, þ0.01) 0.00( 0.03 0.00 (�0.01, þ0.01) 0.00( 0.04
aResults from Carter et al.18

Table 3. Translational Relaxations of Kþ andH2PO4
� Ions at

the (101) Surface of KDP from Theoretical and Experimental
Studies

relaxations (Å) Kþ H2PO4
�

experimental studies

aqueous solutiona þ0.10 ( 0.05 þ0.04 ( 0.05

static calculationsb

0 K vacuum �0.25 (�0.27, �0.23) þ0.12 (þ0.18, þ0.06)

0 K hydrated þ0.14 (þ0.17, þ0.11) þ0.08 (þ0.16, þ0.00)

molecular dynamics

298 K vacuum þ0.06 ( 0.05 þ0.26 ( 0.10

298 K hydrated þ0.25 ( 0.12 þ0.24 ( 0.09
aResults from de Vries et al.6,7 bResults from Carter et al.18
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H2PO4
� groups to see if they dissociate into the water molecules

or stay in their original positions. Analysis of their locations
suggests that the hydrogen atoms of H2PO4

� do not exchange
with water molecules under the finite temperature dynamics con-
siderations but do form strong hydrogen bonds to the neighbor-
ing water layer.

In Table 3, we compare the surface relaxations from our static
and MD calculations to the experimental results of de Vries
et al.6,7 The surface relaxations in Table 3 are for the outermost
Kþ and H2PO4

� layers. As described above, a negative (�)
displacement refers to inward relaxation and a positive (þ)
displacement refers to an outward relaxation. Error ranges are
shown as one standard deviation of the mean value.

We previously reported18 that surface relaxations from static
calculations of the KDP (101) surfaces under nitrogen condi-
tions compare closely (in direction and magnitude) to the
experimental results of Reedjik.30 Unfortunately, there are no
experimental results for (101) surfaces under high vacuum con-
ditions, as the surface quality was found to change over time,
making it impossible to accurately determine the surface
relaxations.7 Comparing the surface relaxations in Table 3, both
static and MD calculations predict an outward displacement of
the Kþ and H2PO4

� layers, matching the experimental trends,
although there is some variation in the magnitudes of these
relaxations. The calculated surface relaxations for the hydrated
surfaces are larger than the experimental values, with the static
0 K results actually closer to those from experiments. As men-
tioned before, DFT calculations are known to overestimate the
strength of hydrogen bonds. Examining the hydrated surfaces, we
find that a number of strong hydrogen bonds with typical values
of 1.4�1.7 Å have formed between the H2PO4

� layer and the
neighboring water molecules. There is also an attraction between
the Kþ ions and the water molecules. These interactions could
account for the larger surface relaxations observed in our static
and MD calculations.

The position of the water atoms above the (101) surface gives
insight into the nature of the interactions of water with the
surface. Experimental surface XRD studies by Reedjik et al.8

suggest that there are two well-ordered “ice-like” layers closest to
the surface, then several quasi-ordered layers adjacent to these
layers. The two well-ordered layers are predicted to have strong
interactions with the (101) surface species. The oxygen atom
positions in the first ordered water layer are predicted to be at the
extrapolated position of a next potassium layer. Reedjik et al.8

report that the first ordered oxygen layer is approximately 1.3 Å
above the surface Kþ layer. Using themolecular dynamics results,
we extracted the “z” coordinates of the water oxygen atoms and
the potassium atoms to compare to the experimental values. As
noted above, we find strong hydrogen bonds, typically 1.4�1.7 Å,
between the layer of water molecules closest to the surface and the
H2PO4

� ions.
A convenient way to visualize the molecular dynamics results

of the hydrated surface is by projecting the electron density
normal to the (101) surface. In Figure 4, we plot the electron
density normal to the (101) surface for the hydrated MD surface
and compared this to the experimental results extracted from
Figure 8 of Vlieg et al.13 In Figure 4, the sharp peaks at approxi-
mately 0, 1.3, 5.1, and 6.4 Å correspond to layers containing P
atoms in H2PO4

�, and the sharp peaks at approximately 2.7, 4.0,
and 7.8 Å correspond to Kþ layers (with 7.8 being the outermost
layer). Experimental SXRD results13 show a sharp oxygen peak at
approximately 9.1 Å, corresponding to the first ordered water
layer located approximately 1.3 Å above the surface Kþ layer,
labeled O1 in Figure 4. Experimental results also show a second
quasi-ordered (and much broader) water layer peak, labeled O2 in
Figure 4, a similar distance farther out from the first ordered water.
OurMD results in Figure 4 show a small peak corresponding to the
first orderedwater layer at approximately the same location as found
experimentally. The MD results in Figure 4 also show a similar
broad peak for the quasi-ordered second water layer, matching well
with experimental findings.

Using the translational and lateral displacements of the ice-like
O1 layer, it is possible to calculate the mean squared deviation for
this layer. A comprehensive molecular dynamics study of hex-
agonal ice by Tananka and Mohanty31 reports that the mean
square deviation in the quantum harmonic approximation varies
from 0.06 to 0.12 Å2 for temperatures ranging from 150 to 250 K.
The calculated mean square displacement for the ice-like O1
layer studied here is approximately 0.06 Å2 in both the transla-
tional and lateral directions. Given the limited time frame
accessible to this study (10 ps), compared to the classical
molecular dynamics calculations of hexagonal ice, which uses a
minimum of 15 ns of simulation time, the calculatedmean square
displacement compares quite favorably with the classical molec-
ular dynamics study, strongly suggesting the O1 layer on the
(101) surface exhibits ice-like behavior.

Figure 3. MD averaged hydrated surface of KDP. Oxygen, hydrogen,
potassium, and phosphorus atoms are represented by red, white, blue,
and orange colored spheres, respectively.

Figure 4. Electron density normal to the (101) surface from MD
calculations of hydrated surfaces and experimental values extracted
from Figure 8 of Vlieg et al.13 O1 and O2 refer to the positions of the
first and second ordered water layers from experimental studies of
Vlieg et al.13.
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To further illustrate the first ordered water on the KDP
surface, in Figure 5, we show the MD averaged surface with
water molecules highlighted (colored green), that form at least
two hydrogen bonds to the KDP surface. The first ordered water
layer indeed appears to correspond to water atoms that form
multiple strong hydrogen bonds to the KDP surface. The
location of this strongly bound water at the KDP surface in
Figure 5 would thus correspond to the O1 peak in the Figure 4
density plot.

’CONCLUSIONS

We performed ab initiomolecular dynamics calculations of the
high- and low-temperature phases of bulk KDP. For the high
temperature phase, we find evidence to support the theory that
hydrogen atoms oscillate between two off-center positions in the
high temperature phase. We have for the first time presented the
results for ab initio molecular dynamics calculations on (101)
surfaces of KDP. In general, we find good agreement with our
previous study using static calculations,18 and with the experi-
mental results from SXRD studies, in particular with reference to
the direction of the relaxation, although there is some variation in
the magnitudes of the relations. We find a water layer that is
strongly hydrogen bound to the KDP surface corresponding to a
first ordered water layer, matching closely to experimental
results. We also find a second quasi-ordered water region further
out from the surface, also in agreement with experimental results.
In the future, the next step would be to include the effect of ions
in the solution of water to study the effect of pH on the surface
relaxations. SXRD studies11,12 show that the (100) surface is
insensitive to pH, but the (101) surface is affected by the pH, so
molecular dynamics simulations could provide insight into the
interactions between the surface and the solvent.
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ABSTRACT: The response equations as occurring in the Hartree�Fock, multiconfigurational self-consistent field, and
Kohn�Sham density functional theory have identical matrix structures. The algorithms that are used for solving these equations
are discussed, and new algorithms are proposed where trial vectors are split into symmetric and antisymmetric components.
Numerical examples are given to compare the performance of the algorithms. The calculations show that the standard response
equation for frequencies smaller than the highest occupiedmolecular orbital�lowest unoccupiedmolecular orbital gap is best solved
using the preconditioned conjugate gradient or conjugate residual algorithms where trial vectors are split into symmetric and
antisymmetric components. For larger frequencies in the standard response equation as well as in the damped response equation in
general, the preconditioned iterative subspace approach with symmetrized trial vectors should be used. For the response eigenvalue
equation, the Davidson algorithm with either paired or symmetrized trial vectors constitutes equally good options.

1. INTRODUCTION

Molecular properties are fundamental quantities underlying the
macroscopic behavior of matter and their determination consti-
tutes one of themost fruitful areas of interplay between experiment
and theory. From a theoretical point of view, the determination of
molecular properties can be achieved by calculations of response
functions that express the responses of a molecular system toward
weak perturbing fields, such as internal magnetic moments or
externally applied electric and magnetic fields.1 By considering
poles and residues of response functions, it is also possible to
evaluate energy separations and various couplings between specific
states and molecular properties of excited states.1

In approximate state electronic structure theory, the major
task when calculating response functions and their poles and
residues translates into solving sets of response equations, and
the key module in programs devoted to the determination of
molecular properties therefore is the response equation solver.
The large dimensionality of the response equations imposes
the use of iterative algorithms, and the two criteria against which
such solver routines should be judged are stability and efficiency.
We consider the solution of response equations for variational
wave functions, such as Hartree�Fock (HF), multiconfiguration
self-consistent field (MCSCF), and Kohn�Sham (KS) density
functional theory (DFT). The overall structure of the response
equations is identical for these wave functions, and our discussion
will be relevant to all these cases. We will propose new algorithms
based on a splitting of trial vectors into symmetric and antisym-
metric components and, by numerical examples, compare them
to the conventional algorithms that have been used for solving
response equations.

For a real unperturbed reference state, three different types of
response equations will be considered:
• Standard response equation: The standard response equation
determines the responses in the wave function parameters

(collected as a vector XS) toward an off-resonance time-
dependent perturbing field oscillating with frequency ω:

ðE½2� �ωS½2�ÞXS ¼ G ð1Þ
where E[2] and S[2] are the generalized Hessian and metric
matrix, respectively, and G is a generalized gradient for the
operator describing the coupling between the perturbing field
and the molecular system—we refer to ref 1 for the definition
of the responsematrices in theHF andMCSCF theory and to
ref 2 in the case of KS theory. We note that eq 1 represents a
set of linear equations for a real symmetric matrix.

• Damped response equation: In near-resonance and reso-
nance regions of the spectrum, eq 1 no longer provides a
reasonable description of the induced polarization. However,
in a situation with fast relaxation channels that depopulates
the manifold of excited states, perturbation theory may still
be applicable as long as relaxation parameters (here repre-
sented by a single parameter γ) are introduced:3�5

ðE½2� � ðωþ iγÞS½2�ÞXD ¼ G ð2Þ
The damping parameters are associated with the inverse
(finite) lifetimes of the excited states.6,7 In this case, the
solution vector XD is complex with real and imaginary
components describing dispersion and absorption processes,
respectively. We note that eq 2 represents a set of linear
equations for a complex non-Hermitian matrix.

• Response eigenvalue equation: Excitation energies occur
at the poles of the linear response function and can be
determined by solving the generalized eigenvalue equation:

ðE½2� �ωf S
½2�ÞXf ¼ 0 ð3Þ
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where ωf is the transition frequency between the reference
state |0æ and excited state |fæ, and Xf is the excitation vector.
Since the metric S[2] is not positive definite, eq 3 represents
a non-Hermitian eigenvalue equation.

In the early days of quantum chemistry only small molecular
systems were considered, and the response matrices in eqs 1�3
were set up explicitly. The solutions to these equations were
obtained by applying standard algorithms of numerical analysis.
The standard response equation (eq 1) was for example solved
using diagonalization and triangularization methods, e.g., using
Gauss�Jordan elimination or LU factorization.8�10 The response
eigenvalue equation (eq 3) was solved using standard algorithms
for a non-Hermitian eigenvalue problem. However, since solv-
ing a Hermitian eigenvalue equation is simpler and, from an
algorithmic point of view, more robust as compared to solving
a non-Hermitian eigenvalue equation, eq 3 was expressed
in a Hermitian form that involved the diagonalization of two
Hermitian matrices of half the dimension of the E[2] and S[2]

matrices.11

For larger molecular systems it has become a standard practice
in quantum chemistry to use iterative subspace algorithms.
For example, Pople et al.12 solved the coupled HF equations
(eq 1) and Purvis and Bartlett13 the coupled cluster singles and
doubles amplitude equations using iterative subspace algorithms.
Wormer et al.14 recognized that both these algorithms lead to
an iteration sequence identical to the one obtained using the
conjugate gradient (CG) algorithm.15 The advantage of using a
CG formulation,15�18 and similar for the conjugate residual
(CR) algorithm,19 is that only the last three trial vectors are
necessary to store the information content of all previous trial
vectors. In a subspace approach the last three trial vectors
together with their linear transformed vectors need to be stored
on disk. In a unidirectional formulation of the CG and CR
algorithms, the number of vectors that needs to be stored on disk
in each iteration is reduced to three and four, respectively. The
handling and storage of trial vectors therefore become simplified
in the CG algorithm compared to an iterative subspace formula-
tion. In Appendix A, the connection between the CG and
subspace algorithms will be discussed. Our discussion will be
referring to system sizes that prohibit the explicit formation of the
Hessianmatrix but yet small enough to allow the Fock/KSmatrix
transformations needed to achieve a preconditioning in the
canonical self-consistent field (SCF) orbital basis. Using current
standard mathematical library routines, diagonalization of Fock
matrices of dimensions up to ca. 5� 104 can straightforwardly be
performed, but we acknowledge that in order to reach signifi-
cantly larger system sizes the orbital transformation becomes
a bottleneck, and “orbital-free” approaches have to be used, as
has been demonstrated for time-independent20 as well as time-
dependent response theory.21

The Davidson algorithm22 is an iterative subspace algorithm
for solving a standard Hermitian eigenvalue equation. It has been
generalized to the non-Hermitian response eigenvalue equation
(eq 3).23 However, this generalization turned out unsuccessful
because the non-Hermitian character of the response eigenvalue
equation may introduce complex eigenvalues in the reduced
subspace eigenvalue equations, which, in turn, made it difficult to
generate new trial vectors and converge the response eigenvalue
equation.24 A remedy to this problem was proposed by Olsen
et al.,25 who for ground-state calculations recognized that the
response eigenvalue equation could be viewed as a Hermitian

eigenvalue equation because the generalized Hessian E[2] is
positive definite and therefore could be viewed as a metric with
the inverse of the excitation energies as eigenvalues. Olsen et al.
further recognized that the response eigenvalue equation has
paired eigenvalues and that it is important to keep the paired
structure of the eigenvalues in the reduced space eigenvalue
equations. Paired eigenvalues can be obtained by adding paired
trial vectors to the subspace in the iterative procedure.With these
advances the Davidson algorithm was successfully applied.25 We
analyze the theoretical background for adding paired trial vectors.
We also discuss the Olsen algorithm26 in comparison with the
Davidson algorithm, for the generation of new trial vectors in the
iterative subspace algorithm.

From the linear transformation of E[2] and S[2] on a trial
vector, the linear transformation on its paired counterpart can be
generated at no additional cost. This suggests that it may be
advantageous to solve also the standard response equation using
the iterative subspace algorithm where trial vectors are added in
pairs to the reduced subspace. In doing so, however, the attractive
feature of the CG algorithm to keep the information from the
entire trial vector space in the last three vectors is lost. But, as
we shall see in the present work, by invoking an algorithm with
symmetrized trial vectors, this feature can be retained while
keeping the improved convergence rate seen when paired trial
vectors are used.

In 1990, Casida suggested to solve the standard response and
response eigenvalue equations by means of a block diagonaliza-
tion of the Hessian (see ref 2) using an approach similar to the
one described in ref 11. This algorithm is briefly discussed in
Appendix D.

Saue and co-workers27�29 introduced a symmetry division of
trial vectors for solving the standard response and eigenvalue
equations in the four-component HF and DFT approximations.
In their approach, trial vectors are split according to their
Hermiticity and time-reversal symmetry, which are the two
fundamental operator symmetries in a relativistic framework.
The trial vectors are complex due to the complex nature of the
four-component wave function, however, the reduced subspace
equations remain real, due to the symmetry properties of E[2]

and S[2]. Recently, Villaume et al.30 have generalized this
approach to solve the damped response equation, including a
presentation of a highly efficient preconditioner. This development
represented a significant improvement of the original algorithm
for the solution of damped response equations presented by
Norman et al.3,4 (with computational improvements by Kristensen
et al.),5 in which the complex response equation was considered
as two coupled real equations.

In the spirit of the work by Villaume et al.,30 we introduce an
algorithm for solving response equations (eqs 1�3) in a non-
relativistic framework (in a basis of real orbitals) where the
solution vectors are expressed in terms of symmetric and
antisymmetric components constituting the real and imaginary
parts of Hermitian and anti-Hermitian vectors. We show that the
standard response equation within this framework for frequen-
cies smaller than the highest occupied molecular orbital�lowest
unoccupied molecular orbital (HOMO�LUMO) gap may be
solved using the preconditioned CG/CR algorithm, while for
larger frequencies the preconditioned iterative subspace algo-
rithm with symmetrized trial vectors should be used. We also
show that the damped response equation (eq 2) may be exp-
ressed in terms of a set of linear equations for a symmetric but not
positive definite matrix. These algorithms may be supplemented
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with an efficient preconditioner, analogous to the one proposed
by Villaume et al.30 However, since this preconditioner is not
positive definite, the preconditioned CR algorithm cannot be
safely used, as discussed in Appendix B, and the damped response
equation is therefore best solved using the preconditioned
iterative subspace approach with symmetrized trial vectors.

In the next section, the structure of the response matrices in a
basis of nonrelativistic real orbitals will be discussed. In Section 3,
the standard iterative subspace algorithms are discussed for
solving the three categories of response equations. In Section 4
iterative subspace methods with paired trial vectors are consid-
ered, and in Section 5 the advantages of using symmetrized
trial vectors are discussed. In Section 6, we provide numerical
examples to illustrate the efficiency of the various algorithms, and
Section 7 contains the concluding remarks.

2. STRUCTURES OF RESPONSE MATRICES

The response equations are often written in a 2 � 2 matrix
blocked form referencing the excitation and deexcitation spaces.1

In this form, E[2] and S[2] have the structure:

E½2� ¼ A B
B A

 !
, S½2� ¼ Σ Δ

�Δ �Σ

 !
ð4Þ

where

Apq ¼ Æ0j½½Qp, Ĥ 0
�,Q †

q �j0æ
Bpq ¼ Æ0j½½Qp, Ĥ0�,Qq�j0æ
Σpq ¼ Æ0j½Qp,Q

†
q �j0æ

Δpq ¼ Æ0j½Qp,Qq�j0æ ð5Þ
where |0æ is the reference state, Ĥ̂0 is the nonrelativistic
Hamiltonian, and Qp

† and Qp are excitation and deexcitation
operators, respectively. Both E[2] and S[2] are symmetric ma-
trices. A, B, and Σ are symmetric, and Δ is antisymmetric.1

For a closed shell system and a HF reference state |0æ = |HFæ,
the excitation operator Qp

† becomes

Q †
p ¼ Q †

AI ¼
1ffiffiffi
2

p ða†ARaIR þ a†AβaIβÞ ð6Þ

where I and A refer to occupied and unoccupied molecular
orbital (MO) indices, respectively. In the canonical SCF basis,
the elements of A, B, Σ, and Δ become11

Apq ¼ AAI, BJ ¼ ÆHFj½½Qp, Ĥ0�,Q †
q �jHFæ

¼ δABδIJðεA � εIÞ þ ðAIjJBÞ � ðABjIJÞ ð7Þ

Bpq ¼ BAI, BJ ¼ ÆHFj½½Qp, Ĥ0�,Qq�jHFæ
¼ ðAIjBJÞ � ðAJjBIÞ ð8Þ

Σpq ¼ ÆHFj½Qp,Q
†
q �jHFæ ¼ δABδIJ ð9Þ

Δpq ¼ ÆHFj½Qp,Qq�jHFæ ¼ 0 ð10Þ
respectively. εA and εI refer to orbital energies, and the Mulliken
notation is used for the two-electron integrals. In KS theory, the
two-electron integrals in eqs 7 and 8 have to be modified, and
an exchange�correlation contribution added.2 In MCSCF wave
function theory, the explicit expressions for the matrix elements

in the electronicHessian and overlapmatrices are significantlymore
complicated, but the form is identical to that in single determinant
theory.1 Our present considerations regarding response equation
solvers will be valid also in the case of MCSCF theory but with use
of MCSCF specific approximations of the Hessians and overlap
matrices for the construction of preconditioners.

A Møller�Plesset perturbation analysis shows that the E[2]

matrix can be split into the zeroth and the first order contribution:

E½2� ¼ E½2�
0 þ E½2�

1 ð11Þ

where E0
[2] is a diagonal matrix containing the orbital energy

differences:

E½2�
0 ¼ Δε 0

0 Δε

 !
ð12Þ

where the elements of Δε are given by

ΔεAI, BJ ¼ δABδIJðεA � εIÞ ð13Þ

E1
[2] contains the electron�electron repulsion contributions

to E[2], as can be seen from eqs 7 and 8. In KS theory, an
exchange�correlation contribution has to be added to E1

[2]. The
metric matrix S[2] in the canonical SCF representation becomes

S½2� ¼ 1 0
0 �1

 !
ð14Þ

The solution vectors X in eqs 1�3 can also be written in the
blocked form as

X ¼ xAI
xJB

 !
ð15Þ

where xAI and xJB are the excitation and deexcitation components,1

respectively.
Using the above notation, the response eigenvalue equation in

the canonical SCF representation may be expressed as

A B
B A

 !
xAI, f
xJB, f

 !
¼ ωf

1 0
0 �1

 !
xAI, f
xJB, f

 !
ð16Þ

where the eigenvector satisfies the positive normalization condition

ð xTAI, f xTJB, f Þ
1 0
0 �1

 !
xAI, f
xJB, f

 !
¼ 1 ð17Þ

Togetherwith the positiveS[2]-normed solutionXfþ ¼ xAI, f
xJB, f

 !
,

the response eigenvalue equation has a paired solution

Xf� ¼ xJB, f
xAI, f

 !
, with the eigenvalue�ωf.

A B
B A

 !
xJB, f
xAI, f

 !
¼ �ωf

1 0
0 �1

 !
xJB, f
xAI, f

 !
ð18Þ
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where the eigenvector satisfies the negative normalization con-
dition:

ð xTJB, f xTAI, f Þ
1 0
0 �1

 !
xJB, f
xAI, f

 !
¼ � 1 ð19Þ

The excitation vectors may be collected as the columns of an
eigenvector matrix X with the positive S[2]-normed eigenvectors
collected first Xþ = {X1þ, X2þ, ..., Xfþ, ...}, followed by the
negative S[2]-normed vectors X� = {X1�, X2�, ..., Xf�, ...}.

31

X ¼ ðXþ X� Þ ð20Þ

In matrix form the response matrices may be expressed as1

X†E½2�X ¼ ωexc 0
0 ωexc

 !
; X†S½2�X ¼ 1 0

0 �1

 !
ð21Þ

whereωexc is a diagonal matrix containing the excitation energies
{ω1, ω2, ..., ωf, ...}.

For the ground state, E[2] is a positive definite matrix. To see
this, E[2] may be transformed to block diagonal form using the
unitary matrix U:

U ¼ 1ffiffiffi
2

p 1 �1
1 1

 !
ð22Þ

giving

U†E½2�U ¼ A þ B 0
0 A � B

 !
ð23Þ

Submatrices Aþ B and A� B represent the stability conditions32

in the wave function |0æ with respect to imaginary and real
variations, respectively. For a ground state, both A� B and Aþ
B have to be positive definite, implying that E[2] is positive
definite. For a ground state, E[2] may thus be viewed as a positive
definite metric matrix, and the response eigenvalue equation,
eq 3, may be expressed as

1
ωf

E½2� � S½2�
 !

Xf ¼ 0 ð24Þ

which is a standard symmetric eigenvalue equation where (ωf)
�1

are the eigenvalues.
In the following discussion, we will focus onHF and KS theory

and assume that we are using a canonical SCF representation,
where the generalized metric S[2] has the structure in eq 14, and
the generalized Hessian E[2] can be split into the zeroth and the
first order contribution as in eq 11. However, in the practical
calculations, we evaluate the linear transformations of E[2] and
S[2] on trial vectors in the atomic orbital (AO) representation, as
discussed in detail in refs 21 and 33. The detailed structure of E[2]

and S[2] in the AO representation is described in ref 31. We note
that the preconditioning of the response equations is always most
efficiently performed in the canonical SCF representation where
S[2] has a particular structure (eq 14), which allows an exact
treatment of this matrix and where the access to orbital energy
differences enables a representation of the E[2] matrix that is
superior to available approximations in the AO basis.

3. SOLVINGRESPONSE EQUATIONSUSING STANDARD
ITERATIVE METHODS

In electronic structure theory, the response equations
(eqs 1�3) are conventionally solved using subspace iterative
algorithms. In the subspace iterative algorithms, it is assumed that
the linear transformations of the generalized Hessian E[2] and
metric S[2] matrices on a trial vector b can be carried out

σ ¼ E½2�b, G ¼ S½2�b ð25Þ
The solution to the response equations is obtained from a
sequence of linear transformations on trial vectors giving gradu-
ally improved solutions to the response equations.
3.1. General Subspace Iterative Algorithm. The solution

to the response equations may be obtained using an iterative
subspace algorithm. After iteration n of an iterative subspace
algorithm we have n trial vectors:

bn ¼ fb1, b2 , ..., bng ð26Þ
and the linear transformed vectors

σn ¼ fσ1, σ2 , ..., σng, Gn ¼ fG1, G2 , ..., Gng ð27Þ
Reduced response equations are then set up in the subspace bn

giving

ðE½2�
R �ωS½2�R ÞðXSÞR ¼ GR ð28Þ

½E½2�
R � ðωþ iγÞS½2�R �ðXDÞR ¼ GR ð29Þ

ðE½2�
R �ωR

f S
½2�
R ÞðXf ÞR ¼ 0 ð30Þ

for the standard, damped, and eigenvalue equation, respectively,
where

ðE½2�
R Þij ¼ b†i σ j, ðS½2�R Þij ¼ b†i Gj ð31Þ

and

ðGRÞi ¼ b†i G ð32Þ
Equations 28�30 determine the optimal solution vector Xnþ1 in
the subspace bn

Xn þ 1 ¼ ∑
n

i¼ 1
ðXRÞibi ð33Þ

The residuals for the response equations are given as

Rn þ 1 ¼ ðE½2� �ωS½2�ÞðXSÞn þ 1 �G

¼ ∑
n

i¼ 1
½ðXSÞR �iðσ i �ωGiÞ �G ð34Þ

Rn þ 1 ¼ E½2� � ðωþ iγÞS½2��ðXDÞn þ 1 �G

¼ ∑
n

i¼ 1
½ðXDÞR �i½σ i � ðωþ iγÞGi� �G ð35Þ

Rn þ 1 ¼ ðE½2� �ωR
f S

½2�ÞðXf Þn þ 1

¼ ∑
n

i¼ 1
½ðXf ÞR �iðσ i �ωR

f GiÞ ð36Þ
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for the standard, damped, and eigenvalue equation, respectively.
To improve the convergence of the standard and damped
response equations they may be preconditioned.34 The new trial
vector is then obtained from the preconditioned residual:

bn þ 1 ¼ L�1Rn þ 1 ð37Þ
where the preconditioner L is an approximation to (E[2] �
ωS[2]) for the standard response equation and [E[2] � (ω þ iγ)
S[2]] for the damped response equation. Due to the fact that
S[2] is a diagonal matrix (see eq 14) and E[2] is a diagonally
dominantmatrix (see eq 11), (E0

[2]�ωS[2]) and [E0
[2]� (ωþ iγ)

S[2]] may be used as preconditioners for the standard and
damped response equations, respectively. The improvement in
convergence obtained when preconditioning is introduced will
be discussed in more detail in Section 3.3 and the subsequent
sections.
When the eigenvalue equation (eq 3) is solved, new trial

vectors may be obtained either using the Davidson22 algorithm or
the Olsen26 algorithm, see details in the subsequent section. The
new trial vector bnþ1 is added to the subspace in eq 26, and the
iteration procedure is continued until convergence is obtained.
The iterative scheme is converged when the residual Euclidean
norm )R ) is smaller than a preset threshold.
3.2. Response Eigenvalue Equation. In this section we

describe how new trial vectors are generated when solving the
response eigenvalue equation, using the Davidson22 and the
Olsen26 algorithms. Both these algorithms were originally de-
signed for solving Hermitian eigenvalue equations. We discuss
the problems that may occur when the Davidson and the Olsen
algorithms are applied to the non-Hermitian response eigenvalue
equation.
3.2.1. Davidson Algorithm. In the Davidson algorithm a new

trial vector is obtained as for the preconditioned standard
and damped response equations, according to eq 37, where the
matrix L is a diagonal approximation to (E[2] � ωf

RS[2])

bn þ 1 ¼ ðE½2�
0 �ωR

f S
½2�Þ�1Rn þ 1 ð38Þ

For the linear equation improved convergence is obtained when
E0
[2] becomes an improved approximation to the E[2] matrix. In

fact, when E0
[2] is replaced by E[2], the converged solution is

obtained right away for a set of linear equations. However, when
the eigenvalue equation is solved using the Davidson algorithm,
a problem arises in the limit where E0

[2] is approaching E[2] as no
new direction is generated. To see this, we replace E0

[2] with E[2]

in eq 38 and introduce the definition of the residual in eq 36,
giving

bn þ 1 ¼ ðE½2� �ωR
f S

½2�Þ�1ðE½2� �ωR
f S

½2�ÞðXf Þn þ 1

¼ ðXf Þn þ 1 ð39Þ
The proposed new trial vector is therefore equal to the subspace
solution to eq 30, so in effect, no new trial vector is obtained
using the Davidson algorithm.35 This may be cumbersome when
improved preconditioners are used, and a remedy to this problem
is provided in the Olsen algorithm.26

3.2.2. Olsen Algorithm. In the Olsen algorithm, it is assumed
that we know an approximate solution to the response eigenvalue
equation. This may be the optimal solution vector (Xf)nþ1

of eq 33, for convenience denoted as X0, which satisfies the
normalization condition in eq 17. The zeroth order eigenvalue

ωf
0 associated with X0 is obtained by projecting the eigenvalue

equation in eq 3 with (X0)T

ðX0ÞTðE½2� �ω0
f S

½2�ÞX0 ¼ 0 ð40Þ
Note that ωf

0 obtained from eq 40 is identical to ωf
R in eq 30.

To get an improved solution vector in the Olsen algorithm, we
express eq 3 in terms of the zeroth order and the correction
components:

ωf ¼ ω0
f þω1

f ð41Þ

Xf ¼ X0 þ X1 ð42Þ
where ωf

1 and X1 are correction terms to the eigenvalue ωf
0 and

the eigenvector X0, respectively. The E[2] matrix may also be
written in terms of a zeroth order and a correction component as
in eq 11. Inserting eqs 11, 41, and 42 into eq 3 gives

½ðE½2�
0 þ E½2�

1 Þ � ðω0
f þω1

f ÞS½2��ðX0 þ X1Þ ¼ 0 ð43Þ
Neglecting terms that are quadratic in the corrections, we get

ðE½2�
0 �ω0

f S
½2�ÞX1 ¼ � ðE½2� �ω0

f S
½2�ÞX0 þω1

f S
½2�X0 ð44Þ

and X1 can be determined as

X1 ¼ � ðE½2�
0 �ω0

f S
½2�Þ�1½ðE½2� �ω0

f S
½2�ÞX0 �ω1

f S
½2�X0�

ð45Þ
By requiring that the eigenvector correction X1 is orthogonal to
X0 in the generalized metric S[2]

ðX1ÞTS½2�X0 ¼ 0 ð46Þ
we may determine ωf

1 by multiplying eq 45 with (X0)TS[2]

ω1
f ¼ ðX0ÞTS½2�ðE½2�

0 �ω0
f S

½2�Þ�1ðE½2� �ω0
f S

½2�ÞX0

ðX0ÞTS½2�ðE½2�
0 �ω0

f S
½2�Þ�1S½2�X0

ð47Þ

The inverse matrix (E0
[2] � ωf

0S[2])�1 is readily constructed as
both E0

[2] and S[2], which are diagonal matrices. Once the linear
transformations E[2]X0 and S[2]X0 are known, we may determine
ωf
1 from eq 47, and then the correction vector X1 may be

obtained from eq 45. The new trial vector bnþ1 = X1 is added
to the trial vector subspace in eq 26, and the iteration procedure
is continued until convergence.
Note that the first term in eq 45 gives the Davidson correction

in eq 38. The second term in eq 45 thus ensures that a new
improved trial vector is obtained also when E0

[2] is approaching
E[2]. In fact, when E0

[2] in the Olsen algorithm is replaced by E[2],
we establish the inverse-iteration method with the Rayleigh
quotient.16,35,36 Note that new trial vectors are obtained using
the Olsen algorithm without carrying out new linear transforma-
tions compared to the Davidson algorithm.
3.2.3. Problems When Solving the Response Eigenvalue Equa-

tion.Due to the fact thatS[2] is an easily invertiblematrix [(S[2])�1 =
S[2]], the response eigenvalue equation may be expressed as

S½2�E½2�X ¼ ωX ð48Þ
eq 48 was used in early iterative subspace algorithms to obtain the
solution to the response eigenvalue equation.24However, (S[2]E[2])
is a non-Hermitian matrix, and eq 48 therefore represents a non-
Hermitian eigenvalue equation. When a non-Hermitian rather than
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a standardHermitian eigenvalue equation is solved using an iterative
subspace algorithm, some difficulties may occur. For a Hermitian
eigenvalue equation, the subspace eigenvalue equation is guaranteed
to have real eigenvalues. Alsomonotonic convergence is obtained to
the lowest eigenvalues due to MacDonald’s theorem.37 In contrast,
when anon-Hermitian eigenvalue equation is solved the eigenvalues
of the reduced generalized eigenvalue equation may be complex.
Then new trial vectors cannot be obtained neither using the
Davidson nor the Olsen algorithms because, in both cases, it is
assumed thatωf

R is real. Bouman et al.24 encountered this problem
when the Davidson algorithm was applied to eq 48. Also the
monotonic convergence to the lowest eigenvalues is lost.
In eq 24, it is shown that for the ground state, the non-

Hermitian response eigenvalue equation may be transformed
into a Hermitian eigenvalue equation. In Section 4, we discuss
how this Hermitian eigenvalue equation may be solved using a
generalization of the Davidson iterative subspace algorithm,
by imposing the paired structure of the response matrices E[2]

and S[2] on their subspace counterparts.
3.3. Standard Response Equation. The standard response

equation in eq 1 represents a set of linear equations with a
symmetric matrix. For angular frequencies ω that are smaller
than the lowest excitation energy, the response matrix (E[2] �
ωS[2]) is also positive definite. In Appendix A, it is described
how, for a positive definite symmetric matrix, the subspace
iterative algorithm described in Section 3.1 and the CG
algorithm15�18 lead to the same iteration sequence.14 This is
obtained because the residuals in the subspace algorithm and the
optimal directions in the CG method span the same space. The
CG algorithm is designed such that the set of vectors stored on
disk may be truncated to the three vectors, so the storing and the
manipulation of the large amount of directions (trial vectors) that
is required to set up the reduced space equations in the subspace
algorithm can be avoided. For angular frequencies ω larger
than the lowest excitation energy, (E[2] � ωS[2]) is not positive
definite but still symmetric, and the CR algorithm may, in
principle, be applied. To improve convergence the CG and CR
algorithms are used with the diagonal preconditioner (E0

[2] �
ωS[2]). However, this preconditioner is positive definite only
for ω smaller than the HOMO�LUMO gap, and the precondi-
tioned CR algorithm can therefore be safely used to solve the
standard response equation for ω smaller than the HOMO�
LUMO gap (see Appendix B). For larger ω the preconditioned
iterative subspace algorithm is the best option.
In the absence of a preconditioner, the convergence rate for an

iterative solution of the standard response equation is determined
by the condition number of the response matrix (E[2] � ωS[2]),
i.e., the ratio between the smallest and largest eigenvalues of the
response matrix ωf

max/ωf
min. This condition number is typically

large since there are very large eigenvalues in the Hessian referring
to, e.g., core excitations as well as nonphysical excitations into the
continuum energy spectrum that appear as discrete levels due
to the use of a localized atomic orbital basis. However, by using
(E0

[2] � ωS[2]) as preconditioner, the convergence rate is instead
determined by the condition number of the matrix:

ðE½2�
0 �ωS½2�Þ�1ðE½2� �ωS½2�Þ

¼ ðE½2�
0 �ωS½2�Þ�1½ðE½2�

0 �ωS½2�Þ þ E½2�
1 �

¼ 1þ ðE½2�
0 �ωS½2�Þ�1E½2�

1 ð49Þ

and the condition number is therefore greatly reduced since all the
large eigenvalues discussed above (e.g., as due to core excitations)
are scaled more or less to unity by the preconditioner. We note,
however, that, when the optical frequency ω is in close resonance
with excitation energies of the system or rather with orbital energy
differences, the matrix inverse (E0

[2] � ωS[2])�1 becomes nearly
singular, and the preconditioning will give rise to an increase in the
condition number for these near resonance excitation energies.
This will result in a slower convergence rate as compared to the
nonresonant case. It is also clear that the higher the density of
states in the region of the optical frequency, the worse the
convergence rate we expect, simply since there are a larger number
of eigenvalues that will be scaled poorly by the preconditioner.
3.4. Damped Response Equation. The damped response

equation of the form in eq 2 represents a set of linear equations
for a non-Hermitian complex matrix. We will now describe how
eq 2 may be transformed to a set of linear equations for a real
symmetric matrix, thereby avoiding complex algebra.
The solution to eq 2 may be expressed in terms of the solution

for the real and the imaginary component of eq 2. This results in
two coupled real equations

ðE½2� �ωS½2�ÞXR
D ¼ GR � γS½2�XI

D ð50Þ

ðE½2� �ωS½2�ÞXI
D ¼ GI þ γS½2�XR

D ð51Þ
where GR and GI is the real and the imaginary component of
the gradient vector G, respectively. When eqs 50 and 51 are
solved separately without explicit coupling between the two
equations, this may lead to divergence in the resonance regions
where the solution vector has a large eigenvector component
in both XD

R and XD
I . The coupling between XD

R and XD
I can be

considered explicitly by expressing eqs 50 and 51 in the matrix
form:

E½2� �ωS½2� γS½2�

�γS½2� E½2� �ωS½2�

 !
XR
D

XI
D

 !
¼ GR

GI

 !
ð52Þ

that represents a set of linear equations for a nonsymmetric
matrix. However, since it is advantageous to solve the set of linear
equation for a symmetric matrix, by reversing the sign of the
second row, we express eq 52 as

E½2� �ωS½2� γS½2�

γS½2� �ðE½2� �ωS½2�Þ

 !
XR
D

XI
D

 !
¼ GR

�GI

 !

ð53Þ
which represents a standard set of linear equations for a
symmetric, indefinite, and real matrix.
The residuals of eq 53 are given by

RR
n þ 1 ¼ ðE½2� �ωS½2�ÞðXR

DÞn þ 1 �GR þ γS½2�ðXI
DÞn þ 1

ð54Þ

RI
n þ 1 ¼ � ðE½2� �ωS½2�ÞðXI

DÞn þ 1 þGI þ γS½2�ðXR
DÞn þ 1

ð55Þ
andmay be used to check for convergence. In the preconditioned
iterative subspace algorithm, new trial vectors are obtained by
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preconditioning the residuals:

bRn þ 1

bIn þ 1

0
@

1
A ¼ ½ðE½2�

0 �ωS½2�Þ2 þ γ21��1

X
E½2�
0 �ωS½2� γS½2�

γS½2� �ðE½2�
0 �ωS½2�Þ

0
@

1
A RR

n þ 1

RI
n þ 1

0
@

1
A

ð56Þ

where we have introduced a direct matrix product according to

c ¼ a X
b11 b12
b21 b22

 !
¼ ab11 ab12

ab21 ab22

 !
ð57Þ

It can be seen by inspection that the inverse preconditioner in
eq 56 is the inverse matrix to the matrix in eq 53, where E[2] is
replaced by E0

[2].
Since eq 53 represents a set of linear equations for a sym-

metric, indefinite matrix, it cannot be solved using the CG
algorithm, but the CR algorithm19,38 may be applied. However,
the preconditioner in eq 56 is not positive definite, and therefore
the preconditioned CR algorithm cannot be safely used (see
Appendix B). When solving eq 53 using preconditioning, the
iterative subspace algorithm therefore becomes the best option.
The condition number is significantly reduced by precondi-

tioning for similar reasons as presented in Section 3.3 for the
standard response equation, as the dominant contributions to
the large eigenvalues are removed. The condition number will
increase when [(E0

[2] � ωS[2])2 þ γ21]�1 is approaching a
singularity, and a slower convergence will be observed. Since the
γ parameter is small, the condition number of the precondi-
tioned standard response equation and the preconditioned
damped response equation will be similar, and similar conver-
gence will be observed for the preconditioned standard and
damped response equations.
The preconditioned iterative subspace approach presented in

this section, represents a simple and straightforward scheme for
solving the damped response equation, using a real trial vector
space. In Section 5.3, we show that introducing symmetrized trial
vectors leads to an improved efficiency with respect to solving the
damped response equation.

4. ITERATIVE METHODS WITH PAIRED TRIAL VECTORS

In the previous section, we discussed how iterative algorithms
may be used to solve the response equations, where the response
matrices E[2] and S[2] were considered to be standard symmetric
matrices. As discussed in Section 2, the response matrices have a
2 � 2 matrix block structure (see eq 4), which imposes that the
response eigenvalue equation has paired eigensolutions (see
eqs 17�21). When the response equations are solved using
the general subspace iterative approach described in Section 3.1,
this paired structure is lost in the reduced space equations.
However, preserving the 2 � 2 block structure in the reduced
space equations in eqs 28�30, leads to improvement in
convergence.25 This paired structure may be recovered in the
reduced space by adding trial vectors in the iterative subspace
algorithm in pairs25 as will be described below.

In paired iterative algorithms, together with a trial vector b

b ¼ bAI
bJB

 !
ð58Þ

the paired vector bP

bP ¼ bJB
bAI

 !
ð59Þ

is added to the subspace in each iteration of the iterative
procedure. From the linear transformations of E[2] and S[2] on
b in eq 25, the linear transformations on the corresponding
paired trial vector can be obtained without significant computa-
tional cost, as

E½2�bPi ¼ σP
i , S½2�bPi ¼ � GPi ð60Þ

where we have used eqs 4, 58, and 59.
After n iterations in the paired iterative subspace algorithm,

the reduced space b2n consists of 2n trial vectors:

b2n ¼ fb1, b2 , ..., bn, bP1 , bP2 , ..., bPng ð61Þ
and the associated spaces of linear transformed vectors σ2n and
G2n are also known. The reduced matrix equations of the form
depicted in eq 28�30 may now be set up, and the matrix
elements of the reduced space generalized Hessian and metric
matrices are given as

ðE½2�
R Þij ¼ ðb2ni ÞTσ2n

j , ðS½2�R Þij ¼ ðb2ni ÞTG2nj ð62Þ

respectively. In matrix block form ER
[2] and SR

[2] may be
expressed as

E½2�
R ¼ AR BR

BR AR

 !
, S½2�R ¼ ΣR ΔR

�ΔR �ΣR

 !
ð63Þ

where AR, BR, and ΣR are symmetric, andΔR is an antisymmetric
matrix of the dimension n. The reduced subspace matrices thus
have the same paired structure as their full matrix counterparts in
eq 4. The reduced space right-hand sides in eqs 28 and 29 are
given by

ðGRÞi ¼ ðb2ni ÞTG ð64Þ
Solving the reduced response equations (eqs 28�30) yields a

solution vector (X)nþ1 in the subspace according to

ðXÞn þ 1 ¼ ∑
2n

i¼ 1
ðXRÞib2ni ð65Þ

The residuals for (X)nþ1 become equal to

Rn þ 1 ¼ ðE½2� �ωS½2�ÞðXSÞn þ 1 �G

¼ ∑
2n

i¼ 1
½ðXSÞR �iðσ2n

i �ωG2ni Þ �G ð66Þ

Rn þ 1 ¼ ðE½2� �ωR
f S

½2�ÞðXf Þn þ 1

¼ ∑
2n

i¼ 1
½ðXf ÞR �iðσ2n

i �ωR
f G

2n
i Þ ð67Þ

for the standard and eigenvalue response equation, respectively.
For the damped response equations the real and imaginary
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components of the residual are given as

RR
n þ 1 ¼ ðE½2� �ωS½2�ÞðXR

DÞn þ 1 �GR þ γS½2�ðXI
DÞn þ 1

¼ ∑
4n

i¼ 1
½ðXR

DÞR �iðσ4n
i �ωG4ni Þ �GR þ γS½2�ðXI

DÞn þ 1

ð68Þ

and

RI
n þ 1 ¼ ðE½2� �ωS½2�ÞðXI

DÞn þ 1 �GI � γS½2�ðXR
DÞn þ 1

¼ ∑
4n

i¼ 1
½ðXI

DÞR�iðσ4n
i �ωG4ni Þ �GI � γS½2�ðXR

DÞn þ 1

ð69Þ

respectively. When the damped response equation is solved, the
reduced subspace has a dimension 4n, as it contains trial vectors
for both the real and imaginary components of the solution
vector together with their paired counterparts.3,5

The residual norm is calculated to check for convergence.
A new trial vector bnþ1 is obtained from the preconditioned
residuals according to eq 37. The new trial vector, together with
its paired counterpart bnþ1

P , are added to the reduced subspace in
eq 61, and the iterative procedure is continued until convergence.

When the response eigenvalue equation in eq 24 is solved
using the algorithm with paired trial vectors, the reduced sub-
space matrices thus have the 2� 2 block structure similar to their
exact counterparts. For a ground-state response calculation, ER

[2]

is also positive definite, and the reduced eigenvalue equations will
therefore have paired real eigenvalues with positive eigenvalues
for the positive S[2]-normed eigensolutions. It was stated in ref 25
that the lowest positive eigenvalue will converge monotonically
toward the full space lowest positive eigenvalue,37 e.g., the lowest
positive eigenvalue of iterations n and nþ1, satisfies (ω1

R)n g
(ω1

R)nþ1. This statement is proven in the present work in
Appendix C. When the response eigenvalue equation is solved
using the subspace algorithm with paired trial vectors, the
Davidson algorithm may straightforwardly be applied as for a
Hermitian eigenvalue equation, and monotonic convergence will
be obtained toward the full space lowest eigenvalue.

For the standard response equation, Olsen et al.25 demon-
strated an improved convergence using an iterative subspace
algorithm with paired trial vectors. When the standard response
equation (eq 1) is solved without pairing, an identical iteration
sequence is obtained for ω smaller than the HOMO�LUMO
gap regardless of whether the iterative subspace or the CG
algorithm is used (see Appendix A). But when paired trial vectors
are employed, the reduction in the number of subspace vectors is
not obtained for the CG algorithm. We shall see in Section 5.2,
however, that this reduction is retained in the CG algorithm
when symmetrized trial vectors are used.

5. ITERATIVE METHODS WITH SYMMETRIZED TRIAL
VECTORS

In the previous section, we discussed advantages of using
paired trial vectors to solve response equations. In this section,
we consider the advantages that may be obtained by splitting
trial vectors into symmetric and antisymmetric components.

A real symmetric (g) and antisymmetric (u) trial vector may be
written as

bg ¼ bIA
bIA

 !
ð70Þ

and

bu ¼ bIA
�bIA

 !
ð71Þ

respectively.
A set of paired trial vectors, as given in eqs 58 and 59, may be

represented by the symmetric and antisymmetric components of
the vector b according to

bg ¼ 1
2
ðbþ bPÞ ¼ 1

2

bAI þ bJB
bJB þ bAI

 !
ð72Þ

bu ¼ 1
2
ðb� bPÞ ¼ 1

2

bAI � bJB
bJB � bAI

 !
ð73Þ

Adding always one symmetric and one antisymmetric trial vector
in a subspace algorithm is thus equivalent to adding a set of paired
vectors, and it will ensure an implicit paired structure of the
reduced space equations.

The symmetry of a trial vector is conserved for the linear
transformation with respect to E[2]:

σg ¼ E½2�bg , σu ¼ E½2�bu ð74Þ
and reversed for the linear transformation with respect to S[2]:

Gg ¼ S½2�bu, Gu ¼ S½2�bg ð75Þ
From the linear transformation of E[2] on the sum of one
symmetric and one antisymmetric trial vector (bg and bu of
eqs 70 and 71), we may determine the linear transformations on
the individual components in eq 74 as the linear transformation
conserves the symmetry of a trial vector. Similar arguments hold
for linear transformation involving the S[2] matrix. The computa-
tional cost of the linear transformation on a general trial vector
and on its symmetric and antisymmetric components is thus
identical.

A subspace representation of the E[2] matrix for a set of
symmetric vectorsbg gives a subspace representation for theAþB
matrix

bTigE
½2�bjg ¼ bTigσ jg ¼ 2ðA þ BÞRij ð76Þ

where big is the i’th element of the vector subspace

bng ¼ fb1g , b2g , ..., bngg ð77Þ
and σjg is the j’th element of the E[2] linear transformed vector
subspace

σn
g ¼ fσ1g , σ2g , ..., σngg ð78Þ

A similar subspace representation of the E[2] matrix for the
antisymmetric bu vectors gives a subspace representation of the
A�B matrix.

The symmetries of the E[2] and S[2] matrices in eqs 74 and 75
make it advantageous to split the solution to the response
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equations into symmetric and antisymmetric components. For
the standard response equation and the eigenvalue equation, we
express the solution vectors as

XS ¼ Xg þ Xu ð79Þ

Xf ¼ Xg, f þ Xu, f ð80Þ
respectively. The solution to the damped response equation is
written in terms of the Hermitian and anti-Hermitian components

XD ¼ XH þ XA ð81Þ
where

XH ¼ XR
g þ iXI

u ð82Þ

XA ¼ XR
u þ iXI

g ð83Þ

and Xg
R, Xg

I, Xu
R, and Xu

I are real. Introducing XS, Xf, and XD of
eqs 79�81 in the response equations (in eqs 1�3) simplifies the
solving of these equations, as will be demonstrated below.
5.1. Response Eigenvalue Equation. Employing the sym-

metries of the E[2] and S[2] matrices and expressing the solution
vector as in eq 80, the response eigenvalue equation in eq 3 may
be written in matrix blocked form, according to

E½2� �ωf S½2�

�ωf S½2� E½2�

0
@

1
A Xg, f

Xu, f

 !
¼ 0

0

 !
ð84Þ

where the coupling that occurs between the two components
Xg,f and Xu,f is introduced explicitly. Equation 84 may be
written in the form of a generalized, non-Hermitian, eigenvalue
equation:

E½2� 0
0 E½2�

 !
Xg, f
Xu, f

 !
¼ ωf

0 S½2�

S½2� 0

 !
Xg, f
Xu, f

 !
ð85Þ

where the generalized indefinite overlap matrix is viewed as
metric. If instead the generalized, positive definite Hessian is
viewed as metric, then eq 85 represents a standard eigenvalue
equation for a Hermitian matrix, with eigenvalues (ωf)

�1,
analogous to eq 24.
Equation 84 may be solved using an iterative subspace

algorithm where in each iteration a symmetric and an antisym-
metric trial vector is added. In iteration n, we therefore have two
sets of trial vectors:

bng ¼ fb1g , b2g , ..., bngg ð86Þ

bnu ¼ fb1u, b2u , ..., bnug ð87Þ
and the corresponding sets of linear transformed vectors σg

n, σu
n,

Gu
n, and Gg

n; the ith vector in these latter sets is referred to as σig, σiu,
Giu, and Gig, respectively. Equation 84 is solved in the subspace
given by eqs 86 and 87 yielding a reduced space equation:

E½2�
R, gg �ωR

f S
½2�
R, gu

�ωR
f S

½2�
R, ug E½2�

R, uu

0
@

1
A ðXg, f ÞR

ðXu, f ÞR

 !
¼ 0

0

 !
ð88Þ

where

E½2�
R, gg ¼ bTg E

½2�bg , E½2�
R, uu ¼ bTu E

½2�bu,

S½2�R, gu ¼ bTg S
½2�bu, S½2�R, ug ¼ bTu S

½2�bg
ð89Þ

The optimal vectors in the subspace in eqs 86 and 87 have a form

Xn þ 1, g, f ¼ ∑
n

i¼ 1
½ðXg, f ÞR �ibig ð90Þ

Xn þ 1, u, f ¼ ∑
n

i¼ 1
½ðXu, f ÞR �ibiu ð91Þ

From the solution vectors, the residuals are obtained

Rn þ 1, g ¼ E½2�Xn þ 1, g, f �ωR
f S

½2�Xn þ 1, u, f

¼ ∑
n

i¼ 1
½ðXg, f ÞR �iσ ig �ωR

f ∑
n

i¼ 1
½ðXu, f ÞR �iGig ð92Þ

Rn þ 1, u ¼ E½2�Xn þ 1, u, f �ωR
f S

½2�Xn þ 1, g, f

¼ ∑
n

i¼ 1
½ðXu, f ÞR �iσ iu �ωR

f ∑
n

i¼ 1
½ðXg, f ÞR �iGiu ð93Þ

that are used to check for convergence.
New trial vectors bnþ1,g and bnþ1,u may be obtained from the

optimal solution vectors Xnþ1,g and Xnþ1,u using either the
Davidson or the Olsen algorithm, discussed in Sections 3.2.1
and 3.2.2, respectively. As discussed in Section 3.2.2, the Olsen
algorithm is used to resolve the problem that arises when E0

[2] is
approaching E[2]. When the response eigenvalue equations are
solved, E0

[2] is about equally good approximation to E[2] in the
whole frequency range, and the Davidson algorithm can there-
fore safely be used to generate new trial vectors. In the Davidson
algorithm, new trial vectors are constructed from eq 38, which by
writing the residuals and trial vectors in terms of a symmetric and
an antisymmetric component may be expressed as

ðbn þ 1, g þ bn þ 1, uÞ ¼ ðE½2�
0 �ωR

f S
½2�Þ�1ðRn þ 1, g þ Rn þ 1, uÞ

ð94Þ
To obtain trial vectors that are symmetric and antisymmetric,
we use that

ðE½2�
0 �ωR

f S
½2�Þ�1 ¼ ðE½2�

0 �ωR
f S

½2�Þ�1ðE½2�
0 þωR

f S
½2�Þ�1ðE½2�

0 þωR
f S

½2�Þ
¼ ½ðE½2�

0 Þ2 � ðωR
f Þ21��1ðE½2�

0 þωR
f S

½2�Þ
ð95Þ

Equation 94 may now be expressed in the matrix blocked form
according to

bn þ 1, g
bn þ 1, u

 !
¼ ½ðE½2�

0 Þ2 � ðωR
f Þ21��1 X

E½2�
0 ωR

f S
½2�

ωR
f S

½2� E½2�
0

0
@

1
A Rn þ 1, g

Rn þ 1, u

 !

ð96Þ
giving directly new trial vectors that are symmetric and antisym-
metric, respectively. The new trial vectors are added to the
reduced subspaces in eqs 86 and 87, and the iterative procedure is
repeated until convergence.
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5.2. Standard Response Equation. Inserting eq 79 into eq 1,
we may write eq 1 in the matrix blocked form

E½2� �ωS½2�

�ωS½2� E½2�

 !
Xg

Xu

 !
¼ Gg

Gu

 !
ð97Þ

where Gg and Gu are the symmetric and antisymmetric compo-
nents, respectively, of the gradient vectorG. Equation 97 may be
solved using a subspace algorithm, as for the response eigenvalue
equation. Assuming that after iteration n, the trial vector sub-
spaces of the forms given in eqs 86 and 87 are known, we obtain a
reduced standard response equation according to

E½2�
R, gg �ωS½2�R, gu

�ωS½2�R, ug E½2�
R, uu

0
@

1
A XR, g

XR, u

 !
¼ GR, g

GR, u

 !
ð98Þ

where the reduced Hessian and metric matrices are given in
eq 89, and the reduced right-hand side has the form

GR, g ¼ bTg Gg , GR, u ¼ bTuGu ð99Þ
Solving eq 98 leads to the optimal solution vectors of the form
given in eqs 90 and 91, and the residuals Rnþ1,g and Rnþ1,u may
then be obtained as

Rn þ 1, g ¼ E½2�Xn þ 1, g �ωS½2�Xn þ 1, u �Gg

¼ ∑
n

i¼ 1
ðXR, gÞiσ ig �ω ∑

n

i¼ 1
ðXR, uÞiGig �Gg ð100Þ

Rn þ 1, u ¼ E½2�Xn þ 1, u �ωS½2�Xn þ 1, g �Gu

¼ ∑
n

i¼ 1
ðXR, uÞiσ iu �ω ∑

n

i¼ 1
ðXR, gÞiGiu �Gu ð101Þ

From the residuals the new trial vectors may be constructed by
using a preconditioner similar to the one in eq 95

bn þ 1, g
bn þ 1, u

 !
¼ ½ðE½2�

0 Þ2 �ω21��1 X
E½2�
0 ωS½2�

ωS½2� E½2�
0

0
@

1
A Rn þ 1, g

Rn þ 1, u

 !

ð102Þ
The iterative sequence is continued until convergence.
For frequencies smaller than the HOMO�LUMO gap, both

the matrix in eq 97 and the preconditioner in eq 102 are positive
definite, and the preconditioned CG/CR algorithms may there-
fore be used. For larger frequencies neither of these matrices
are positive definite, and therefore the CG/CR algorithms
cannot safely be applied. Equation 97 then has to be solved
using the preconditioned subspace algorithm.
For small ω the condition number is significantly reduced by

the preconditioning in eq 102, as the dominant contribution to
the large eigenvalues is removed. However, when ω becomes
larger and approaches an orbital energy difference, the precon-
ditioning matrix will approach a singularity leading to an
increased condition number and poor convergence. Note that
the preconditioner in eq 102 is identical to the one used in the
algorithm with paired trial vectors described in Section 4, as in
eq 102 we have exploited the symmetry properties of E[2] and
S[2] matrices in eqs 74 and 75.
5.3. Damped Response Equation. 5.3.1. Symmetric and

Antisymmetric Trial Vectors. When the damped response

equation in eq 2 is solved, we write the solution vector in the
form of eq 81. This gives a set of linear equations for each of the
four components

E½2�XR
g �ωS½2�XR

u þ γS½2�XI
u ¼ GR

g

E½2�XR
u �ωS½2�XR

g þ γS½2�XI
g ¼ GR

u

E½2�XI
u �ωS½2�XI

g � γS½2�XR
g ¼ GI

u

E½2�XI
g �ωS½2�XI

u � γS½2�XR
u ¼ GI

g

ð103Þ

where Gg
R and Gu

R (Gg
I and Gu

I ) are the symmetric and antisym-
metric components of the real (imaginary) part of the gradient
vector G. When expressed in matrix form, eq 103 is represented
by a set of linear equations for a nonsymmetric matrix. Equa-
tion 103 may alternatively be expressed in terms of a coupled set
of linear equations for a real symmetric matrix (as in Section 3.4):

E½2� �ωS½2� γS½2� 0
�ωS½2� E½2� 0 γS½2�

γS½2� 0 �E½2� ωS½2�

0 γS½2� ωS½2� �E½2�

0
BBBB@

1
CCCCA

XR
g

XR
u

XI
u

XI
g

0
BBBB@

1
CCCCA ¼

GR
g

GR
u

�GI
u

�GI
g

0
BBBB@

1
CCCCA

ð104Þ
The complex non-Hermitian damped response equation (eq 2)
is thus transformed to a set of linear equations for a real
symmetric but indefinite matrix, where the coupling between
the different components is considered explicitly. In iteration n,
the residuals of eq 104 are given by

RR
n þ 1, g ¼ E½2�XR

n þ 1, g �ωS½2�XR
n þ 1, u þ γS½2�XI

n þ 1, u �GR
g

RR
n þ 1, u ¼ E½2�XR

n þ 1, u �ωS½2�XR
n þ 1, g þ γS½2�XI

n þ 1, g �GR
u

RI
n þ 1, u ¼ � E½2�XI

n þ 1, u þωS½2�XI
n þ 1, g þ γS½2�XR

n þ 1, g þGI
u

RI
n þ 1, g ¼ � E½2�XI

n þ 1, g þωS½2�XI
n þ 1, u þ γS½2�XR

n þ 1, u þGI
g

ð105Þ
where Xnþ1,g

R , Xnþ1,u
R , Xnþ1,u

I , and Xnþ1,g
I are the optimal solution

vectors in iteration n. The residual may be used to check for
convergence. In the preconditioned iterative subspace approach,
new trial vectors are obtained by preconditioning the residuals:

bRn þ 1, g
bRn þ 1, u
bIn þ 1, u
bIn þ 1, g

0
BBBBB@

1
CCCCCA ¼ P X

A B C D
B A D C
C D �A �B
D C �B �A

0
BBBB@

1
CCCCA

RR
n þ 1, g

RR
n þ 1, u

RI
n þ 1, u

RI
n þ 1, g

0
BBBBB@

1
CCCCCA

ð106Þ
where P , A , B , C , and D are given as

P ¼ ½½ðE½2�
0 Þ2 � ðω2 � γ2Þ1�2 þ 4ω2γ21��1

A ¼ E½2�
0 ½ðE½2�

0 Þ2 � ðω2 � γ2Þ1�
B ¼ ωS½2�½ðE½2�

0 Þ2 � ðω2 þ γ2Þ1�
C ¼ γS½2�½ðE½2�

0 Þ2 þ ðω2 þ γ2Þ1�
D ¼ 2ωγE½2�

0

The preconditioner in eq 106 is an approximation to the
symmetric matrix in eq 104 with E[2] replaced by E0

[2].
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The condition number of eq 104 is significantly reduced by the
preconditioning in eq 106, since the dominant component to
the large eigenvalues is removed, as described in Section 3.3, and
the convergence is therefore radically improved. However, for
small values of γ, the condition number of the preconditioning
matrix will increase significantly when the optical frequency
approaches an orbital energy difference resulting in a slower rate
of convergence. In the resonance region, the extent to which the
rate of convergence is reduced depends on the density of states at
the optical frequency of interest, since none of the eigenvalues in
the resonance region are brought close to unity by the precondi-
tioning matrix. Another issue with calculations of response
properties in the resonance regions is concerned with the fact
that the preconditioner in eq 106 is not positive definite, and as
a consequence, the preconditioned CR algorithm cannot be
safely applied (see Appendix B). We therefore conclude that the
preconditioned iterative subspace algorithm is the best option for
solving eq 104.
5.3.2. Damped Response Equations using Hermitian and

Anti-Hermitian Trial Vectors. Villaume et al.30 have described
how the response equations within relativistic theory may be
efficiently solved using an algorithm where the solution vectors
are split according to their Hermiticity and the time-reversal
symmetry. It is beyond the scope of the present work to give a
detailed review of the solution of response equations within
a relativistic theory, but it is clear that the structure of the
relativistic and nonrelativistic equations are similar differing
mainly in the fact that electronic wave functions (molecular
orbitals) in a relativistic theory are complex and of two- or four-
component forms. Matrix representations of operators are
consequently complex and characterized by Hermiticity. The
introduction of spin-adapted excitation operators in the non-
relativistic realm (see eq 6) finds its correspondence in the
exploitation of time-reversal symmetry. The equations pre-
sented in the previous section represent a nonrelativistic
adaptation of the response equations presented in ref 30
with the requirement of using real trial vectors. We will here
give a brief description of how the two representations are
connected.
The independent variables in the relativistic formulation of

damped response theory were chosen as {xH, ixA, xA, ixH},
representingHermitian and anti-Hermitianmatrices (or vectors)
and their complex conjugates. These variables can, however,
be divided into symmetric and antisymmetric components
according to

xH ¼ xRg þ ixIu, xA ¼ xRu þ ixIg
ixH ¼ � xRu þ ixIg ¼ � ðxAÞ�, ixA ¼ � xRg þ ixIu, ¼ � ðxHÞ�

ð107Þ
where the set {xg

R, xu
R, xu

I , xg
I} contains the real variables employed

in the previous section. We note that either set may be used to
span the solution space as there is a nonsingular transformation
connecting them according to

xRg ¼ 1
2
ðxH þ ðxHÞ�Þ, xIu ¼ � i

2
ðxH � ðxHÞ�Þ

xRu ¼ 1
2
ðxA þ ðxAÞ�Þ, xIg ¼ � i

2
ðxA � ðxAÞ�Þ:

ð108Þ

With use of the set of complex variables, Villaume et al.
obtained a damped response equation that can be written

in the form

E½2� �ωS½2� γS½2� 0
�ωS½2� E½2� 0 γS½2�

�γS½2� 0 E½2� �ωS½2�

0 �γS½2� �ωS½2� E½2�

0
BBBB@

1
CCCCA

XH

XA

X
_A

X
_H

0
BBBB@

1
CCCCA ¼

GH

0
0
0

0
BBBB@

1
CCCCA

ð109Þ

where all components of the solution vector, i.e., XH, XA,X
_
A, and

X
_
H, are complex. The 4 � 4 blocked matrix in eq 109 is not

symmetric, but it can be made symmetric by reversing signs of
rows three and four, in analogy to what we did to arrive at eq 104.

6. NUMERICAL EXAMPLES

All calculations have been carried out using a local version of
DALTON.39 For all reported results, preconditioning is used in
the canonical SCF orbital basis.
6.1. Standard Response Equation. In this section, we

compare the convergence of the various algorithms for solving
the standard response equation in eq 1 with a property gradient
referring to the electric dipole operator and to a residual norm of
10�4 au. Our calculation refers to alanine (see Figure 1a) at theHF
level of theory with use of the 6-31G basis set,40 and the per-
formance of the algorithms is compared at the two frequencies of
0.1 and 0.4 au corresponding to the nonresonance and resonance
regions of the spectrum, respectively. The adopted molecular
geometry is taken from the NIST online database (ref 41).
In Table 1, we compare the convergence of the standard

response equation in the nonresonance region, at ω = 0.1 au,
using five different iterative algorithms (the transition frequency
of the lowest singlet excited state of alanine in the present wave
function parametrization is 0.2129 au). In the column order of
the table, the presented results refer to the following algorithms:
(i) the general subspace approach (discussed in Section 3.3);
(ii) the subspace algorithm with paired trial vectors (discussed in
Section 4); (iii) the subspace algorithm with symmetrized
trial vectors (discussed in Section 5.2); (iv) the CG algorithm
with symmetrized trial vectors (discussed in Section 5.2 and
Appendix A); and (v) the CR algorithm with symmetrized trial
vectors (discussed in Section 5.2 and Appendix B). Residuals R
for the general subspace approach and the algorithm with paired
trial vectors are given in eqs 34 and 66, respectively. Residuals Rg

and Ru in the algorithms with the symmetrized trial vectors are
given in eqs 100 and 101, respectively. For all algorithms, one

Figure 1. Molecular structures of: (a) alanine, (b) Ala-Trp, (c) pCA�,
and (d) pCT�.
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linear transformation of E[2] (and S[2]) on a trial vector is
required in each iteration.
To begin with, we remark that for ω smaller than the

HOMO�LUMO gap results obtained using the general sub-
space approach (second column) are identical to those obtained
when the CG algorithm is applied (see Appendix C), and such a

comparison is therefore left out in the table.When comparing the
results obtained using the general subspace approach (second
column) with the ones for the subspace algorithm with paired
trial vectors (third column), a small reduction in the number of
iterations is observed. This is due to the fact that a larger subspace
is spanned when paired trial vectors are used. The obtained

Table 1. Residual Norms (in au) for Solving the Standard Response Equation withω = 0.1 au (See eq 1) Using Different Iterative
Approachesa

iterative approach with trial vectors of the type:

symmetrized

general paired subspace CG CR

iteration number ||R|| ||R|| ||Rg|| ||Ru|| ||Rg þ Ru|| ||Rg þ Ru|| ||Rg þ Ru||

1 4.51473 1.81777 0.12568 1.81342 1.81777 0.81189 0.71915

2 1.85994 0.68841 0.04235 0.68710 0.68841 0.23247 0.22109

3 0.47364 0.18677 0.02104 0.18558 0.18677 0.09411 0.08346

4 0.17550 0.08252 0.01044 0.08186 0.08252 0.05206 0.04005

5 0.08012 0.04116 0.00363 0.04100 0.04116 0.03190 0.02242

6 0.04412 0.02368 0.00180 0.02361 0.02368 0.01961 0.01384

7 0.03078 0.00933 0.00076 0.00930 0.00933 0.00698 0.00591

8 0.01389 0.00399 0.00045 0.00396 0.00399 0.00364 0.00301

9 0.00523 0.00178 0.00014 0.00177 0.00178 0.00151 0.00133

10 0.00198 0.00050 0.00004 0.00050 0.00050 0.00047 0.00043

11 0.00084 0.00018 0.00001 0.00018 0.00018 0.00018 0.00017

12 0.00054 0.00004 0.00001 0.00004 0.00004 0.00005 0.00005

13 0.00019

14 0.00005
aThe calculations refer to the alanine molecule at the HF/6-31G level of theory.

Figure 2. Convergence of the standard response equation for alanine in the resonance region (ω = 0.4 au) using different response solver algorithms:
(a) general subspace approach, (b) subspace approach with symmetrized trial vectors, (c) CG approach with symmetrized trial vectors and (d) CR
approach with symmetrized trial vectors. Calculations refer to the HF level of theory using basis set 6-31G.
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improvement is not dramatic in the present case, but we recall
that it is obtained without additional computational cost (see
eq 60). The iteration sequences obtained using the algorithm
with symmetrized trial vectors (sixth column) and the algorithm
with paired trial vectors (third column) are identical. This is
related to the fact that the symmetrized trial vectors may be
considered as a special set of paired trial vectors, as described
in Section 5. When the subspace approach is used, both paired
and symmetrized vectors span identical subspaces in any given
iteration, and for this reason, their respective iteration sequences
become identical, as is seen from Table 1.
Comparing the sixth and the seventh column in Table 1, we

see that the iteration sequence for the subspace algorithm with
symmetrized trial vectors differs slightly from its CG counterpart.
This is due to the fact that, in the CG algorithm, optimal
coefficients are determined for vectors of the form b = (bg,bu)

T

(see eqs 138�140), while in the subspace approach optimal
coefficients are obtained for the individual components bg and bu
(see eq 98). However, this difference only has a minor effect on
the rate of convergence. By comparing the seventh and the eighth
column in Table 1, we see that the convergence rate of the CG

and CR algorithms is similar in accordance with theoretical
findings.38 For ω smaller than the HOMO�LUMO gap, we
have found that the standard response equation is best solved
using the preconditioned CG or CR algorithm, thereby avoiding
the storing and the manipulation of a large set of trial vectors
needed to set up the reduced space equations.
In Figure 2, we compare the convergence behavior for solving

the standard response equation at a near resonant frequency of
ω = 0.4 au. In the present wave function parametrization, this
frequency is close to the two spin-allowed transition frequencies
at 0.4042 and 0.4097 au, respectively. We compare the conver-
gence behavior of four different iterative algorithms: (a) the
general subspace approach, (b) the subspace algorithm with
symmetrized trial vectors, (c) the CG algorithm with symme-
trized trial vectors, and (d) the CR algorithm with symmetrized
trial vectors. The results obtained using the algorithmwith paired
trial vectors are not presented, since, as shown in Table 1, the
iteration sequence is identical to the one obtained using the
algorithm with symmetrized vectors (plotted in Figure 2b). By
comparing results presented in Figure 2 to those listed in Table 1,
we see that more iterations are needed to converge the standard

Figure 3. Convergence of damped response equation for pCA� at frequencies 0.08 (nonresonance region) and 0.13 au (resonance region) employing
a damping parameter γ = 0.005 au. Adopted algorithms are (top) CR with general vectors, (middle) CR with symmetrized trial vectors and (bottom)
subspace algorithm with symmetrized trial vectors. Calculations refer to CAM-B3LYP level of theory using basis set cc-pVDZ.
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response equation in the resonance region. This is due to the fact
that when the frequency ω is close to a transition frequency, the
preconditioning of the response equations becomes less efficient
as discussed in Section 3.3.
A convergence improvement occurs when the standard re-

sponse equation is solved using the subspace algorithm with
symmetrized trial vectors compared to the general subspace
approach (see Figure 2a and b), as discussed above. In Figure 2c
and d, the performance of the CG algorithm and the CR
algorithm is also displayed. Neither the CG or the CR algorithm
can be safely applied for ω = 0.4 au, since neither the matrix
in eq 97 nor the preconditioner in eq 102 is positive definite. In
the CG algorithm the minimization of the quadratic function
(see eqs 111 and 112) is only uniquely defined for an equation
with a positive definite matrix. In the CR algorithm the mini-
mization of the preconditioned residual (see eq 156) is only
uniquely defined for a positive definite preconditioner. In con-
trast, in the subspace algorithm the optimal solution is deter-
mined by solving a reduced subspace equation and is therefore
uniquely determined. In Figure 2, only a small degradation in the
convergence is seen when the CG and the CR algorithms are
applied in regions where the minimization in the CG and the CR
algorithms is not uniquely defined. In other cases the degradation
may be much larger, e.g., for ω = 0.6 au the convergence has not
been obtained when the CR algorithm has been applied.
For all reported results preconditioning is used. For calcula-

tions performed without preconditioning, the convergence has
been obtained in 187 and 351 iterations, for ω = 0.1 and 0.4 au,
respectively. However, we note that the convergence is rather
poor due to the fact that calculations have been performed in
the AO representation. In the MO representation (traditionally
used), much faster convergence of nonpreconditioned response
equations is observed.
The convergence behavior reported above for the general

subspace approach and the subspace algorithm with symme-
trized trial vectors has been found for calculations on a large
variety of molecular systems and also using more extended basis
sets as well as at the KS level of theory. The standard response
equation for ω larger than the HOMO�LUMO gap is thus best
solved using the iterative subspace algorithm with symmetrized
trial vectors.
6.2. Damped Response Equation. In this section, we com-

pare the convergence of the various algorithms for solving the
damped response equation in eq 2 with a property gradient
referring to the electric dipole operator and to a residual norm
of 10�4 au. In addition to alanine, we will consider three other
molecules (see Figure 1), namely: (i) themodel dipeptide alanine-
tryptophan (Ala-Trp), (ii) deprotonated trans-p-coumaric acid
(pCA�), and (iii) deprotonated trans-thiomethyl-p-coumarate
(pCT�). The adoptedmolecular structures have different sources.
The structure of Ala-Trp is obtained by use of the MAESTRO
program42 without carrying out any additional optimization. The
structure of pCA� is that optimized at the KS level of theory using
the B3LYP43,44 exchange�correlation functional and the aug-cc-
pVDZ basis set.45 The structure of pCT�, which is a model for the
protein chromophore PYP (the photoactive yellow protein), is
taken from experiment.46 The presented response calculations
are carried out at the HF and KS levels of theory, in the latter
case with employment of the Coulomb attenuated B3LYP
exchange�correlation functional (CAM-B3LYP).47

In Figure 3, we present the convergence of the damped res-
ponse equation for calculations on pCA� at the CAM-B3LYP/

cc-pVDZ level of theory. In these calculations, we have adopted
a damping parameter of γ = 0.005 au, and we present the
norm of the residual as obtained with (i) the CR algorithm with
general vectors (discussed in Section 3.4 and Appendix B), (ii)
the CR algorithm with symmetrized trial vectors (discussed in
Section 5.3 and Appendix B) and (iii) the subspace algorithm
with symmetrized trial vectors (discussed in Section 5.3). The
left panels correspond to an optical frequency in the nonresonant
region (ω = 0.08 au), whereas the right panels correspond to
ω = 0.13 au, which is close to the calculated lowest spin-allowed
transition frequency ω1 = 0.1321 au. In the upper and middle
panels, where the CR algorithm is used, the preconditioners in
eqs 56 and 106 are not positive definite, and the preconditioned
CR algorithm is therefore not uniquely defined. In both the
upper and middle panels, we therefore observe a significant
degradation in the convergence compared to the subspace

Figure 4. Convergence of the damped response equation for the
Ala-Trp molecule at frequencies 0.1 (nonresonance region) and 0.3 au
(resonance region) employing damping parameters 0.0, 0.005, 0.01, 0.1,
and 1.0 au, respectively. Calculations refer to use of the subspace
algorithm with symmetrized trial vectors and are carried out at the
CAM-B3LYP level of theory using basis set 6-31G.
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approach (lower panel) in particular for the calculations in
the resonance region. The convergence obtained with the CR
algorithm is also rather erratic because the preconditioner is
not positive definite, while a monotonic convergence would be
obtained if the preconditioner was positive definite. In the
subspace approach with symmetrized trial vectors in the lower
panel, we see only a small degradation in the convergence when
the frequency is increased.
In Figure 4, we present calculations for Ala-Trp at the CAM-

B3LYP/6-31G level of theory using the subspace algorithm with
symmetrized trial vectors presented in Section 5.3. The damped
response equation was solved at two different frequencies namely
ω = 0.1 (left panels) and ω = 0.3 au (right panels) and five
different values of the damping parameter namely γ equal to 0.0,
0.005, 0.01, 0.1, and 1.0 au. Note that results obtained with the
last two values of γ do not have any physical meaning and are
given here only to demonstrate the robustness of our algorithm
toward large γ values. We can conclude that, in the nonresonant

region, the convergence is independent of the damping para-
meter γ, owing to the fact that preconditioner given in eq 106 is
very efficient. By comparing the left and the right panels of
Figure 4, we see that significantly more iterations are needed to
converge the damped response equation in the resonance region.
This is due to the fact that in the higher frequency region, there is
a relatively high density of excited states as seen in Figure 5, and
the preconditioning therefore becomes less efficient as these
states will interact strongly in this frequency region. For small
values of the γ parameter, the preconditioner in eq 106 becomes
nearly singular in the higher frequency region, and therefore
slow convergence is observed in the top panels in Figure 4. For
unphysically large values of γ, on the other hand, the conver-
gence is fast (as can be seen in the bottom panels in Figure 4) due
to the fact that the γ contribution becomes the dominant
contribution in the preconditioner.
In Figure 6, we report HF/6-31G calculations of the absorp-

tive part (imaginary part) of the electric dipole polarizability of
the pCT� molecule�we here adopt a damping parameter γ
equal to 0.005 au. In ref 5, it was demonstrated that, for response
theory calculations on pCT�, the preconditioned two-level
subspace approach represented a significant improvement in
convergence rate with respect to the complex response equation
solver described in ref 3. We here compare the convergence of
the preconditioned two-level subspace approach with the con-
vergence obtained using the subspace algorithm with symme-
trized trial vectors, as described in Section 5.3. The algorithmic
efficiency is depicted in terms of the number of iterations that are
needed to obtain a solution vector at each spectral point. In each
iteration, linear transformations of trial vectors by E[2] are carried
out. The linear transformation requires that a Fock matrix is set
up where the computationally expensive two-electron integrals
have to be constructed. At the time the calculations presented in
ref 5 had been performed, in each iteration of the preconditioned
two-level subspace approach, two linear transformations (and
therefore two Fock matrices) for the real and the imaginary com-
ponent of the trial vector were carried out sequentially. However,
in an improved implementation, linear transformations are
carried simultaneously, and the cost in one iteration is indepen-
dent of the number of trial vectors, and therefore we compare the

Figure 5. Excitation spectrum for the Ala-Trp molecule at the CAM-
B3LYP/6-31G level of theory. Bar heights represent oscillator strengths.
All singlet excited states in the spectral region up to 0.3481 au are
indicated by red bars below the spectrum.

Figure 6. Absorptive part of the electric dipole polarizability determined for pCT� with γ = 0.005 au. Number of iterations required to reach
convergence (residual threshold of 10�4 au) is given at spectral points. Comparison is made of (a) response solver proposed in ref 5 and (b) response
solver with symmetrized trial vectors proposed in the present work. Calculations refer the HF level of theory using basis set 6-31G.
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total number of iterations instead of the total number of Fock
matrices constructed during the calculations as was done in ref 5.
As seen in Figure 6a and as discussed in the previous section,
the computational cost depends on the closeness of the optical
frequency to resonances and also on the density of excited
states. In the nonresonance region, rapid convergence is ob-
served due to a small coupling between the real and the imaginary
component of the solution vectors, but in the resonance region,
where there are large couplings between the real and the
imaginary components, the convergence is considerably slower.
In Figure 6a, the computational cost in the region above ω = 0.4
au is therefore also significantly higher than in the region
below (even though there is one strong excitation at around
ω = 0.33 au).
When comparing the total number of iterations in the cal-

culations using the preconditioned two-level subspace approach
(Figure 6a) and the subspace algorithm with the symmetrized
trial vectors (Figure 6b), we see that the performance of the latter
represents a clear improvement. In the region of the lowest
excitation (aroundω = 0.33 au), the algorithm with symmetrized
trial vectors requires only two to three more iterations to
converge eq 2, as compared to the case in the nonresonance
region. In the region with a high density of excited states (above
ω = 0.4 au), the number of iterations increases but not as
drastically as when the preconditioned two-level subspace ap-
proach is used. In comparison to employment of the precondi-
tioned two-level subspace approach5 in spectral resonant regions,
the computational cost associated with use of the proposed
symmetrized trial vector approach is substantially lower�at
times the computational cost is reduced by as much as a factor
of 4. This is due to the very efficient way of obtaining new trial
vectors in the approach with the symmetrized trial vectors using
a preconditioner that includes the coupling between vectors
explicitly. It should also be noted that in the preconditioned two-
level subspace approach, all the trial vectors (from so-called
micro- and macroiterations) are stored on disk; that makes
this approach inefficient for treating large molecular systems.
When the approach with the symmetrized trial vectors is used,
the storage requirements are reduced.
6.3. Response Eigenvalue Equation. In Table 2, the con-

vergence behavior of the response eigenvalue equation (eq 3) is
shown. The calculations are carried out for the Ala-Trp molecule
at the CAM-B3LYP level of theory using the 6-31G basis set. The
response eigenvalue equation was solved for the first eigenvalue
to a residual norm of 10�4 au, and three different iterative
algorithms were used (i) the Davidson algorithm with paired
trial vectors (discussed in Section 4); (ii) the Davidson algorithm
with symmetrized trial vectors (discussed in Section 5.1); and
(iii) the Olsen algorithm (discussed in Section 3.2.2) with
symmetrized trial vectors. The residual R for the Davidson
algorithm with paired trial vectors is given in eq 67, whereas
residuals Rg and Ru in the algorithms with the symmetrized trial
vectors are given in eqs 100 and 101, respectively.
As discussed in Sections 5 and 6.1, the symmetrized vectors

may be considered as a special set of paired vectors. Therefore
the Davidson algorithm, both with paired and with symmetrized
trial vectors, will in each iteration span the same subspace,
and identical iteration sequences are thus obtained. Since the
paired structure of the reducedHessian andmetric matrices (ER

[2]

and SR
[2]) is preserved during the iterative procedure in both

algorithms, paired eigenvalues are obtained in the reduced sub-
space in both cases.

From the third and the fourth column of Table 2, we see that
the iteration sequence obtained using theOlsen algorithm is nearly
identical to the one obtained using the Davidson algorithms.
The Olsen algorithm does not give a significant improvement
unless E0

[2] is approaching E[2], and this is generally not the
case when response eigenvalue equations are solved. Therefore
response eigenvalue equations may safely be solved using the
Davidson algorithm with paired or symmetrized trial vectors.

7. CONCLUSIONS

The response equations in Hartree�Fock, multiconfigurational
self-consistent field, and Kohn�Sham density functional theory
have identical structure. We have discussed the algorithms that
have been used for solving these equations, and introduced new,
efficient, algorithms based on the splitting of trial vectors into
symmetric and antisymmetric components. We have used that,
upon linear transformation by the generalized Hessian E[2]

(generalizedmetric S[2]), the symmetry of a trial vector is preserved
(reversed). By introducing symmetrized trial vectors, the response
equations are transformed to a formwhich allows them to be solved
efficiently, in particular due to the fact that very efficient precondi-
tioners are used with an exact treatment of the S[2] matrix.

We have demonstrated that the most efficient algorithm for
solving the standard and damped response equation is the
preconditioned iterative subspace algorithm with symmetrized
trial vectors. For the standard response equation at optical
frequencies smaller than the HOMO�LUMO gap, the use of
symmetrized trial vectors enables the employment of the pre-
conditioned CG or CR algorithms, and one thereby avoids the
storing and the handling of a large set of trial vectors to set up the
reduced space equations.

For solving the response eigenvalue equations, it is equally
efficient to use algorithms with paired25 as with symmetrized trial
vectors, and no improvement is obtained by using the Olsen

Table 2. Residual Norms (in au) for Determination of the
Lowest Root of the Eigenvalue Equation (See eq 3) Using
Different Iterative Approachesa

Davidson alg. Olsen alg.

paired symmetrized symmetrized

iteration number ||R|| ||Rg þ Ru|| ||Rg þ Ru||

1 0.11663 0.11663 0.11663

2 0.03819 0.03819 0.03819

3 0.02775 0.02775 0.02782

4 0.01723 0.01723 0.01725

5 0.02148 0.02148 0.02149

l l l l
18 0.00146 0.00146 0.00144

19 0.00134 0.00134 0.00132

20 0.00068 0.00068 0.00068

21 0.00045 0.00045 0.00045

22 0.00030 0.00030 0.00030

23 0.00018 0.00018 0.00018

24 0.00008 0.00008 0.00008
aThe calculations refer to the Ala-Trp molecule at the CAM-B3LYP/
6-31G level of theory.
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algorithm.26 We have explicitly proven that, when the Davidson
algorithm is applied, the lowest eigenvalue of the reduced
subspace equation converges monotically toward the exact
eigenvalue.

APPENDIX A. CONJUGATE GRADIENT (CG)
ALGORITHM

The CG algorithm15 is an iterative method for solving a set of
linear equations:

Ax ¼ b ð110Þ
where A is a symmetric and positive definite matrix. The
minimization of the quadratic function:

f ðxÞ ¼ 1
2
xTAx � xTb ð111Þ

gives

Df ðxÞ
Dx

¼ Ax � b ¼ 0 ð112Þ

that is a solution to eq 110. Note that the residual of eq 111 may
be expressed as

r ¼ � Df ðxÞ
Dx

¼ b� Ax ð113Þ

In iteration nþ1 of the CG algorithm the trial solution xnþ1 is
parametrized as a linear combination of the residual rn of iteration
n and the optimal search directions {p0, p1, ..., pn�1} of the
previous iterations:

xn þ 1 ¼ xn þ ∑
n � 1

i¼ 0
RðnÞ
i pi þ RðnÞ

n rn ð114Þ

whereRn
(n) is determined by applying eq 112. The idea of the CG

algorithm is to identify an optimal search direction pn and
replacing the multiple search direction in eq 114 by a single
search direction:

xn þ 1 ¼ xn þ RðnÞ
n pn ð115Þ

such that minimization of the function f(xnþ1) calculated from
eqs 114 or 115 gives a mathematically identical result. In the CG
algorithm, all but the last direction may be discarded without loss
of convergence rate.

We will now present the development of the CG algorithm
with special emphasis on the developments that allow us to
connect the solution that is obtained in the CG algorithm with
the one obtained using the subspace iterative algorithm, that is
commonly used in quantum chemistry.

A.1. First Iteration. Let us assume that x0 is our starting guess.
In the first iteration we have a single search direction

r0 ¼ b� Ax0 ð116Þ
which therefore is optimal, i.e., p0 = r0. The solution vector at
iteration 1 has therefore a form

x1 ¼ x0 þ Rð0Þ
0 p0 ð117Þ

Minimization of f(x1) in the direction p0 gives

Df ðx1Þ
DRð0Þ

0

¼ Rð0Þ
0 pT0 Ap0 � pT0 r0 ¼ 0 ð118Þ

that determines the optimal step length in the direction p0:

Rð0Þ
0 ¼ pT0 r0

pT0Ap0
ð119Þ

The residual at x1:

r1 ¼ b� Ax1 ð120Þ
is orthogonal to the search direction p0:

pT0 r1 ¼ rT0 r1 ¼ 0: ð121Þ

A.2. Second Iteration. The trial vector now has components
along p0 and r1

x2 ¼ x1 þ Rð1Þ
0 p0 þ Rð1Þ

1 r1 ð122Þ
Minimization of f(x2), with respect to coefficients R0

(1) and R1
(1),

gives the subspace equations:

pT0 Ap0 pT0Ar1
rT1 Ap0 rT1 Ar1

 !
Rð1Þ
0

Rð1Þ
1

0
@

1
A ¼ pT0 r1

rT1 r1

 !
¼ 0

rT1 r1

 !

ð123Þ
where in the first row of eq 123 the coefficient R0

(1) may be
written in terms of R1

(1):

Rð1Þ
0 ¼ � Rð1Þ

1
pT0Ar1
pT0 Ap0

ð124Þ

The trial vector x2 may be expressed as a unidirectional search:

x2 ¼ x1 þ Rð1Þ
1 p1 ð125Þ

where the direction p1 is

p1 ¼ r1 � pT0 Ar1
pT0 Ap0

p0 ð126Þ

The optimal step length in the direction p1 becomes

Rð1Þ
1 ¼ rT1 p1

pT1Ap1
ð127Þ

The residual at x2 becomes

r2 ¼ b� Ax2 ð128Þ
or

r2 ¼ r1 � Rð1Þ
1 Ap1 ð129Þ

It can be shown that

pT0Ap1 ¼ 0, rT2 Ap0 ¼ 0 ð130Þ

rT2 p1 ¼ 0, rT2 r1 ¼ 0, rT2 p0 ¼ 0, rT2 r0 ¼ 0 ð131Þ

A.3. n þ 1th Iteration. The previous directions and residuals
fulfill the relations

rTi pj ¼ 0, rTi rj ¼ 0, i, j ¼ 0, 1 , ..., n, i > j ð132Þ

rTi Apj ¼ 0, i, j ¼ 0, 1 , ..., n, i > jþ 1 ð133Þ
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pTi Apj ¼ pTi Apjδij, i, j ¼ 0, 1 , ..., n� 1 ð134Þ

The new trial vector is initially written as a general vector in the
space spanned by the previous search directions {p0, p1, ..., pn�1}
and the current residual rn:

xn þ 1 ¼ xn þ ∑
n � 1

i¼ 0
RðnÞ
i pi þ RðnÞ

n rn ð135Þ

Minimizing f(xnþ1) with respect to the nþ1 free parameters one
obtains the subspace equation:

pT0Ap0 pT0Ap1 ::: ::: pT0Apn � 1 pT0Arn

pT1Ap0 pT1Ap1 ::: ::: pT1Apn � 1 pT1Arn

::: ::: ::: ::: ::: :::

::: ::: ::: ::: ::: :::

pTn � 1Ap0 pTn � 1Ap1 ::: ::: pTn � 1Apn � 1 pTn � 1Arn

rTn Ap0 rTn Ap1 ::: ::: rTn Apn � 1 rTn Arn

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

RðnÞ
0

RðnÞ
1

l

l

RðnÞ
n � 1

RðnÞ
n

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

¼

pT0 rn

pT1 rn

l

l

pTn � 1rn

rTn rn

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

ð136Þ

that is equivalent to

pT0Ap0 0 ::: 0 0 0

0 pT1Ap1 ::: 0 0 0

::: ::: ::: ::: ::: :::

::: ::: ::: ::: ::: :::

0 0 ::: pTn � 2Apn � 2 0 0

0 0 ::: 0 pTn � 1Apn � 1 pTn � 1Arn

0 0 ::: 0 rTn Apn � 1 rTn Arn

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

RðnÞ
0

RðnÞ
1

l

l

RðnÞ
n � 2

RðnÞ
n � 1

RðnÞ
n

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

¼

0

0

l

l

0

0

rTn rn

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

ð137Þ

where eqs 132�134 were used. It can be seen from eq 137 that
solving the reduced space equation can be avoided, due to the
fact that all the information necessary to obtain the optimal
solution vector is contained in the last three trial vectors.
Due to the form of the subspace equation the optimal solution

vector xnþ1 may be expressed in terms of a single search direction
pn and the optimal step length Rn

(n) as

xn þ 1 ¼ xn þ RðnÞ
n pn ð138Þ

where

pn ¼ rn � pTn � 1Arn
pTn � 1Apn � 1

pn � 1 ð139Þ

RðnÞ
n ¼ pTn rn

pTn Apn
ð140Þ

Therefore only three vectors: xn, rn and pn�1 need to be stored in
each iteration. Equations 132�134 are valid for n increased by
one, and the iteration procedure of the CG algorithm is established.
The CG algorithm in iteration nþ1 may be viewed as an

iterative subspace algorithm that uses the basis of the trial vectors
{p0, p1, ..., pn�1, rn}. The iterative subspace algorithm in eq 28
is set up in terms of trial vectors consisting of {r0, r1, ..., rn�1, rn}.
From eqs 114 and 115 it is seen that these two sets of trial vectors
span the same space and that the CG and the iterative subspace
algorithms of eq 28 therefore give the same iteration sequence.

APPENDIX B. CONJUGATE RESIDUAL ALGORITHM
AND ITS PRECONDITIONING

B.1. Conjugate Residual (CR) Algorithm. In this section,
the CR algorithm19 is discussed (described in detail in ref 38).
The CR algorithm is an iterative method for solving a set of linear
equations of a form in eq 110, where A is a symmetric but not
necessarily positive definite matrix. The residual for a general
vector x is given as

r ¼ b� Ax ð141Þ
The solution to eq 110 is obtained by minimization of the
squared residual norm:

gðxÞ ¼ rTr ð142Þ
as

DgðxÞ
Dx

¼ 2AðAx � bÞ ¼ 0 ð143Þ
We shortly summarize the CR algorithm with emphasis on the

development that allows us to connect to iterative subspace
algorithms that are used in quantum chemistry. We refer to the
paper by Zi�olekowski et al.,38 where a more thorough develop-
ment of CR is given, and the connection to the DIIS
algorithm48,49 (that is commonly used in quantum chemistry)
is presented.
After n iterations of the CR algorithm, the optimal solution

vector xn, n residuals ri, and n optimal directions pi are known. It
may be shown that the previous optimal directions and residuals
fulfill the relations:38

rTi Apj ¼ 0, rTi Arj ¼ 0, i, j ¼ 0, 1 , ..., n, i > j ð144Þ

rTi A
2pj ¼ 0, i, j ¼ 0, 1 , ..., n, i > jþ 1 ð145Þ

pTi A
2pj ¼ pTi A

2pjδij, i, j ¼ 0, 1 , ..., n� 1 ð146Þ
In iteration nþ1, the new trial vector may be written as a general
vector in the space spanned by the previous optimal search
directions {p0, p1, ..., pn�1}, and the current residual rn:

xn þ 1 ¼ xn þ ∑
n � 1

i¼ 0
RðnÞ
i pi þ RðnÞ

n rn ð147Þ
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Minimizing g(xnþ1) with respect to the nþ1 free parameters
leads to a subspace equation:

pT0A
2p0 pT0A

2p1 ::: ::: pT0A
2pn � 1 pT0A

2rn

pT1A
2p0 pT1A

2p1 ::: ::: pT1A
2pn � 1 pT1A

2rn

::: ::: ::: ::: ::: :::

::: ::: ::: ::: ::: :::

pTn � 1A
2p0 pTn � 1A

2p1 ::: ::: pTn � 1A
2pn � 1 pTn � 1A

2rn

rTn A
2p0 rTnA

2p1 ::: ::: rTn A
2pn � 1 rTn A

2rn

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

RðnÞ
0

RðnÞ
1

l

l

RðnÞ
n � 1

RðnÞ
n

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

¼

pT0Arn

pT1Arn

l

l

pTn � 1Arn

rTnArn

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

ð148Þ
that is equivalent to

pT0A
2p0 0 ::: 0 0 0

0 pT1A
2p1 ::: 0 0 0

::: ::: ::: ::: ::: :::

::: ::: ::: ::: ::: :::

0 0 ::: pTn � 1A
2pn � 2 0 0

0 0 ::: 0 pTn � 1A
2pn � 1 pTn � 1A

2rn

0 0 ::: 0 rTn A
2pn � 1 rTn A

2rn

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

RðnÞ
0

RðnÞ
1

l

l

RðnÞ
n � 2

RðnÞ
n � 1

RðnÞ
n

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

¼

0

0

l

l

0

0

rTn Arn

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

ð149Þ
where relations eqs 144�146 were used. From eq 149 it may
be seen that also in the CR algorithm only the three last trial
vectors are necessary to obtain the optimal solution vector in
iteration nþ1.
The optimal solution vector xnþ1 may be expressed in terms of

a single search direction pn and of the optimal step length Rn
(n) as

xn þ 1 ¼ xn þ RðnÞ
n pn ð150Þ

where

pn ¼ rn � pTn � 1A
2rn

pTn � 1A
2pn � 1

pn � 1 ð151Þ

RðnÞ
n ¼ pTn Arn

pTn A
2pn

ð152Þ

and

rn þ 1 ¼ rn � RðnÞ
n Apn ð153Þ

Equations 144�146 are valid for n increased by one, and the
iteration procedure of the CR algorithm is established.

In the CR algorithm, we may thus discard all but the last
direction without information lost, similarly to what is found in
the CG algorithm. The main difference between the CG and the
CR algorithms is that step lengths in the CG algorithm are
determined from a minimization of f(x) in eq 111, whereas in the
CR algorithm the step length is determined from a minimization
of g(x) in eq 143. The minimization of f(x) is only unique for a
symmetric positive matrix A, while the minimization of g(x) is
unique also for a nonsingular symmetric but not necessarily
positive definite matrix. The CG algorithm therefore can only be
safely applied for a positive definite matrix A, while the CR
algorithm can also be applied when the matrix A is not positive
definite.

B.2. Preconditioned CR Algorithm. To improve the conver-
gence of the CR algorithm, the set of linear equations in eq 110
may be solved in a preconditioned form, where a coordinate
transformation is introduced to produce a new set of linear
equations which has a lower condition number. To carry out this
transformation, eq 110 is multiplied with the transpose of a
nonsingular matrix: P

P TAP Y �P Tb ¼ 0 ð154Þ
where Y = P �1x. We may now solve eq 154 using the CR
algorithm and transform the solution to the original coordinates.
Alternatively, eq 154 may be solved in the original basis using
modified CR equations. To do this, we write the residual in the Y
basis as

rP ¼ P Tb�P TAP Y ¼ P Tr ð155Þ
Optimal directions are now determined by minimizing

gP ðxÞ ¼ ðrP ÞTrP ¼ rTPP Tr ¼ rTC�1r ð156Þ
where

C�1 ¼ PP T ð157Þ
The preconditioned analogue to eqs 150�153 becomes38

xn þ 1 ¼ xn þ RðnÞ
n C�1pn ð158Þ

where

pn ¼ rn � pTn � 1C
�1AC�1AC�1rn

pTn � 1C
�1AC�1AC�1pn � 1

pn � 1 ð159Þ

RðnÞ
n ¼ pTnC

�1AC�1rn
pTnC

�1AC�1AC�1pn
ð160Þ

and

rn þ 1 ¼ rn � RðnÞ
n AC�1pn ð161Þ

ChoosingP T such that C is a good approximation to A ensures
that the linear equations are solved in a basis where the matrix A
has a lower condition number.
From eqs 158 and 159, it seems like the preconditioned CR

algorithm may be applied whenever an easily invertible matrix C
that is a good approximation to the A matrix can be identified.
However, the step lengths in the preconditioned CR algorithm
are determined from a minimization of gP (x) in eq 156, and this
minimization is uniquely defined only when C�1 corresponds to
a coordinate transformation and can be decomposed as in eq 157.
The decomposition in eq 157 requires that C�1 is positive
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definite, and we thus conclude that the CR preconditioned
equations in eqs 158�161 can be safely applied only for a
positive definite preconditioner C.

APPENDIX C. MACDONALD’S THEOREM FOR THE
GROUND-STATE RESPONSE EIGENVALUE EQUATION

For a ground state, the response eigenvalue equation may be
expressed as

E½2�X ¼ S½2�Xω ð162Þ
where the positive S[2]-norm eigensolutions Xþ = {X1þ, X2þ, ...,
Xpþ, ...} are associated with positive eigenvalues {ω1,ω2, ..., ωp, ...}.
We assume that the eigenvalues are sorted in ascending order.
Similarly, the negative S[2]-normed eigensolutions X� = {X1�,
X2�, ..., Xp�, ...} are associated with the negative eigenvalues
{�ω1, �ω2, ..., �ωp, ...}. The matrix X is the collection of
positive and negative eigenvectors [Xþ, X�], andω is a diagonal
matrix collecting the eigenvalues in corresponding order.

Let us now compare the solution to eq 162 for two paired
subspaces:

b
0 ¼ fb1, b2, :::, bN , bP1 , bP2 , ..., bPNg ð163Þ

b
00 ¼ fb1, b2 , ..., bN , bN þ 1, b

P
1 , b

P
2 , ..., bPN , b

P
N þ 1g ð164Þ

where b00 is obtained from b0 by adding the paired vectors bNþ1

and bNþ1
P . The solution to eq 162 in b0 and b00 spaces may be

expressed as (see eq 21):

ðX0 Þ†E½2�X
0 ¼ ω

0
exc 0
0 ω

0
exc

 !
; ðX0 Þ†S½2�X0 ¼ 1 0

0 �1

 !

ð165Þ

ðX00 Þ†E½2�X
00 ¼ ω

00
exc 0
0 ω

00
exc

 !
; ðX00 Þ†S½2�X00 ¼ 1 0

0 �1

 !

ð166Þ
where X0 contains N paired eigenvectors in the b0 subspace and
X00 contains (Nþ 1) paired eigenvectors in the b00 subspace. The
positive eigenvalues are collected in the diagonal matrices ω0

exc

and ω00
exc and represent subspace approximations to the eigen-

values ω in eq 162. Since b0 is a subset of b00, we may express the
eigenvectors in the b0 subspace in terms of the eigenvectors of the
b00 subspace as

X
0
pþ ¼ ∑

N þ 1

q¼ 1
½apþqþX

00
qþ þ apþq�X

00
q� � ð167Þ

where the normalization of X0
pþ in the S[2]-norm implies

∑
N þ 1

q¼ 1
½japþqþ j2 � japþq� j2� ¼ 1 ð168Þ

The lowest positive eigenvalue in b0 is equal to

ω
0
1þ ¼ ðX0

1þÞ
†E½2�X

0
1þ ð169Þ

However, by means of eq 167, the same eigenvalue can also be
expressed as

ω
0
1þ ¼ ∑

N þ 1

n,m¼ 1
½a1þnþX

00
nþ þ a1þn�X

00
n� �†E½2�½a1þmþX

00
mþ þ a1þm�X

00
m� �

¼ ∑
N þ 1

m
ω

00
mþ ½ja1þmþ j2 þ ja1þm� j2�

g ∑
N þ 1

m
ω

00
1þ ½ja1þmþ j2 þ ja1þm� j2�

g ω
00
1þ ∑

N þ 1

m
½ja1þmþ j2 � ja1þm� j2�

¼ ω
00
1þ

ð170Þ
We have thus shown that ω0

1þ g ω00
1þ for iterative solutions of

the response eigenvalue equation. This result represents a
generalization of MacDonald’s theorem for a symmetric positive
definite eigenvalue equation with a positive definite metric.

APPENDIX D. ALGORITHMS BASED ON BLOCK DIAG-
ONALIZATION OF THE HESSIAN

Another approach for solving the standard response equations
has been presented by Casida.2 This approach is analogous to the
approach introduced by Jørgensen et al. in ref 11. In the approach
in ref 2, the standard response equation:

A B
B A

 !
�ω

Σ 0
0 �Σ

 !" #
X
Y

 !
¼ G1

G2

 !
ð171Þ

is transformed bymeans of the unitary transformationU in eq 22,
to become equal to

A þ B 0
0 A � B

 !
�ω

0 �Σ

�Σ 0

 !" #
X

0

�Y
0

 !
¼ G

0
1

�G
0
2

 !

ð172Þ
where

X
0 ¼ X þ Y; Y

0 ¼ X � Y; G
0
1 ¼ G1 þG2;

G
0
2 ¼ G1 �G2 ð173Þ

From eq 172 two separate equations are obtained namely:

½ðA þ BÞ �ω2SðA � BÞ�1Σ�X0

¼ G
0
1 þωΣðA � BÞ�1G

0
2 ð174Þ

and

½ðA � BÞ �ω2ΣðA þ BÞ�1Σ�Y 0

¼ G
0
2 �ωΣðA þ BÞ�1G

0
1 ð175Þ

The solution to the standard response equation is thus
replaced by solving two sets of linear equations of half the
dimension. When solving eqs 174 and 175, the inverse matrices
(A�B)�1 and (AþB)�1 are required. When the matrices
(A�B) and (AþB) are constructed explicitly, the inverse
matrices may be obtained straightforwardly. But, when thematrix
dimension is large and the iterative subspace algorithms need to
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be used, the separation of eq 172 into eqs 174 and 175 becomes
prohibitively inefficient. The response equations are better
solved in a form referencing the double dimension in eq 172,
as in eq 97, thereby separating the determination of the sym-
metric and antisymmetric components of the solution vector and
maintaining the full coupling between the symmetric and anti-
symmetric components.
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ABSTRACT: The accuracy of electronic structure calculations are affected to some degree by numerical errors. Assessing whether
these errors are at an acceptable level for chemical accuracy is difficult. This paper demonstrates how interval arithmetic can be used
to address this issue in the context of a Hartree�Fock computation. Using the method proposed here, the effect of system size and
basis set type on the overall numerical accuracy of the Hartree�Fock total energy is studied. Consideration is also given to the
impact of various algorithmic design decisions. Examples include the use of integral screening, computing some integrals in single
precision, and reducing the accuracy of the interpolation tables used to compute the reduced incomplete Gamma function required
by some integral evaluation algorithms. All of these issues have relevance to the use of novel computing devices such as graphics
processing units (GPU) and the Sony Toshiba IBMCell Broadband, to exascale and green computing, and to the exploitation of the
emerging generation of massively multicore processors.

1. INTRODUCTION

During the past 20 years, the vast majority of computational
chemistry programs have been written to use IEEE 754 double
precision floating point arithmetic.1 This was motivated both by
the perception that double precision was required in order to
obtain sufficiently accurate results and the fact that efficient
implementations of this standard were available on all commonly
used high performance microprocessors. With a few notable
exceptions,2,3 relatively little attention was given to using alter-
native levels of numerical precision. In the past few years, this
situation has changed dramatically. This has been largely
prompted by the move by manufacturers of graphics and gaming
hardware into the general purpose computing market, the ability
of this new hardware to perform floating point computations at a
rate that was significantly higher than that of contemporary
general purpose microprocessors, and the fact that this was
(initially) only possible when using single precision arithmetic
with rounding modes that were not entirely IEEE 754 compliant.
Two high profile early examples are the Sony Toshiba IBM (STI)
Cell Broadband Engine4 that forms the basis for the Playstation 3
and the NVIDIA GTX8800 CUDA based graphics card.5

More recently, initiatives in exascale computing, green com-
puting, and many-core architectures have provided added im-
petus for reconsidering the role of numerical precision in
computational chemistry codes. In these cases, the sheer number
of operations performed, the energy required to perform the
operations, and the available bandwidth for moving data on and
off the processor chip are all causes for wanting to represent data
with the minimal number of bytes possible. Also, developments
in field programmable gate array (FPGA) technology mean that
computational devices can now be constructed on the fly to use
arbitrary levels of precision that may not be standard single or
double precision.

Mindful of the above, we have developed a Hartree�Fock
code that uses interval arithmetic to place rigorous bounds on the
numerical errors associated with computing the total electronic

energy. Our aim is to build a tool that can be used to explore the
effects of numerical precision and various other underlying
numerical approximations on the quality of the final result.
Examples considered here include the effects of basis set and
system size, as well as “hidden” issues such as the use of different
levels of integral prescreening and the choice of different inter-
polation schemes for evaluating the base quantities from which
all two-electron integrals are assembled.

In interval analysis,6 a quantity is represented as an interval X =
[X, X

_
], which contains the set of all real numbers between a lower

bound X and an upper bound X
_
. Intervals can be used to bound all

uncertainties and errors, including those caused by rounding to
finite precision, truncation or approximating a series, limits in the
accuracy of a measured quantity, etc. When computing with
intervals, the uncertainties encapsulated within each interval are
propagated on to the final result. That is, the final result is an
interval which rigorously bounds the entire range of possible
results when all of those uncertainties are taken into account.
Inferences can then be made about the errors associated with the
result based on the width of the final interval.

In comparison to a traditional code that represents a data
quantity using a single floating point number, an interval code
will use two floating point numbers, one representing the lower
bound and one representing the upper bound. Where a tradi-
tional floating point code rounds the result of a floating point
operation to a machine representable number, an interval code
must broaden the interval result to the nearest machine repre-
sentable interval that includes the exact interval result. Interval
codes should also take care to include errors associated with
truncating infinite series when reporting the result, e.g., in
functions to compute ex, log(x), sin(x), etc. Needless to say,
the goal in an interval code is to minimize the width of the final
interval.
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The work reported here follows on from a number of related
works. Specifically, Takashima et al.7 investigated whether large
scale Hartree�Fock energy (EHF) calculations were chemically
accurate given a potentially large accumulation of numerical
errors. Their study focused on the calculation of EHF, given an
initial set of integrals and a density matrix. Error contaminated
data were simulated by uniformly perturbing each double preci-
sion floating point quantity involved in the Fock matrix con-
struction step at the last bit of the mantissa. The error was
measured by comparing EHF calculated using contaminated data
with EHF calculated using uncontaminated data, calculating both
cases using double precision floating point arithmetic. This
approach can be implemented using existing quantum chemistry
software, although it makes the broad assumption that the errors
in the initial data are uniformly perturbed. By contrast, when
using intervals, errors are modeled without making such assump-
tions. In the same study, the authors applied a technique known
as partial summation to improve the accuracy of EHF and used
linear regression to predict errors for very large problems
involving 10 000 basis functions.

Ramdas et al.3 proposed the use of interval arithmetic as an off-
line design space tool to experiment with different arithmetic unit
configurations. In particular, they were interested in whether a
mix of different arithmetic precisions could be used for calculat-
ing the Hartree�Fock energy on an FPGA, while maintaining an
acceptable degree of chemical accuracy. Their work adopted the
same approach as Yasuda:2 determining which integral or batches
of integrals to calculate using single precision based on its
Schwarz8 upper bound, the assumption being that smaller
integrals can be calculated in single precision without substan-
tially affecting the accuracy of the final result. The investigation in
Ramdas et al. was, however, confined to a single H2O molecule
using the 6-31G** basis set.

The rest of this paper is organized as follows. Section 2 gives a
more detailed description of interval analysis and how it can be
used as an error analysis tool. Section 3 outlines the interval
implementation of the Hartree�Fock method, while section 4
details the experimental methodology used and presents and
discusses the results. Section 5 concludes the paper and discusses
future work.

2. INTERVAL ANALYSIS

Interval arithmetic was proposed by Ramon Moore in 1959.9

It represents numerical quantities in terms of closed intervals X =
[X, X

_
], where each interval represents the set of all real numbers

between the lower boundX∈R and upper boundX
_
∈R. The set

of interval numbers is denoted as I(R), whereas the set of n
dimensional vectors with interval elements is denoted as I(Rn).

Intervals were first proposed as a tool for bounding rounding
errors;9 however, in practice, an interval can be used to bound
any uncertain quantity. This includes any combination of round-
ing errors, truncation errors, measurement errors, unknown/
poorly understood parameters, etc.
2.1. Interval Arithmetic. The set of basic arithmetic opera-

tions, • = þ, �, �, between two intervals is defined such that

X•Y ¼ fx•yjx ∈ X , y ∈ Yg ð1Þ
By this definition, the arithmetic operations between two inter-
valsX∈ I(R) and Y∈ I(R) result in another interval that contains
the results of operations between all possible combinations of
real values contained in X and Y. This property is generally

referred to as the containment property for interval arithmetic
operations.10

For practical purposes, interval arithmetic operations are
almost always carried out using IEEE 754 floating point arith-
metic, referred to as Floating Point Interval Arithmetic.6 To ensure
containment, both upward and downward rounding modes
(instead of round to nearest) are used:

X þ Y ¼ ½xrð�X ,�Y Þ,xΔðX , YÞ� addition

X � Y ¼ ½Qrð�X , YÞ,xΔðX ,�Y Þ� subtraction
X � Y ¼ ½a, b� multiplication
a ¼ minðXrð�X ,�Y Þ,Xrð�X , YÞ,

XrðX ,�Y Þ,XrðX , YÞÞ
b ¼ maxðXΔð�X ,�Y Þ,XΔð�X , YÞ,

XΔðX ,�Y Þ,XΔðX , YÞÞ
1=Y ¼ ½Lrð1;YÞ,Lrð1;�Y Þ� division

X=Y ¼ X � 1=Y ð2Þ
where the subscripts Δ and 3 refer respectively to upward and
downward rounding. With no specific hardware support, interval
arithmetic requires more instructions and storage to implement
than floating point arithmetic.
2.2. Interval Functions. An interval function is a function

which takes a set of intervals as input and returns a set of intervals
as output.6 The containment principle is extended to interval
functions. We say that an interval function F: I(Rm) f I(Rn) is
an interval extension6 of a function f: RmfRn if

FðXÞ ⊇ ffðxÞjx ∈ Xg ð3Þ
An interval extension of f therefore contains the range of f over
the domain spanned by X ∈ I(Rm). Furthermore, if g(x) is an
approximation function of f(x) and ε is the maximum trun-
cation error in X, then if G(X) is the interval extension of g(x),
we can write the interval extension of f(x) as F(X) = [G(X)� ε,
G(X) þ ε].
The interval extension of standard mathematical functions

such as eX, log(X), sin(X), and cos(X) are relatively straightforward
to implement, e.g., eX = [e X,eX

_

]. For rational functions6 whose
expression consists entirely of the four basic arithmetic opera-
tions, interspersed with standard mathematical functions for
which an interval extension is known, there is a also relatively
straightforward procedure to obtain an interval extension: first,
write the mathematical expression for the function; then, replace
each elementary arithmetic operation by its equivalent interval
arithmetic operation and each standard function by its interval
extension, and then replace each variable by an interval. An
interval extension formulated using this procedure is known as a
natural interval extension.6

2.3. Interval Arithmetic for Error Analysis. Interval exten-
sions provide a way to calculate rigorous bounds on the range of
function values due to uncertain inputs. In combination with
interval arithmetic, it allows uncertainties caused by rounding
and truncation errors to be propagated toward the final result.
The final interval will almost always overestimate the actual

numerical errors due to the fact that interval arithmetic must
account for the worst possible interaction between the interval
quantities involved in the calculation. The problem of finding the
exact range over a given domain of uncertainty is generally an
NP-Hard problem. This implies that interval arithmetic can only
provide a worst-case error analysis of the calculation in question.
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Therefore, we can only rigorously state what set of factors can or
cannot guarantee accuracy within a given threshold. However,
other useful inferences can be made about the behavior of
numerical errors, albeit with the above caveat in mind.
Another issue that also causes interval error overestimation is

the dependency problem.10 Interval arithmetic assumes all quan-
tities are independent of one another. Ignoring the dependencies
between quantities leads to illogical results. For example, suppose
X = [0,1]; then using interval arithmetic, X � X returns [� 1,1]
instead of [0,0]. It is not difficult to deduce that this problem is
likely to affect most interval calculations, except those involving
expressions where each variable occurs only once, such as X1 þ
X2 þ X3 þ ... In this work, however, the dependency effects will
be small, as we mainly deal with near-degenerate intervals
containing relatively small rounding and truncation errors.
Similar approaches which allow errors to be propagated exist

in uncertainty and sensitivity analysis;11 almost all of these
involve extensively sampling the domain of uncertain variables
in order to obtain a statistical representation of variations in the
result. However, this approach is difficult to apply for larger
models with many uncertain quantities. In Takashima et al.,7 the
errors in the Hartree�Fock total energy due to numerical errors
in the input (the one and two electron integrals) are estimated by
comparing the results calculated from a set of perturbed inputs to
those calculated from a set of unperturbed inputs. This is not as
rigorous as a sampling based approach but reflects the difficulties
involved in effectively sampling a large set of uncertain para-
meters which exists in a typical Hartree�Fock calculation.

3. INTERVAL HARTREE�FOCK

Hartree�Fock theory provides an ab initio model of the
interactions between particles on the molecular scale. Although
not a particularly accurate model, it provides the framework from
which many other, more advanced, methods are derived. For this
reason, Hartree�Fock theory is still widely used as a starting
point for studies of electronic structure. The Hartree�Fock
energy for a closed shell molecular system with n electrons can
be expressed as

EHF ¼ Vnn þ 2∑
n=2

μ
Hμ þ ∑

n=2

μ
∑
n=2

υ
ð2Jμ, υ � Kμ, υÞ ð4Þ

where Vnn is the nuclear repulsion energy and Hμ, Jμ,ν, and Kμ,ν

are integrals over the Core-Hamiltonian, Coulomb, and Exchange
operators. The latter are defined in terms of the molecular
orbitals (Φ) as

Hμ ¼ ðΦμjHcorejΦμÞ
Jμ, υ ¼ ðΦμΦμjΦυΦυÞ
Kμ, υ ¼ ðΦμΦυjΦμΦυÞ

ð5Þ

with the Coulomb and Exchange integrals collectively referred to
as the two-electron repulsion integrals (ERI).

Normally, the set of molecular orbitals {φ} is expanded in
terms of a linear combination of N atomic orbitals {χ}:

φμ ¼ ∑
N

a¼ 1
Cμaχa ð6Þ

where C = {Cμa}, "μ,a ∈ {1, 2, 3, .., N} are the molecular orbital
coefficients.

For most practical purposes, the atomic orbitals in the LCAO
are represented by Contracted Gaussian Functions (CGF):

χaðrÞ ¼ ∑
Ka

k¼ 1
Dak χakðrÞ, where

χakðrÞ ¼ ðX � XaÞxaðY � YaÞyaðZ� ZaÞza eRakjr � raj2
ð7Þ

where Ka is the degree of contraction for function a, Dak is a
contraction coefficient, and χak(r) is a Primitive Gaussian Function
(PGF) with exponent {Rai}, coordinates ra = (Xa,Ya,Za), and
angular components la = {xa,ya,za}.

A Self-Consistent Field (SCF) calculation involves minimizing
the value of EHF with respect to the molecular orbital coefficientsC
to produce the ground state energy, E0. This problem can be solved
iteratively by reformulating theminimization problem as a nonlinear
eigenvalue problem known as the Roothaan equations

FC ¼ SCε ð8Þ
whereF∈RN�N is the Fockmatrix that represents the one and two-
electron interactions, S∈RN�N is the overlap matrix that represents
the overlap between atomic orbitals, and ε ∈RN�N is themolecular
orbital energies.

In this paper, we focus on evaluating the numerical errors in the
ground state Hartree�Fock total energy EHF—using as input the
set of ground state molecular orbital coefficients calculated using a
conventional floating point SCF code. The interval bounds of the
total energy reflect errors propagated from (i) the one- and two-
electron integrals, (ii) the construction of the Fock matrix, (iii) the
calculation of the nuclear repulsion, and (iv) the calculation of the
total energy. The three latter steps are implicit in eq 4.

Of the various operations performed during a Hartree�Fock/
self-consistent field calculation, evaluating the ERIs is by far the
most computationally demanding.12 It is also the aspect of the
calculation that requires the most attention when developing an
interval Hartree�Fock code.

A primitive ERI involving four atomic orbitals is given by

½χaχbjχcχd� �
Z Z

χaðr1Þ χbðr1Þ χcðr2Þ χdðr2Þ dr1 dr2
jr1 � r2j ð9Þ

while a contracted ERI is given by

ðχaχbjχcχdÞ � ∑
Ki

i¼ 1
∑
Kj

j¼ 1
∑
Kk

k¼ 1
∑
Kl

l¼ 1
DaiDbjDckDdl½χaiχbjjχckχdl�

ð10Þ
with the number of ERIs required for a given problem scaling as
O(N4) in the problem size.

There are a number of numerical approaches for evaluating
primitive ERIs. Some of the most widely used are by
McMurchie�Davidson13 (MD), Obara�Saika14 (OS), Rys�
Depuis�King15 (RDK), and Head-Gordon�Pople16 (HGP). All of
these schemes use recursion relations to assemble the final integral
from some very simple integrals. In the case of the MD, OS, and
HGP schemes, the simple integrals are Reduced Incomplete Gamma
Functions17 which are denoted as Fm(T):

FmðTÞ ¼
Z 1

0
t2m e�Tt2 dt ð11Þ

In the above, T is a real non-negative number with a value that is
dependent on the distance between the basis function centers and
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the values of their exponents, whilem is an integer with a value that
depends on the total angular momentum of all of the Gaussian
functions in the ERI.

There are no general analytical approaches for evaluating Fm(T).
Many years ago, Shavitt presented a scheme for evaluating Fm(T)
that used either a series or an asymptotic approximation depending
on the value of T.18 This approach was subsequently refined to
involve precomputing a select number of values for Fm(T) using the
Shavitt scheme and then using Taylor or Chebyshev polynomial
interpolation to compute specific values.19 Truncation errors arise in
both the Shavitt scheme and in the interpolation, and it is important
that any interval scheme to evaluate ERIs correctly bounds both of
these sources of errors. We discuss how to achieve this in a previous
paper.20

3.1. Implementation Details. The interval extension of the
Hartree�Fock energy (eq 4) was formulated as a natural interval
extension using the procedure described in section 2.2. For this
study, ERIs are evaluated using a natural interval extension of the
Head-Gordon�Pople (HGP) algorithm,16 with values of Fm(T)
evaluated by default using sixth-degree Chebyshev polynomial
interpolation. Truncation errors in Fm(T) were manually
bounded and propagated.

4. COMPUTATIONAL RESULTS

The following experiments investigate the numerical errors in
EHF as the size and complexity of the molecular problem increases,
and when different algorithms are used. We focus particularly on
issues relevant to the use ofGraphics ProcessingUnits (GPUs). It is
important to note, however, that all the results given here are
obtained using the interval HF code run on a conventional CPU;
that is, we are using the interval code to pose “what-if” questions
without needing to have access to hardware that supports that
“what-if” scenario. Before considering the experiments in detail, it is
pertinent first to define and discuss the error terminology used.

Supposing that EHF
I is the interval bound of EHF, the relative

numerical error is expressed as

err ¼ 2:0�
EIHF � EIHF

EIHF þ EIHF

This is equivalent to dividing the width of EHF
I by its midpoint.

For clarity, we will often state the result in terms of precision
instead of error, where �log10(err) is used to indicate the
number of decimal digits of precision in the result. For instance,
err = 1 � 10�13 implies 13 decimal digits of precision. If the
computation is implemented in double precision, there are a
maximum of 16 decimal digits, so a relative error of 1 � 10�13

implies that three decimal digits have been lost due to numerical
errors. The results should be construed as an estimate of errors in
the worst case, since we are using interval arithmetic.

The total electronic energy is generally regarded to be
chemically accurate if its error is no greater than 0.01 kcal/mol
or around 1.59 � 10�5 Hartree.7 As a consequence, larger
systems with larger total energies will require more digits of
precision in order to be chemically accurate. However, calcula-
tions on large molecules also require more operations to be
performed so there is greater potential for accumulating errors.
As interval arithmetic bounds the numerical errors, it can be used
to rigorously guarantee that chemical accuracy is achieved.
Experimental Platform.All experiments were conducted on a

Sun Microsystem V1280 UltraSPARCIIICu System with 12 �
900 MHz cores, using the Solaris 10 operating system.21 All
programs were implemented in either Cþþ or SPARC assem-
bler and compiled using SunStudio 11 compilers at patch level
20060426.22 The build options used are

-fast -xopenmp -xia -xtarget=ultra3 -
xarch=v9b -xlic_lib=sunperf

where the -xia flag enables the interval arithmetic library.23

Source code for all the interval SCF programs used here is
available at the authors’ Web site.24

4.1. Effect of System Size and Basis Set.To study the effects
of system and basis set size, we have used H2O clusters of varying
size and basis sets that range from the nearminimal 3-21G set to the
extensive 6-311G(2df,2pd) basis set. The geometries used are those
of the TIP4P water clusters at the Cambridge Cluster Database.25

Results are shown in Table 1 for systems with total basis set
sizes of up to around 325 basis functions. As expected, increasing
the number of atoms and/or the basis set size decreases the
number of decimal digits of precision. Use of the 3-21G basis set

Table 1. Decimal Digits of Precision of EHF for TIP4PWater Clusters of nWater Molecules Computed Using 3-21G, 6-31G**, cc-
pVDZ, 6-31Gþþ**, and 6-311G(2df,2pd) Basis Setsa

(H2O)n N 3-21G N 6-31G** N cc-pVDZ N 6-31þþG** N 6-311G(2df,2pd)

2 26 12.63 50 12.26 50 12.14 62 11.98 130 11.48

3 39 12.30 75 11.92 75 11.76 93 11.63 195 11.12

4 52 12.08 100 11.69 100 11.57 124 11.41 260 10.88

5 65 11.87 125 11.48 125 11.31 155 11.19 325 10.56

6 78 11.70 150 11.29 150 11.16 186 11.01

7 91 11.56 175 11.15 175 11.04 217 10.85

8 104 11.41 200 11.00 200 10.85 248 10.69

9 117 11.28 225 10.88 225 10.73 279 10.58

10 130 11.17 250 10.77 250 10.64 310 10.46

11 143 11.08

12 156 11.00

13 169 10.92

14 182 10.84

15 195 10.77
a N is the number of basis functions.
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and going from 2 to 15 water molecules results in a loss of two
significant figures in the total energy. In terms of chemical
accuracy, another significant figure is effectively lost as the total
energy also increases by more than 1 order of magnitude on
going from 2 to 15 water molecules.With 15 water molecules and
a total energy on the order of 103, 10.77 digits of decimal
precision are still, however, enough to give total energies accurate
to 10�5 Hartrees.
For the smaller systems, increasing the basis set size from

3-21G to 6-311G (2df,2pd) also results in a loss of more than one
decimal digit of precision in EHF. Comparing the 6-31G** and cc-
pVDZ basis sets, both of which have the same number of
contracted functions but were achieved using different contrac-
tion schemes, reveals that the cc-pVDZ correlation consistent
basis set gives slightly fewer digits of precision. Adding diffuse
functions to the 6-31G** basis gives a slight further loss in
precision. Interestingly, the number of digits of precision appears
to be relatively constant for a given total number of functions
regardless of whether this results from a large number of atoms or
from a large basis set.
To explore the latter point further, we plot in Figure 1 the

relative errors from Table 1 as a function of N. A second-degree
polynomial regression was used to fit the data for each basis set
type. The R2 (coefficient of determination) values of the regres-
sions were found to be 0.9989, 0.9983, 0.9958, 0.9977, and
0.9841 for the 3-21G, 6-31G**, cc-pVDZ, 6-31þþG, and
6-311G (2df,2pd) basis sets, respectively. This strongly suggests
that a second-degree polynomial model is sufficient to explain the
variation of numerical errors with N. Linear regression was also
considered, but it was found not to yield as good a fit. The success
of the second polynomial is likely to be related to the numerical
complexity of the Hartree�Fock method. For example, in an N-
term summation of O(N) complexity, the growth in numerical
errors is on the orderO(N) but also depends on the type of terms
involved.26 In the Hartree�Fock method, the numerical com-
plexity grows as O(N4). For real systems, however, larger
problem sizes mean larger spatial extent, and since the Coulom-
bic interaction decreases with distance, it is not surprising to find
that the numerical errors increase in a nonlinear fashion, but at a
rate that is less than quartic. Finally, aggregating together the
results for all basis set types and then applying regression also
leads to a poorer fit.
While the least precise result found in Table 1 is still well

within chemical accuracy, the loss of precision will become an

issue in larger clusters and/or with larger basis sets. The poly-
nomial regression models shown in Figure 1 can be used to
predict errors for larger values ofN. This is shown in Figure 2 for
the four basis sets used. The plot indicates that relative numerical
errors are on the order of 1 � 10�8 when N = 10 000, with the
specific values given in Table 2.
The largest system considered in the experiment above was

(H2O)5 6-311G(2df,2pd) with 325 basis functions. The system
sizes that can be studied are limited by the performance of the
interval code. Interval computation is inherently slower than
floating point computation due to the additional storage require-
ment and the additional number of floating operations required
to achieve a single interval arithmetic operation (eq 2). The code
implemented for this paper is also experimental in nature and
therefore not optimized to the same degree as better established
floating point codes. Moreover, in order to guarantee rigorous
bounds on numerical errors, time saving heuristics such as two-
electron integral screening cannot be used as with floating point
codes. In fact, all O(N4) two-electron integrals were calculated
using interval arithmetic in our implementation. In actual
experiments, the interval Hartree�Fock code was observed to
be around 10 to 25 times slower than its floating point equivalent.
4.2. Effect of Two-Electron Integral Screening. It is cus-

tomary in HF calculations to prescreen the ERIs and only
compute those with a magnitude greater than some threshold.
The most widely used screening technique is based on the
Schwartz test.8 This sets the following upper bound for value
of an ERI:

jðχaχbjχcχdÞj e kabkcd , where kab ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðχaχbjχaχbÞ

q
ð12Þ

Use of Schwartz screening requires precomputation of two
center ERIs of the form (χaχb|χaχb). Before computing a specific
integral, the value of κabκcd is computed and compared against
the screening threshold τ. If κabκcd > τ, the actual integral is

Figure 1. Relative error of EHF for water clusters fitted against the
number of basis functionsN using second degree polynomial regression.

Figure 2. Predicted relative error of EHF for water clusters of size up to
N = 10 000 using second degree polynomial regression models derived
from existing data.

Table 2. Predicted Relative Numerical Error atN = 10 000 for
TIP4P Water Clusters Computed Using Different Types of
Basis Sets

3-21G 6-31G** cc-pVDZ 6-31þþG** 6-311G(2df,2pd)

5.39 � 10�8 3.25 � 10�8 4.39 � 10�8 4.40 � 10�8 3.35 � 10�8
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evaluated; otherwise, it is neglected. For efficiency, Schwartz
screening is usually performed for batches of integrals, not for
individual integrals.
In Schwartz screening, choosing a value for τ represents a

trade-off between speed and accuracy: set too high and the
accuracy will be affected, set too low and the time to solution
increases but with insignificant improvement in numerical accu-
racy. Interval arithmetic can be used to quantify the numerical
error that results from using different values of τ, and to
determine rigorously the maximum value of τ possible while still
maintaining chemical accuracy. To do this, we assign each
screened integral an interval value of [�κabκcd,κabκcd].
In Table 3, we show the number of digits of precision in EHF for

ERI screening thresholds ranging from the machine epsilon (ε) to
1 � 10�4 for computations performed using a 6-31G** basis set.
Five different systems are considered, two water clusters and three
amino acid systems. The values in square brackets denote the
percentage of unique nonzero ERIs that are screened away.
The results show that when using screening at machine

epsilon, EHF is accurate to between 11 and 12 significant digits.
When using a screening value of 1 � 10�12, there is minimal
effect on the number of significant digits in EHF, but the number
of computed integrals decreases by between 6 and 24%. Increas-
ing the screening value to 1� 10�8 results in a significantly larger
loss of precision and values for EHF that are now barely accurate
to 10�5 Hartrees. Further increasing the value of τ clearly gives
unsatisfactory results.
4.3. Effect of Using Mixed Precision.While general purpose

CPUs have traditionally provided strong double precision per-
formance, this has not always been the case for GPUs and other
specialized processors. For example, the high end NVIDIA
GTX280 GPU is capable of 933 GFLOP/s in single precision,
but only 78 GFLOP/s in double precision. Similarly the CellBE
PowerXCell 8i is capable of 230.4 GLOP/s in single precision,
but only 108.8 GFLOP/s in double precision.
To early users, it was clear that in order to harness the full

potential of these systems, single precision arithmetic must be
prioritized over double precision arithmetic. Yasuda2 sought to
address this issue by partitioning integrals based on their Schwarz
upper bounds: computing all integrals below some bound
(λGPU) in single precision on the GPU, while other integrals
greater than λGPU were calculated in double precision on the host
CPU. The larger the value of λGPU, the greater the proportion of
the ERIs calculated in single precision and the faster the overall
computation, but the lower the overall accuracy of the result.
Yasuda showed that evaluating integrals entirely in single
precision was not accurate enough for production runs.
Ufimtsev and Martinez,27 while accepting Yasuda’s approach,

questioned whether mixing different floating point precisions

was worthwhile given the arrival of double precision capable
GPUs designed specifically for scientific computing. It can be
argued, however, that GPUs first emerged as a cost-effective
solution not for scientific computing but for an entirely different
market segment where double precision is not important. This
market segment is considerably larger than for scientific comput-
ing and will continue to only require single precision floating
point and integer arithmetic for the foreseeable future. Thus, the
demands of scientific computing are always going to come
second in driving GPU innovation. However, and as discussed
in the Introduction, there are a number of other factors that
motivate the use of short data types where possible.
Interval arithmetic can be used to model the numerical errors

in EHF due to different thresholds for λGPU. This differs from
previously published work that compares single precision results
to double precision results in that the intervals rigorously bound
interactions with other sources of errors, not only those due to
the value of λGPU. To do this, all integrals with a Schwarz upper
bound below λGPU are calculated using single precision interval
arithmetic, while the rest are calculated using the default double
precision interval arithmetic.
Results obtained with different values of λGPU are given in

Table 4 for some of the water cluster systems using the 6-31G**
basis set. Values for λGPU of 10�12, 10�8, 10�4, and 1 are used.
The columns labeled D.P and S.P correspond to results calcu-
lated using solely double or single precision arithmetic, respec-
tively. The values in the square brackets denote the percentage of
the unique nonzero ERIs that were evaluated using single
precision arithmetic.
As expected, the number of decimal digits of precision in EHF

generally decreases as the problem size increases. An exception is
for (H2O)3, where the results obtained using λGPU = 1� 10�4 are
less precise than the equivalent numbers for the larger (H2O)4 and
(H2O)5 systems. This is due to the composition of the ERIs:
(H2O)3 has more ERIs with magnitudes between 1 � 10�6 and
1� 10�4 (38%) compared to (H2O)4 (26%) and (H2O)5 (20%).
Thus, a disproportionately large number of integrals near the
threshold are calculated in single precision for the (H2O)3 case.
This shows that while partitioning between single and double
precision calculation based solely on the Schwarz upper bound of
the ERI is generally reliable, the specific distribution of integral
values can also be a factor for some systems. Since themagnitude of
a two electron integral is determined by the distance between each
electron, we can expect denser molecular systems to have higher
concentrations of large integrals.
The results also show that numerical errors increase as the

cutoff is relaxed and more integrals are calculated in single
precision. For the problems considered, using a λGPU value as
large as 10�2 still provides sufficient precision to give EHF values

Table 3. Decimal Digits of Precision of EHF for Different ERI Screening Thresholds
a

τ

system N no. ERI (� 106) ε 1 � 10�12 1 � 10�8 1 � 10�4

(H2O)4 100 11.29 11.69 11.59 [13.74%] 8.43 [34.84%] 4.05 [68.93%]

alanine 125 29.11 11.41 11.34 [5.80%] 8.07 [17.65%] 3.44 [50.31%]

serine 140 44.77 11.30 11.24 [7.94%] 7.98 [21.73%] 3.40 [54.73%]

cytocine 145 59.77 11.24 11.18 [9.08%] 7.91 [23.27%] 3.37 [53.30%]

(H2O)8 200 154.91 11.00 10.90 [23.92%] 7.90 [53.02%] 3.60 [85.60%]
aThe entries inside the square brackets indicate the percentage of unique ERI that is screened with respect to each cut-off.
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that are chemically accurate, while using a value for λGPU of 1 is
clearly inadequate. Alternatively, setting a λGPU threshold of
10�8 gives results that are almost as precise as exclusively using
double precision.
In section 4.1, we used a second-degree polynomial regression

model to predict numerical errors when N = 10 000. If we apply
the same approach to the data in Table 4, we find the projections
given in Table 5. The columns show the predicted (relative)
numerical errors for each respective λGPU value. If only single
precision is used, the predicted error is on the order of 1� 10�5,
which is not chemically accurate.
4.4. Effect of Fm(T) Interpolation Table Size. Memory

management is one of the most important factors affecting the
performance of CPUs, GPUs, and special purpose processors.
This can mean managing a complex cache hierarchy, small
amounts of user controlled local memory, or a combination of
both. For example, the NVIDIA GTX280 has 16 KB of fast local
shared memory available to each thread block,28 the synergistic
processing elements (SPE) on the STI CellBE each have 256 KB
of local memory for SPE instructions and data,4 and the SPARC
VIIIfx CPU has a user controlled on-chip memory that can be
cache, local memory, or a combination of both.29

How to use small fast on-chip memory is therefore an increas-
ingly important question for program developers. In ERI evalua-
tion, theFm(T) interpolation table is a good candidate for storage in
fast memory. Use of interpolation gives rise to a significant
reduction in floating point operations, but this is only beneficial if
the data that comprise the interpolation table can be accessed
quickly. So an issue is how small can the Fm(T) interpolation table
be made while still obtaining sufficiently accurate results. For the
purpose of this study, we will assume an ERI evaluation scheme
similar to that employed by Ufimtsev and Martinez, where each
thread or thread block on a GPU calculates a single primitive
integral or contracted integral, with the Fm(T) interpolation table
replicated for each thread block in the fast local memory.
The size of the interpolation table depends on the interpola-

tion scheme used, the degree of the polynomial interpolation, the

largest total angular momentum of any ERI, and the truncation
error tolerance. Table 6 shows the amount of memory required
to represent a third and sixth degree Chebyshev polynomial
interpolation table for integrals of type (ss|ss) through (gg|gg)
when using different Fm(T) truncation error tolerances. Third
degree polynomials require larger interpolation tables than sixth
degree polynomials but require less operations to evaluate each
subsequent Fm(T) value. Thus, the choice of whether to use a
third or sixth order polynomial involves a trade-off between
floating point operation count andmemory usage. For GPUs and
the CellBT systems, memory size is probably the major bottle-
neck; thus, sixth degree interpolation appears to be the best
choice. The results in Table 6 show that keeping truncation error
around machine precision requires an interpolation table much
larger than that which can be stored in the shared memory on a
current GPU system. However, by relaxing the error tolerances, it
is possible to fit the interpolation table in fast shared memory.
Supposing that 8 KB is the maximum table size allowed, then
using sixth-degree Chebyshev polynomials, (ss|ss) type integrals

Table 5. Predicted Relative Numerical Error at N = 10 000 for TIP4P Water Clusters for Different λGPU’s

λGPU

D.P 1 � 10�12 1 � 10�8 1 � 10�4 1 � 10�2 1 � 10 þ0 S.P

3.25 � 10�8 3.02 � 10�8 4.16 � 10�8 2.68 � 10�7 3.07 � 10�5 5.40 � 10�5 7.13 � 10�5

Table 6. Chebyshev Interpolation Table Sizes (KB) for
Different Integral Types and Truncation Error Tolerances

eFm(T)

integral degree ε 1 � 10�12 1 � 10�8 1 � 10�4

(ss|ss) 3 1134 138 13 1

6 25 7 2 <1

(pp|pp) 3 1581 193 19 1

6 35 10 2 <1

(dd|dd) 3 1925 235 23 2

6 43 12 3 1

(ff|ff) 3 2269 277 27 2

6 50 15 4 1

(gg|gg) 3 2544 310 31 3

6 56 17 4 1

Table 4. Decimal Digits of Precision of EHF for TIP4P Water Clusters Using the 6-31G** Basis Set, with Different Cutoff Points
(λGPU) Where ERIs Are Evaluated Using Single Precision Instead of Double Precision Floating Point.a

λGPU

(H2O)n N D.P 1 � 10�12 1 � 10�8 1 � 10�4 1 � 10�2 1 � 10þ0 S.P

2 50 12.26 12.26 [3.61%] 12.26 [14.95%] 10.81 [42.89%] 8.52 [67.20%] 6.15 [99.90%] 6.02

3 75 11.92 11.92 [5.98%] 11.92 [21.86%] 10.36 [56.79%] 8.17 [81.86%] 6.07 [99.95%] 5.95

4 100 11.69 11.68 [13.74%] 11.68 [34.84%] 10.56 [68.93%] 8.29 [87.73%] 6.03 [99.97%] 5.91

5 125 11.48 11.46 [21.87%] 11.46 [47.38%] 10.39 [77.97%] 8.11 [91.31%] 6.01 [99.98%] 5.88

6 150 11.29 11.20 [17.14%] 11.20 [42.81%] 10.12 [78.74%] 7.93 [93.51%] 5.97 [99.99%] 5.84

7 175 11.15 11.05 [21.18%] 11.05 [49.75%] 10.14 [82.80%] 7.94 [94.86%] 5.94 [99.99%] 5.82

8 200 11.00 10.98 [23.92%] 10.90 [53.02%] 9.88 [85.60%] 7.70 [96.15%] 5.90 [99.99%] 5.78
aD.P stands for a fully double precision ERI calculation, and S.P stands for a fully single precision ERI calculation, with cutoff points of various
magnitudes in between (the numbers in the square brackets indicate the percentage of single precision ERIs).



1638 dx.doi.org/10.1021/ct200026t |J. Chem. Theory Comput. 2011, 7, 1631–1639

Journal of Chemical Theory and Computation ARTICLE

can be calculated with errors on the order of 10�12 and (pp|pp),
(dd|dd), (ff|ff), and (gg|gg) integrals with errors on the order
of 10�8.
Using intervals, we can place rigorous bounds on the effect of

varying the interpolation table sizes on the final value of EHF.
This is shown in Table 7 when using sixth-degree Chebyshev
polynomial interpolation and a range of different Fm(T) thresh-
olds. The results show that the precision of EHF is decreased
when the error tolerance is relaxed and that chemical accuracy is
maintained in all cases except when the Fm(T) threshold is 10

�4.
Interestingly, and in a similar manner to what was observed in
section 4.3, when using error tolerances of 10�8 and 10�4, the
precision for (H2O)8 is greater than for any of the amino acid
cases despite the fact the total number of basis functions (N) is
greater. This is again because there is a higher proportion of large
magnitude ERIs for the amino acids than for (H2O)8.

5. CONCLUSION AND FUTURE WORK

In this paper, interval arithmetic is used as an error analysis
tool to explore the effect of numerical errors in calculating the
Hartree�Fock total energy under a variety of scenarios. The
results highlight the fact that under certain conditions chemical
accuracy can still be achieved even when the Hartree�Fock
energy is calculated using relatively unconventional parameters,
for example, (i) by varying the integral screening threshold,
(ii) by varying the numerical precision between single and double
precision, and (iii) by varying the granularity of integral inter-
polation tables. This result gives reasonable grounds to suggest
that some key modifications to existing evaluation schemes can
be made while maintaining chemical accuracy. This is especially
relevant when looking to circumvent the limitations of specia-
lized processing hardware in regard to double precision perfor-
mance and fast memory capacity.

The results also highlight the gradual accumulation of numer-
ical errors with increasing basis set and system sizes, which will
eventually reach a stage where chemical accuracy can no longer
be guaranteed. Another significant finding is that the estimated
growth in numerical errors can be accurately modeled by
regressing the number of basis functions against the width of
the interval bound EHF. The best fit was achieved using second
degree polynomials. Nonlinear scaling is expected as the number
of ERIs scales nonlinearly with basis set size, but the number of
ERIs scales as O(N4) not O(N2). This finding supports the
generally accepted view that it is possible to use integral screening
to significantly reduce the computational scaling of large HF
computations. On a cautionary note, the results also show that

there are other factors that affect accuracy, such as the density of
the molecular system.

The main drawback of using interval arithmetic for numerical
accuracy studies is that it provides a worst-case error analysis. The
fact that interval results get rounded out to the nearest larger
machine representable interval and the dependency problem
means that these results are almost always overly pessimistic.
That said, when the interval result is within the accuracy required,
we do have guaranteed assurance of the numerical accuracy.

The current results also rely on a conventional Self-Consis-
tent-Field (SCF) calculation to find the ground state molecular
orbitals from a fixed atomic geometry. From the results of this
calculation, the interval total energy is then calculated. This work
does not consider how accurate a solution these coefficients are
to the SCF problem, or indeed whether the solution represents
the true ground state. Interval methods can be extended to
address both issues, as will be discussed in another upcoming
publication.

Finally, the results presented are confined to a limited set of
small- and medium-sized systems. Another next step is to
consider larger systems involving a larger variety of atoms,
molecules, and basis set types, in particular, to test further the
effectiveness of the polynomial regression model and to explore
further other factors that affect numerical accuracy such as near
linearly dependent basis sets.
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ABSTRACT: In this paper, we calculate the potential energy surface (PES) and the spectroscopic constants of the chromium
dimer using the recently developed restricted active space second-order perturbation (RASPT2) method. This approach is
benchmarked against available experimental measurements and the complete active space second-order perturbation theory
(CASPT2), which is nowadays established as one of the most accurate theoretical models available. Dissociation energies,
vibrational frequencies, and bond distances are computed at the RASPT2 level using several reference spaces. The major advantage
of the RASPT2 method is that with a limited number of configuration state functions, it can reproduce well the equilibrium bond
length and the vibrational frequency of the Cr dimer. On the other hand, the PES is well described only at short distances, while at
large distances, it compares very poorly with the CASPT2. The dissociation energy is also ill-behaved, but its value can be largely
improved using a simple workaround that we explain in the text. In the paper, we also address the effect of the Ionization Potential
Electron Affinity (IPEA) shift (a parameter introduced in the zeroth-order Hamiltonian in the CASPT2method to include the effect
of two-electron terms) and show how its default value of 0.25 is not suitable for a proper description of the PES and of the
spectroscopic parameters and must be changed to a more sound value of 0.45.

1. INTRODUCTION

The interest in small transitionmetal (TM) clusters has grown
rapidly in recent years because of their wide range of applica-
tions in different fields, such as catalysis, optics, biomedicine,
environment.1�5 TM clusters also serve as a bridge between bulk
materials and nanomaterials, since they are experimentally accessible
and, at the same time, still tractable with very accurate theoretical
models.

From a theoretical standpoint, the description of transition
metal elements and their compounds is particularly challenging
due to the presence of a dense manifold of low-lying states
generated by the partial occupation of the nd and (nþ 1)s shells.
These factors can lead to ground state (or excited state) wave
functions of multireference character, where a large number of
configurations is needed to properly account for static correlation
effects, of fundamental importance for the accurate description of
potential energy surfaces and dissociation energies. This pre-
cludes in many cases the use of post-Hartree�Fockmethods and
poses great challenges to density functional theory (DFT), as
these approaches work best for the accurate description of solely
the dynamic correlation. Under these circumstances, a multiconfi-
gurational model such as the complete active space self-consistent
field method followed by second-order perturbation theory,
CASSCF/CASPT2,6�10 is particularly attractive to achieve a proper
description of both types of correlation energy.

The recent development of the so-called ab initio density fitting
and Cholesky-based algorithms11�14 has expanded considerably
the range of molecular sizes for which CASSCF/CASPT2 calcula-
tions are feasible. A number of insightful studies of diverse
chemical problems15�18 has been possible as a result of these
improvements in theory and algorithms. Unfortunately, the

application of CASSCF/CASPT2 is still limited by the solution
of the configuration interaction (CI) problem, a step where the
computational cost increases factorially with the size of the active
space. This adverse circumstance prevents its use for the study of
TM clusters with more than two atoms. In order to overcome
such limitation, new theoretical models have been introduced19�21

to reduce drastically the number of configuration state functions
(CSFs) in the CI step. In particular, the restricted active space
self-consistent field method, followed by second-order perturba-
tion theory, RASSCF/RASPT2,19�22 is emerging as a promising
alternative. Although the RASSCF method was developed
20 years ago,19,20 its extension to include dynamical correlation,
the so-called RASPT2 method,21 was successfully established
only recently. A few applications can be found already in the
literature with encouraging results.21,23�25

To achieve the goal of studying TM clusters of increasing
size, we decided to assess the performance of RASSCF/RASPT2
on a small albeit complex transition metal molecule: the
chromium dimer.

The Cr2 molecule poses a big challenge from a theoretical
standpoint because its ground state presents one of the most
complicated electronic structures that can be found among metal
dimers. The 1Σg

þelectronic ground state is highly multiconfigura-
tional, and the dominant CSF, 4sσg

23dσg
23dπu

43dδg
4, weighs only

47% (this work). Also, the experimental potential energy surface
(PES) shows, in addition to the relatively deepminimumat approxi-
mately 1.68 Å corresponding to the 3d�3d interaction, a rather
flat, shelf-like region, at about 2.5 Å, where the interaction

Received: January 21, 2011
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between the diffuse 4s orbitals is dominant.26 As a further
complication, the dimer dissociates into two chromium atoms
whose ground state has a high-spin open-shell electronic config-
uration 7S, with six unpaired electrons distributed as 3d54s1. This
means that the static electron correlation becomes dramatically
important along the potential energy surface.

Popular exchange-correlation (xc) functionals, within the frame-
work of DFT, have been demonstrated to poorly describe the
PES and some of the spectroscopic constants. Only the BLYP
functional is capable of reproducing the first minimum and the
shelf-like potential along the PES, while traditional hybrid
functionals like B3LYP and B3PB86 fail to show the region at
2.5 Å.27 For all xc functionals used, the stretching vibrational
frequency is computed at about 800 cm�1, almost 2 times larger
than the experimental value, 481 cm�1. Furthermore, spin
contamination affects all DFT results, pinpointing the fact that
a single closed-shell configuration represents a too simplistic
description of the bonding pattern in the Cr dimer.

A variety of post-HF calculations have been employed to study
the Cr2 PES;

28,29 however, for the purposes of this paper, we
focus on the ones based on the CASSCF/CASPT2 method. The
first of these calculations showed severe problems with intruder
states, and the calculations were not able to reproduce the
shallow region at 2.5 Å in the potential energy surface.30 Years later,
several improvements were included in the computational model,
regarding basis sets, active space, and the zeroth-order Hamilto-
nian. The first attempt to solve the problem of the intruder states
involved the use of a modified zeroth-order Hamiltonian, called
g1, and significant improvement was achieved. A deep inspection
of the CASPT2 wave function revealed that the 4p orbitals were
playing a major role in removing the intruder states; hence, the
original active space, which included 12 electrons in 12 orbitals
(the 3d and 4s orbitals of the two atoms), called CAS(12/12),
was extended to include four extra orbitals of 4p character, more
precisely the three bonding combination 4pσ and 4pπ and the
antibonding 4pσ*. Using this big active space, it was possible to
reproduce satisfactorily the shape of the potential energy surface,
and the intruder-state problem was corrected applying a level
shift of 0.3 au.31

In this work, we show that it is possible to represent correctly
the spectroscopic constants and the shape of the potential energy
surface for Cr2 using the original (12/12) active space that
includes the 3d and 4s orbitals, provided that an optimal value
of the IPEA shift (vide infra) is chosen. Moreover, with this value
of the IPEA shift, we have investigated the possibility of using the
less computationally intensive RASSCF/RASPT2 method to
determine the electronic structure and PES of Cr2. Our results
also provide insight into how to use the method and what its
limitations are if applied to the study of bigger systems such as
small metal clusters.

2. DETAILS OF THE CALCULATIONS

All-electron spin-free relativistic calculations were carried out
using the Douglas�Kroll�Hess Hamiltonian.32,33 In the first step,
complete active space self-consistent field calculations (CASSCF)6�8

are performed choosing an active space in which 12 electrons are
distributed in the following 12 molecular orbitals, 4sσg, 3dσg,
3dπu, 3dδg, 4sσu*, 3dσu*, 3dπg*, and 3dδu*, composed of the 3d and
4s atomic orbitals of each Cr atom. Using this wave function,
dynamical correlation effects are included through complete active
space second-order perturbation theory calculations (CASPT2)9,10

using the ionization potential electron affinity (IPEA)-corrected
zeroth-order Hamiltonian34 and the so-called g1 modified zeroth-
order Hamiltonian.35 The use of an imaginary shift36 of 0.2 au
was necessary in order to avoid the presence of intruder states in
the CASPT2 step, where the 3s and 3p closed shells are also
correlated dynamically. In the (IPEA-)corrected calculations,
different values of the IPEA shift, ε, were tested. Moreover, we
have also performed calculations at the RASSCF/RASPT219�22

level of theory, in which the zeroth-order wave function is
obtained in a restricted active space (RAS). In the RASSCF
method, the active space is divided into three subspaces: RAS1,
RAS2, and RAS3. RAS2 is identical to the CAS, where all possible
spin- and symmetry-adapted configuration state functions are
constructed, i.e., a full CI within the selected space, while RAS1
and RAS3 are subspaces originally containing doubly occupied
and empty orbitals, respectively. These two subspaces allow the
generation of additional configuration state functions with the
restriction that a maximum number of excitations may occur
from RAS1 (to RAS2 and RAS3) and a maximum number of
excitations may occur into RAS3 (from RAS1 and RAS2). This
model can handle larger active spaces than regular CAS, provided
that the resulting number of CSFs does not exceed the present
limits. All calculations were performed withMOLCAS 7.4 code37

and using C2h symmetry. We used the basis set developed
by Roos31 for this system, which is obtained from the primitive
basis set 21s15p10d6f4g of Pou-Amerigo et al.38 contracted to
10s10p8d6f4g.

The potential energy surface of the Cr dimer is scanned using
the VIBROT program.37 This program fits the potential to an
analytical form using cubic splines and solves the ro-vibrational
Schr€odinger equation numerically. The energies are then ana-
lyzed in terms of spectroscopic constants, namely, equilibrium
bond length (Re), dissociation energy (De and D0), and funda-
mental vibrational frequency (ΔG1/2). The dissociation energy
of the molecule can be also calculated by subtracting the ground
state energy of the dimer at the equilibrium to the energy of the
isolated atoms in their ground state calculated at the full CASPT2
level: De

0 = 2 � E[Cr(7S)] � E[Cr2(
1Σg

þ)]. Although this
dissociation energy should be the same as the one computed
with VIBROT, CASPT2 calculations lead to subtle differences
due to possible numerical inconsistencies. For the sake of clarity,
we show both types of dissociation throughout the paper.

The effect of counterpoise correction is minimal: 0.002 Å on
the bond distance, 0.03 eV on the dissociation energy, and 10 cm�1

on the vibrational frequency. For this reason, we consider the
BSSE noninfluential for the overall discussion, and we decided to
avoid its computation for all the PESs presented in this article.

3. RESULTS

3.1. Effect of the Zeroth-Order Hamiltonian and IPEA
Shift. In the original formulation of the zeroth-order Hamiltonian
in the CASPT2 method, a systematic error is introduced by
defining a generalized effective one-electron Fock operator that
does not include explicitly two-electron terms in the Hamiltonian.
In this simplified framework, a nonbalanced description of bond
energies and electronic excitation energies can occur once the
states that are compared have different spin-multiplicity, in particular
when one of the states is a closed-shell.39

In order to correct this systematic error, Ghigo et al.34 proposed a
modification of the zeroth-order Hamiltonian by introducing a
shift operator, the so-called Ionization Energy (IP)�Electron
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Affinity (EA) shift, or more simply IPEA shift, ε, which modifies
the diagonal elements of the generalized one-electron Fock
matrix. Basically, in partially filled orbitals like the active orbitals
in the CASSCF method, the shift modifies the diagonal elements
of the Fock matrix in such a way that the energies of the active
orbitals become closer to�IP, when an electron is excited out of
these orbitals, and closer to �EA, when one electron is excited
into one of them. This shift can be determined either using
experimental results or by comparison with highly accurate
calculations. For transition metals, the value of ε varies between
0.2 and 0.4 au, with an average value of 0.25 au, which is currently
the default value used in the present implementation of the
zeroth-order Hamiltonian in MOLCAS.37 The addition of this
parameter considerably reduces the previously mentioned sys-
tematic errors found in CASPT2 calculations; however, few
studies carried out in some test cases have revealed that this is
not the most appropriate value in every case.40�42

In this work, we study how the variation of this parameter, ε,
drastically affects not only the potential energy surface but also
the equilibrium bond length, the dissociation energy, and the
vibrational frequency of the Cr dimer. A summary of the results is
shown in Table 1 and in Figure 1.
The theoretical potential energy surface calculated using the

original g1 zeroth-order Hamiltonian is shown in Figure 1,
together with the experimental curve. It is interesting to include
the g1 result, as it is the one based on previous calculations by
Roos31 where a bigger active space was needed together with a
level shift of 0.3 au in order to accurately describe the experi-
mental PES. In our work, for consistency with the IPEA curves,
we employed an active space that includes only 3d and 4s orbitals
and an imaginary level shift of 0.2 au. Under these conditions, this
Hamiltonian generates a curve that agrees reasonably well with
the experiment regarding the overall shape, as it reproduces the
shelf-like region (see green line in Figure 1). However the first
minimum, located in the 3d�3d region is much deeper than it
should be and is about 0.6 eV more binding than the experi-
mental value. Clearly, this approach is flawed since ΔG1/2 is also
overestimated by about 100 cm�1 as compared to the experi-
ment. See Table 1 for more details.
When the IPEA Hamiltonian is employed, some very inter-

esting results are obtained. Starting with ε = 0.25, which is the
default value, we notice that the shape of the curve around the 3d
minimum is rather shallow, while the behavior of the curve is
preserved in the 4s region (see red line in Figure 1). What is most
important here is that the 3d�3d interaction is so weak that the
actual bond occurs at longer distances, in the 4s�4s area. This may
lead to serious errors in the geometry of the dimer, but especially in
larger clusters inwhich the 4s interactionwould always be the leading
one and the clusterswould showunusually large bond lengths among
distinct Cr�Cr sites. To make things worse, the fundamental
vibrational frequency of the Cr dimer is computed at 70 cm�1,
about 400 wavenumbers lower than the experimental result. It is
evident from what is described above that with the default choice for
the IPEA shift, we are unable to reproduce our PES, and therefore a
new value of this parameter must be sought.
For ε = 0.10, the potential surface reproduces the experimental

flat region, corresponding to the 4s�4s interaction; however, in
the region of the 3d minimum, only a small shoulder is observed
(see orange line in Figure 1). When the IPEA shift is increased to
higher values, the shape of the 3d minimum is improved, while
the behavior in the 4s region remains almost well-described. This
means that the IPEA modifies mainly the 3d�3d interaction,

while the 4s�4s is properly accounted for and rather indepen-
dent from this parameter. Finally, we find that the best agreement
with the experiment is achieved at a value of about ε = 0.45 (see
purple line in Figure 1) where the shape of the curve reproduces
accurately the region around the first minimum, both the shape
and the energy, as well as the small minimum at longer distances.
Regarding bond lengths, we find that they are decreased with

increasing IPEA shift, and the best agreement with the experi-
ment corresponds to ε = 0.50 (1.681 Å calculated and 1.679 Å
experimental). The g1 Hamiltonian also leads to satisfactory
values of Re (1.682 and 1.662 Å). The dissociation energy increases
with higher values of IPEA, and the best result corresponds to
ε = 0.45 (1.50 eV calculated and 1.53 eV experimental). Finally,
the best agreement with experimental results for ΔG1/2 is
obtained with ε = 0.40 (468 cm�1), compared to the experi-
mental 452 cm�1.
On the basis of the above results, we decided to proceed with

an IPEA shift parameter value of 0.45, which gives the best

Table 1. Spectroscopic Constants Obtained with the (IPEA-)
Corrected Zeroth-Order Hamiltonian for Different Values of
IPEA Shift (ε) and with the Modified g1 Zeroth-Order
Hamiltoniana

ε Re De De
0 D0 ΔG1/2 IP

0.00 0.608

0.25 1.736 1.15 1.38 1.14 70 7.13

0.40 1.696 1.45 1.42 468 7.12

0.45 1.687 1.52 1.50 516 7.12

0.50 1.681 1.60 1.98 1.56 542

0.75 2.41

1.00 2.73

g1b 1.682 2.12 2.13 2.09 551 7.08

g1c 1.662 1.65 413

exp. 1.679d 1.56 1.53e 452d 6.9988e

aThe dissociation energies are calculated from the potential energy
surfaces (De) and from 2 times the energy of the isolated atoms (De

0 ).
The vertical ionization potential and the experimental data are also shown.
Distances in Å, vibrational frequencies in cm�1, and energies in eV.
bThis work. c From ref 31. d From ref 43. e From ref 44.

Figure 1. Potential energy surfaces obtained with different values of
IPEA shift, ε, and using the modified g1 Hamiltonian, together with the
experimental curve. Bond distances in Å and energies in kcal/mol. The
asymptotic zero energy taken as reference is the total energy of the Cr
atoms at a distance of 10 Å.
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compromise in terms of PES facets, dissociation energy, equilib-
rium bond length, and fundamental vibrational frequency.
3.2. Accuracy of Quantum Chemical Calculations: RASPT2

vs CASPT2 Results. The previous part of this work was devoted
to the analysis of the effects of the IPEA shift on some properties
of the chromium dimer, using high level CASSCF/CASPT2
calculations. However, as was mentioned earlier, the main goal
of this paper is to benchmark the capabilities of the recently
proposed RASPT2 method, which has been previously success-
fully employed.21,23�25 In this part of the work, we would like to
check the performance of the RASPT2 method on some proper-
ties of the Cr2 dimer, and in order to do so, we decided to probe
in a consistent way the size of the RAS subspaces (RAS1, RAS2,
RAS3) with respect to the CASPT2 results.
In Figure 2, we represent a qualitative molecular orbital diagram

for the dimer. This diagram will guide us in the distribution of the
molecular orbitals in the different RAS subspaces. The nomenclature
used in these calculations is the following: (ne in no)/(ne2 in no2)//n,
where ne in no is the total number of electrons distributed in the
total number of orbitals in the whole active space, ne2 in no2
corresponds to the electrons and orbitals in the RAS2 space, and,
finally, n is the number of excitations allowed fromRAS1 and into
RAS3. The calculations performed are the following:
CAS(12/12). The CAS contains all bonding and antibonding

combinations arising from the interaction of the five 3d and the
4s atomic orbitals of the two Cr atoms at the equilibrium bond
length. The following molecular orbitals are obtained (Figure 2):
4sσg, 3dσg, 3dπu, 3dδg, 4sσu*, 3dσu*, 3dπg*, and 3dδu*. This level of
calculation is the most accurate and will be used as a reference for
RASSCF and RASPT2. In Figure 3, we immediately notice that
in the CASSCF potential, the 3d�3d bond is virtually absent
and is represented by a very small shoulder at about 1.80 Å . At
increased distances, the energy profile becomes more stabilizing,
with a large shallowminimum at about 3 Å. The facets of the PES
change drastically with the inclusion of the dynamic correlation
energy, thanks to the formation of a deep well in the 3d�3d
bonding energy (Figure 4). This allows one to obtain the correct
form of the potential, which leads to a correct description of the
spectroscopic parameters in the CASPT2 results.
CAS(10/10). In this calculation, we remove from the active

space the 4sσg bonding and 4sσu* antibonding orbitals, and we

correlate them perturbatively in the CASPT2 step. This gives rise
to an erratic PES for both the CASSCF and CASPT2, since the
effect of the CSFs produced by excitations from (into) 4sσg
(4sσu*) is treated only perturbatively and, therefore, not accu-
rately enough to describe the 4s�4s bond breaking. As a result,
large deviations are seen in the 2.5 Å region, where the 4s�4s
interaction is dominant. At short distances, the CASPT2 curve
behaves accurately. The spectroscopic parameters are affected
dramatically (see Table 2), with the exception of the equilibrium
bond length. The dissociation energy is more binding by 2 eV,
and the vibrational frequency is reduced by about 30 cm�1.
RAS(12/12)/(10/10)//2. In this first RASSCF/RASPT2 calcu-

lation, the 4s bonding orbital (4sσg) is included in RAS1 and the
corresponding antibonding (4sσu*) in RAS3. Single and double
excitations are allowed from 4sσg and into 4sσu*. This active space
is actually equivalent to the CAS(12/12), since RAS2 produces
up to 10-fold excitations that can combine with the singles and
doubles from RAS1 and into RAS3, therefore reaching 12-fold

Figure 2. Schematic representation of the molecular orbital diagram
for the chromium dimer. The energy ordering is arbitrary and only for
didactical purposes.

Figure 3. Potential energy surfaces calculated at CASSCF and RASSCF
levels of theory. Bond distances in Å and energies in kcal/mol. For
simplicity, the asymptotic zero energy taken as a reference is the total
energy of the Cr atoms at a distance of 10 Å and computed at the
CASSCF(12/12) level of theory. All other binding energies are depicted
with respect to this value.

Figure 4. Potential energy surfaces calculated at different levels of theory,
together with the experimental curve. Bond distances in Å and energies
in kcal/mol. For simplicity, the asymptotic zero energy taken as reference
here is the total energy of theCr atoms at a distance of 10Å and computed at
the CASPT2(12/12) level of theory. All other binding energies are
depicted with respect to this value. For this reason, the binding energies
expressed in the figure are not equal (with the exception of the full
CASPT2) to the De given in the tables throughout the text.
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excitations. This equivalence is obviously reflected in the number
of CSFs used to build the wave function in each of the twomethods,
as seen in Table 2.
RAS(12/12)/(8/8)//2,4. The composition of the different spaces

is as follows: RAS1(4sσg, 3dσg), RAS3(4sσu*, 3dσu*) and RAS2
(3dπu, 3dδg, 3dπg*, 3dδu*). Basically, we exclude the most bound
3d orbital, i.e., the 3dσg, and its antibonding counterpart from the
RAS2 space. We calculated the effect of double and quadruple
excitations fromRAS1 and intoRAS3. The latter one is equivalent to
the full CASSCF/CASPT2(12/12). With the double excitations,
the number of CSFs is reduced by about half, from 57 168 to
29 244. The CASPT2 PES is well described up to 2.5 Å. After this
point, the curve moves upward compared to the correct behavior,
and higher excitations are needed for a proper description of
these long-range interactions. The RASPT2 equilibrium bond
length and vibrational frequency (1.682 Å and 515 cm�1,
respectively) are in good agreement with the CASPT2 values
(1.687 Å and 516 cm�1); nevertheless, the dissociation energy is
largely overestimated (4.23 eV compared to 1.50 eV). We can
conclude that this level of approximation is accurate enough to
describe the geometry of the dimer and the vibrational frequency,
but not the dissociation energy.
RAS(12/12)(4/4)//2,4,6,8. In this calculation, RAS1 includes

4sσg, 3dσg, and 3dπu orbitals; RAS3 includes 4sσu*, 3dσu*, and
3dπg*; and finally RAS2 contains 3dδg and 3dδu*. Up to octuple
excitations are allowed from RAS1 and into RAS3. As in the
former cases, the highest order of excitations corresponds to the
full CASSCF/CASPT2. For the rest, we notice some interesting
things for the RASPT2 results: the number of excitations influences
slightly the equilibrium bond lengths—1.641 Å for doubles,
1.681 Å for quadruples, and 1.687 Å for sextuples—and the

comparison with the experiment (1.679 Å) or the CASPT2
(1.687 Å) is satisfactory. In particular, in the calculation with
doubles that has only 2298 CSFs, about 20 times less than those
of the full CASPT2, the geometry is reasonably well reproduced.
Unfortunately, the dissociation energy is affected to a greater
extent for almost all RAS spaces, showing important discrepan-
cies with the experimental values (see Table 2). In Figure 4, it is
possible to see the trends just described: in the region of the first
minimum, all of the RAS spaces compare well with the experi-
mental curve, but at longer distances, only the one including
sextuple excitations shows an acceptable behavior.
RAS(12/12)(0/0)//2,4,6,8,10,12. In this calculation, RAS1 in-

cludes the following orbitals: 4sσg, 3dσg, 3dπu and 3dδg, and
RAS3 includes 4sσu*, 3dσu*, 3dπg*, and 3dδu* orbitals. The RAS2
subspace is empty, which means that these calculations are
similar to multireference CI, except for the fact that the coeffi-
cients of the molecular orbitals are also optimized variationally.
Here, we perform up to 12-ple excitations between RAS1 and
into RAS3 subspaces, with this latter one corresponding to a
full CASPT2(12/12). For the sake of clarity, the results are
represented in Figure 5. All orders of excitations from RAS1 and
into RAS3 produce reasonable results regarding equilibrium
bond lengths (see Table 2); however, the dissociation energies
are quite poor at first but improved notably with increasing
degrees of excitation. For example, with quadruple excitations,De

is 10.80 eV and with 10-ples is 1.55 eV, very close to the CASPT2
value (1.50 eV). The vibrational frequencies are satisfactory from
sextuple excitations and up. Obviously, the best RASPT2 space is
the one that includes 10-ple excitations. However, this level of
calculation generates roughly the same number of configuration
state functions (57155) as CASPT2 (57168), and there is no
real computational advantage. A reasonable compromise is the
RASPT2(12/12)(0/0)//6 space, with 37 122 CSFs, and very
good equilibrium bond length and vibrational frequency are
obtained.
Vibrational Levels. As a further litmus test for the RASPT2

method, we decided to compare higher vibrational levels with the

Figure 5. Potential energy surfaces calculated at RASPT2(12/12)(0/0)//
2,4,6,8,10,12 levels of theory, together with the experimental curve.
Bond distances in Å and energies in kcal/mol. For simplicity, the
asymptotic zero energy taken as a reference is the total energy of the
Cr atoms at a distance of 10 Å and computed at the CASPT2(12/12)
level of theory. All other binding energies are depicted with respect to
this value. For this reason, the binding energies expressed in the figure
are not equal (with the exception of the full CASPT2) to theDe given in
the tables throughout the text.

Table 2. Spectroscopic Constants and Number of
Configuration State Functions (CSF) for Different Levels
of Calculation Using the IPEA Shift Value ε = 0.45a

calculation CSF Re De D0 De
0 ΔG1/2

CASPT2(10/10) 4956 1.689 3.40 3.37 1.10 389

CASPT2(12/12) 57168 1.687 1.53 1.50 1.53 516

RASPT2(12/12)/(10/10)//2 57168 1.687 1.53 1.50 1.53 516

RASPT2(12/12)/(8/8)//2 29244 1.682 4.26 4.23 1.41 515

RASPT2(12/12)/(8/8)//4 57168 1.687 1.53 1.50 1.53 516

RASPT2(12/12)/(4/4)//2 2298 1.641 4.17 4.15 0.30 208

RASPT2(12/12)/(4/4)//4 29164 1.681 5.94 5.90 1.35 502

RASPT2(12/12)/(4/4)//6 55126 1.687 2.33 2.30 1.53 504

RASPT2(12/12)/(4/4)//8 57168 1.687 1.53 1.50 1.53 516

RASPT2(12/12)/(0/0)//2b 199

RASPT2(12/12)/(0/0)//4 7206 1.638 10.82 10.80 0.39 212

RASPT2(12/12)/(0/0)//6 37122 1.678 5.54 5.51 1.37 516

RASPT2(12/12)/(0/0)//8 55629 1.687 2.38 2.35 1.53 512

RASPT2(12/12)/(0/0)//10 57155 1.687 1.58 1.55 1.53 510

RASPT2(12/12)/(0/0)//12 57168 1.687 1.53 1.50 1.53 516

experiment 1.679 1.53 452
aRows in italics denote calculations that reproduce the full CASPT2
results with the same number of CSFs. Experimental values are also
included. Distances in Å, vibrational frequencies in cm�1, and energies in
eV. The De is computed following the PES from the Cr2 ground state to
the separated fragments in their ground states at the given level of theory.
The De

0 is computed with respect to the isolated fragments at the full
CASPT2. b In this RAS space, most of the calculations have diverged, and
a complete description of the spectroscopic parameters is not possible.
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available experimental values, from ν = 0 to ν = 8, for ΔGνþ1/2

and Gνþ1 � G0.
26 In Table 3, we report a summary of all the

results. The last row identifies the mean unsigned error, MUE.
The first eye-catching feature is that the previous results by Roos
carry an overall error lower than the present calculations,
including our full CASPT2. This is probably due to the fact that
to describe with even more accuracy the upper vibrational levels,
we would need to include the 4p orbitals in the active space.
Moreover, apart from the RAS spaces with the lowest number of
excitations (in the table, referred to as A2, C//2, and D//4), we
obtain a satisfactory agreement between the RASPT2 values
and the experiment, with MUE varying between 23 and 45 cm�1

for ΔGνþ1/2 and between 34 and 77 cm�1 for Gνþ1 � G0. It is
noteworthy that cancellation of errors makes some of the RASPT2
active spaces more accurate than the full CASPT2.
3.3. Discussion and Conclusions. The RASPT2 method

carries limited advantages over CASPT2 in the specific case of
the Cr dimer. The best compromise of accuracy vs computational
advantage is obtained by RASPT2(12/12)/(8/8)//2, which
describes quite well the equilibrium bond length and the vibra-
tional frequency. Unfortunately, the dissociation energy is some-
what off, as it is in most of the RAS spaces we have chosen. To fix
this problem and to get more accurate values for the dissociation,
we then decided to make use of a simple workaround. Instead of
taking the atoms at large distances and computing the energy
with the same RAS space used at the equilibrium, we used the
energy of the isolated atoms computed at the full CASPT2 level
of theory. This energy is cheap to calculate because the atom has
a reduced active space, i.e., (6/6), and a full CASPT2 accounts for
only a small number of CSFs. If we take this CASPT2 energy as a

reference for the atomic fragments, the RASPT2 dissociation
energies are improved. In Table 2, they are represented with the
acronym De

0 . The maximum error is contained within about 1.2 eV,
while already with some higher order of excitations from RAS1
and into RAS3, this error can be contained within the 0.2�0.3 eV. It
is evident that the improvement is huge, as the error is drastically
reduced by a factor of 3 to 5. This way of proceeding, however,
introduced an imbalance between the active space used for the
atomic fragments and that for the dimer at the equilibrium. This
imbalance holds at the CASSCF (or RASSCF) step, but it is
virtually canceled out at the PT2 level, when also the 3s and 3p
orbitals are perturbatively correlated using all virtual orbitals,
restoring in this way a numerical size consistency.
In conclusion, if one would like to study a cluster with more Cr

atoms, it is wise to proceed with a balanced RASPT2 space, not
necessarily too big, to obtain reasonable geometries and frequen-
cies. For the dissociation energy, as explained above, it is always
better to take the fragments computed with the most accurate
method available, keeping the size consistency at the PT2 step.
We must also consider that in this paper we have chosen to

benchmark an extremely complicated molecule that shows a
heavy multiconfigurational character and a complicated potential
energy surface. This had repercussions, as we have seen, not only
on the RASPT2method but also on the IPEA shift, which we had
to tune to a value of 0.45 for a correct description of the poten-
tial energy surface and the spectroscopic constants. It may be
interesting to apply the RASPT2 method and check the default
value of the IPEA shift for other transition metal dimers, where
these limitations can be less pronounced and where RASPT2

Table 3. Calculated Vibrational Frequenciesa

ν CASA0 CASA1 CASA2 RASB//2 RASC//2 RASC//4 RASC//6 RASD//4 RASD//6 RASD//8 RASD//10 exp.

ΔGνþ1/2 = Gνþ1 � Gν

0 413 516 389 515 208 502 504 212 516 512 510 452

1 439 477 140 436 171 442 443 178 452 452 450 423

2 428 431 130 371 156 382 381 161 396 391 391 405

3 401 373 146 336 148 340 326 150 356 338 340 365

4 370 322 153 300 144 313 284 142 320 297 299 340

5 335 281 156 270 140 289 250 136 296 265 266 315

6 298 244 159 243 137 271 222 131 280 237 236 280

7 259 204 161 221 133 258 198 128 264 214 208 250

8 218 151 162 201 130 249 173 125 254 192 176 210

MUE 22 38 160 33 186 25 45 186 23 36 37

Gνþ1�Go

0 413 516 389 515 208 502 504 212 516 512 510 452

1 852 993 529 951 379 944 947 390 968 964 960 875( 10

2 1279 1424 659 1322 535 1326 1328 551 1364 1355 1351 1280( 10

3 1681 1797 805 1658 683 1666 1654 701 1720 1693 1691 1645( 10

4 2050 2119 958 1958 827 1979 1938 843 2040 1990 1990 1985( 15

5 2385 2400 1114 2228 967 2268 2188 979 2336 2255 2256 2300( 15

6 2683 2644 1273 2471 1104 2539 2410 1110 2616 2492 2492 2580( 20

7 2942 2848 1434 2692 1237 2797 2608 1238 2880 2700 2700 2830( 20

8 3160 2999 1596 2893 1367 3046 2781 1363 3134 2876 2876 3040( 20

MUE 65 93 914 76 1076 34 110 1067 65 75 77
aNomenclature: CAS and RAS stand for CASPT2 and RASPT2, respectively. A1 and A2 stand for active spaces of types (12/12) and (10/10). A0 results
are taken from ref 31. B for (12/12)/(8/8). C for (12/12)/(4/4), and D for (12/12)/(0/0). Experimental data are taken from ref 26. Mean unsigned
error (MUE) is given in the last row.
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may show significant computational advantages over CASPT2,
contrary to what observed for the Cr dimer.
Overall, RASPT2 appears as a computationally viable alter-

native to CASPT2 for studying stationary points on a PES, but it
may fail to reproduce some details of the surface, as shown by the
peculiar case of Cr2.
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ABSTRACT: Shifts in the excitation energy of the organic chromophore, cis-7-hydroxyquinoline (cis-7HQ), corresponding to the
πf π* transition in cis-7HQ and induced by the complexation with a variety of small hydrogen-bonded molecules, obtained with
the frozen-density embedding theory (FDET), are compared with the results of the supermolecular equation-of-motion coupled-
cluster (EOMCC) calculations with singles, doubles, and noniterative triples, which provide the reference theoretical data, the
supermolecular time-dependent density functional theory (TDDFT) calculations, and experimental spectra. Unlike in the
supermolecular EOMCC and TDDFT cases, where each complexation-induced spectral shift is evaluated by performing two
separate calculations, one for the complex and another one for the isolated chromophore, the FDET shifts are evaluated as the
differences of the excitation energies determined for the same many-electron system, representing the chromophore fragment with
two different effective potentials. By considering eight complexes of cis-7HQwith up to three small hydrogen-bondedmolecules, it is
shown that the spectral shifts resulting from the FDET calculations employing nonrelaxed environment densities and their EOMCC
reference counterparts are in excellent agreement with one another, whereas the analogous shifts obtained with the supermolecular
TDDFTmethod do not agree with the EOMCC reference data. The average absolute deviation between the complexation-induced
shifts, which can be as large, in absolute value, as about 2000 cm�1, obtained using the nonrelaxed FDET and supermolecular
EOMCC approaches that represent two entirely different computational strategies, is only about 100 cm�1, i.e., on the same order as
the accuracy of the EOMCC calculations. This should be contrasted with the supermolecular TDDFT calculations, which produce
the excitation energy shifts that differ from those resulting from the reference EOMCC calculations by about 700 cm�1 on average.
Among the discussed issues are the choice of the electronic density defining the environment with which the chromophore interacts,
which is one of the key components of FDET considerations, the basis set dependence of the FDET, supermolecular TDDFT, and
EOMCC results, the usefulness of the monomer vs supermolecular basis expansions in FDET considerations, and the role of
approximations that are used to define the exchange-correlation potentials in FDET and supermolecular TDDFT calculations.

1. INTRODUCTION

Accurately predicting the effect of a hydrogen-bonded envi-
ronment on the electronic structure of embedded molecules
represents a challenge for computational chemistry. In spite of
being relatively weak, noncovalent interactions with the environ-
ment, such as hydrogen bonds, can qualitatively affect the
electronic structure and properties of the embedded molecules.
Among such properties, electronic excitation energies are of great
interest in view of the common use of organic chromophores as
probes in various environments.1�4 Typically, hydrogen bonding
results in shifts in the positions of the maxima of the absorption
and emission bands anywhere between a few hundred and about
3000 cm�1.5 Thus, in order to be able to use computer modeling
for the interpretation of experimental data, the intrinsic errors of
the calculated shifts must be very small, on the order of 100 cm�1

or less.
Unfortunately, the brute force application of the supermole-

cular strategy to an evaluation of the excitation energy shifts due
to the formation of weakly bound complexes with environment
molecules, in which one determines the shift as a difference
between the excitation energy for a given electronic transition in

the complex and the analogous excitation energy characterizing
the isolated chromophore, has a limited range of applicability.
The supermolecular approach hinges on a condition that many of
the existing quantum chemistry approaches struggle with,
namely, the ability of a given electronic structure method to
provide an accurate and well-balanced description of excitation
energies in systems that have different sizes, which in the specific
case of spectral shifts induced by complexation are the total
system consisting of the chromophore and environment mol-
ecules and the system representing the isolated chromophore.
Ab initio methods based on the equation-of-motion (EOM)6�10

or linear-response11�16 coupled-cluster (CC)17�22 theories (cf. refs
23�25 for selected reviews), including, among many schemes
proposed to date, the basic EOMCC approach with singles and
doubles (EOMCCSD)7�9 and the suitably modified variant of the
completely renormalized (CR) EOMCC theory with singles, dou-
bles, and noniterative triples, abbreviated as δ-CR-EOMCC(2,3),
which is based on the CR-CC(2,3)26�28 andCR-EOMCC(2,3)29,30
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methods and which is used in the present study to provide the
reference data, or the closely related EOMCCSD(2)T

31 and
EOMCCSD(~T)32 approximations, satisfy this condition, since
they provide an accurate and systematically improvable de-
scription of the electronic excitations in molecular systems and
satisfy the important property of size-intensivity,16,33 but their
applicability is limited to relatively small molecular problems
due to the CPU steps that typically scale as N 6�N 7 with the
system size N . In recent years, progress has been made toward
extending the EOMCC and response CC methods to larger
molecules through the use of local correlation techniques34�37

and code parallelization, combined, in analogy to the widely
used QM/MM techniques, with molecular mechanics,38�42

and we hope to be able to extend our own, recently developed,
local correlation cluster-in-molecule CC algorithms43�45 to
excited states as well, but in spite of these advances, none of
the resulting approaches is as practical, as far as computer costs
are concerned, as methods based on the time-dependent
density functional theory (TDDFT).46 Unfortunately, the ex-
isting TDDFT approaches, although easily applicable to large
molecular systems due to low computer costs, are often not
accurate enough to guarantee a robust description of the
complexation-induced spectral shifts in weakly bound com-
plexes when the supermolecular approach is employed, due to
their well-known difficulties with describing dispersion and
charge-transfer interactions, and other intrinsic errors.

Methods employing the embedding strategy, including those
based on the frozen-density embedding theory (FDET)47�50

that interests us in this work, provide an alternative strategy to
the supermolecular approach for evaluating the excitation en-
ergy shifts. In embedding methods, of both empirical (QM/
MM, for instance) and FDET types, the effect of the environ-
ment is not treated explicitly but, rather, by means of the suitably
designed embedding potential. Thus, instead of solving the
electronic Schr€odinger equation for the total (NA þ NB)-
electron system AB consisting of the NA-electron chromophore
A and NB-electron environment B, i.e.

ĤðABÞjΨðABÞæ ¼ EðABÞjΨðABÞæ ð1Þ
where Ĥ(AB) is the Hamiltonian of the total system AB, and the
electronic Schr€odinger equation for the isolated chromophore A

ĤðAÞjΨðAÞæ ¼ EðAÞjΨðAÞæ ð2Þ
where Ĥ(A) is the Hamiltonian of the chromophore in the
absence of environment, and then calculating the shift in an
observable of interest associated with an operator Ô by forming
the difference of the expectation values of Ô computed for two
systems that have different numbers of electrons,

ΔÆÔæ ¼ ÆΨðABÞjÔjΨðABÞæ� ÆΨðAÞjÔjΨðAÞæ ð3Þ
as one would have to do in supermolecular calculations, one
solves two many-electron problems characterized by the same
number of electrons, namely, eq 2 and

½ĤðAÞ þ V̂ ðAÞ
emb�jΨðAÞ

embæ ¼ EðAÞembjΨðAÞ
embæ ð4Þ

where |Ψemb
(A) æ is the auxiliary NA-electron wave function

describing the effective state of the chromophore A in the
presence of environment B and V̂ emb

(A) = ∑i=1
NA vemb(rBi) is the

suitably designed embedding operator defined in terms of
the effective one-electron potential vemb(rB). As a result, the

complexation-induced shift in an observable represented by an
operator Ô is evaluated in the embedding strategy as

ΔÆÔæ ¼ ÆΨðAÞ
embjÔjΨðAÞ

embæ� ÆΨðAÞjÔjΨðAÞæ ð5Þ
i.e., by using the many-electron wave functions |Ψ(A)æ and
|Ψemb

(A) æ that represent two different physical states of system A
corresponding to the same number of electrons, the state of the
isolated chromophore A and the state of A embedded in the
environment B. This has two immediate advantages over the
supermolecular approach. First, the embedding strategy does
not require the explicit consideration of the total (NA þ NB)-
electron system consisting of the interacting complex of chro-
mophore and environment. This may lead to a significant cost
reduction in the computer effort in applications involving larger
environments. Second, by determining the complexation-in-
duced shift ΔÆÔæ using the wave functions |Ψ(A)æ and |Ψemb

(A) æ
corresponding to the same number of electrons, the errors due
to approximations used to solve the NA-electron problems
represented by eqs 2 and 4 largely cancel out, as we do not
have to worry too much about the possible dependence of the
error on the system size. In the calculations of the shifts in
excitation energies using the size-intensive EOMCC methods,
one does not have to worry about the size dependence of the
error resulting from the calculations either, but the supermole-
cular EOMCC approach requires an explicit consideration of the
(NA þ NB)-electron system consisting of the chromophore and
environment, which may lead to a significant cost increase when
NB is larger.

The above description implies that the accuracy of the
complexation-induced shifts obtained in embedding calcula-
tions largely depends on the quality of the embedding operator
V̂ emb
(A) or the underlying one-electron potential vemb(rB) that

defines it. Thus, when compared with the supermolecular
approach, the challenge is moved from assuring the cancellation
of errors in approximate solutions of two Schr€odinger equations
for systems that differ in the number of electrons to developing a
suitable form of the embedding potential that can accurately
describe the state of the chromophore in the weakly bound
complex with environment. As already mentioned above, the
practical advantage of the embedding strategy (provided a
sufficiently accurate approximation for the embedding potential
is employed) is the fact that it can be used for much larger
systems than the supermolecular one and can even be applied in
multiscale molecular simulations.48,51�53 As formally demon-
strated in our previous studies,47�50 the embedding operator
can be represented in terms of a local potential vemb(rB) (orbital-
free embedding potential), which is determined by the pair of
electron densities, FA, describing the embedded system A and
constructed using the |Ψemb

(A) æ wave function, and FB, represent-
ing the electron density of the environment B. Unfortunately,
except for some analytically solvable systems,54 the precise
dependence of vemb(rB) on FA and FB is not known. Only its
electrostatic component is known exactly. The nonelectrostatic
component, which arises from the nonadditivity of the density
functionals for the exchange-correlation and kinetic energies,
must be approximated or reconstructed, either analytically
(if possible)54 or numerically.55�57 In the case of the hydro-
gen-bonded environments that interest us in this study, the
electrostatic component of the exact embedding potential can be
expected to dominate and the overall accuracy of the environ-
ment-induced changes of the electronic structure of embedded
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species can be expected to be accurately described. Indeed, a
number of our previous studies58,59 show that the currently
known approximants to the relevant functional representations
of vemb(rB) in terms of FA and FB are adequate.

Our past examinations of the formal and practical aspects of
the FDET methodology have largely focused on model systems
or direct comparisons with experimental results. Analytically
solvable model systems (see ref 54) are especially important,
since, as pointed out above, they enable one to develop ideas
about the dependence of the embedding potential vemb(rB) on
densities FA and FB, but real many-electron systems may be quite
different than models. A comparison with experimental results is
clearly the ultimate goal of any modeling technique, and FDET is
no different in this regard, but it often happens that experiments
have their own error bars and their proper interpretation may
require additional considerations and the incorporation of phy-
sical effects that are not included in the purely electronic
structure calculations. This study offers an alternative way of
testing the FDET techniques. Thus, the main objective of the
present work is to make a direct comparison of the benchmark
results obtained in the high-level, supermolecular, wave function-
based EOMCC calculations, using the aforementioned size-
intensive modification of the CR-EOMCC(2,3) method,29,30

designated as δ-CR-EOMCC(2,3), with those produced by the
embedding-theory-based FDET approach47�50 and the super-
molecular TDDFT methodology. To this end, we obtain the
δ-CR-EOMCC(2,3)-based shifts in the vertical excitation energy
corresponding to the π f π* transition in the organic chromo-
phore, cis-7-hydroxyquinoline (cis-7HQ), induced by formation
of hydrogen-bonded complexes with eight different environ-
ments defined by the water, ammonia, methanol, and formic acid
molecules and their selected aggregates consisting of up to three
molecules, for which, as shown in this work, reliable EOMCC
data can be generated and which were previously examined using
laser resonant two-photon UV spectroscopy,5,59 and we use the
resulting reference shift values to assess the quality of the
analogous spectral shifts obtained in the FDET and super-
molecular TDDFT calculations.

Having access to accurate reference EOMCC data enables us
to explore various aspects of the FDET methodology and
approximations imposed within. For example, in addition to
the approximations used for the nonelectrostatic component of
the embedding potential vemb(rB), the FDET techniques exploit
various forms of the electron density of the environment FB.
Since FB is an assumed quantity in the FDET considerations, its
choice may critically affect the calculated environment-induced
shifts in observables.60,61 The dependence of the FDET values
of the shifts in the excitation energy of cis-7HQ induced by the
complexation with hydrogen-bonded molecules on the form of
FB represents one of the most important aspects of the present
study. Among other issues discussed in this work are the basis set
dependence of the FDET, supermolecular TDDFT, and
EOMCC results, the usefulness of the monomer vs super-
molecular basis expansions in the FDET calculations, and the
role of approximations that are used to define the exchange-
correlation potentials in the FDET and supermolecular TDDFT
calculations.

Although the main focus of this work is a comparison of the
embedding-theory-based FDET and supermolecular TDDFT
results with the high-level ab initio EOMCC data to demonstrate
the advantages of the FDET approach over the conventional
supermolecular TDDFTmethodology in a realistic application, a

comparison of the theoretical shifts with the corresponding
experimental data5,59 is discussed as well. The gas-phase com-
plexes examined in this paper have been intensely studied, both
experimentally and theoretically, since some of these complexes,
particularly the larger ones, can be viewed as models of proton-
transferring chains in biomolecular systems.1,62

2. METHODS

As explained in the Introduction, the main goal of this study is
a comparison of the shifts in the excitation energy corresponding
to the π f π* transition in the cis-7HQ system, induced by the
formation of hydrogen-bonded complexes of cis-7HQ with a
number of small molecules, resulting from the embedding-
theory-based FDET approach and supermolecular TDDFT
calculations, with those obtained with the EOMCC-based
δ-CR-EOMCC(2,3) scheme that provides the theoretical refer-
ence data. This section provides basic information about the
electronic structure theories exploited in this work. Since the
supermolecular TDDFT approach is a well-established metho-
dology, our description focuses on the FDET and EOMCC
methods used in our calculations.
2.1. Frozen-Density Embedding Theory. The FDET

formalism47�50,63 provides basic equations for the variational
treatment of a quantum-mechanical subsystem embedded in a
given electronic density. Various FDET-based approaches devel-
oped by us47�50,54,58,64 and others,65�69 differing in the way the
environment density is generated, the choice made for the
approximants for the relevant density functionals, or the choice
for the quantum-mechanical descriptors for the embedded
subsystem, are in use today. Below, we outline the basic elements
of the FDET methodology.
1. Basic Variables. The total system AB, consisting of a

molecule or an aggregate of molecules of interest, A, embedded
in the environment B created by the other molecule(s), is
characterized by two types of densities. The first one is the
density of the embedded molecule(s), FA(rB), which is typically
represented using one the following auxiliary quantities: (i) the
occupied orbitals of a noninteracting reference system {φi

(A)(rB),
i = 1, ..., NA},

47 (ii) the occupied and unoccupied orbitals of a
noninteracting reference system,63 (iii) the interacting wave
function,49 or (iv) the one-particle density matrix.50 The second
one is the density of the environment, FB(rB), which is fixed for a
given electronic problem (“frozen density”).
2. Constrained Search. The optimum density FA(rB) of the

system A embedded in the environment B, represented by the
fixed density FB(rB) satisfyingZ

FBð rBÞ d rB ¼ NB ð6Þ

is obtained by performing the following constrained search:

EðAÞemb½FB� ¼ min
F g FB

EHK ½F� ¼ min
FA

EHK ½FA þ FB� ð7Þ

subject to the conditionsZ
Fð rBÞ d rB ¼ NA þNB ð8Þ

and Z
FAð rBÞ d rB ¼ NA ð9Þ
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where EHK[F] in eq 7 is the usual Hohenberg�Kohn energy
functional.
3. Constrained Search by Modifying the External Potential.

In practice, the search for the optimum density FA, defined by
eq 7, is conducted by solving eq 4, in which Ĥ(A) is the
environment-free Hamiltonian of the isolated system A and
V̂ emb
(A) = ∑i=1

NA vemb(rB), where v̂emb(rB) has the form of a local,
orbital-free, embedding potential vemb

eff (rB), determined by
the pair of densities FA(rB) and FB(rB) and designated by
vemb
eff [FA,FB;rB].
4. Orbital-Free Embedding Potential. As shown earlier,49 the

relationship between the local potential vemb
eff [FA,FB;rB] and

densities FA(rB) and FB(rB) depends on the quantum-mechanical
descriptors that are used as the auxiliary quantities for defining
FA(rB). If we use the orbitals of a noninteracting reference system,
the wave function of the full configuration interaction form, or
the one-particle density matrix as the descriptors to define FA(rB),
the local, orbital-free, embedding potential reads as follows:

vef femb½FA, FB; rB� ¼ vBextð rBÞ þ
Z

FBð rB0Þ
j rB0 � rBj

d rB
0

þ vnadxc ½FA, FB�ð rBÞ þ vnadt ½FA, FB�ð rBÞ ð10Þ
where

vnadxc ½FA, FB�ð rBÞ ¼ δExc½F�
δF

�����
F¼FA þ FB

� δExc½F�
δF

�����
F¼FA

ð11Þ

and

vnadt ½FA, FB�ð rBÞ ¼ δTs½F�
δF

�����
F¼FA þ FB

� δTs½F�
δF

�����
F¼FA

ð12Þ

As we can see, the above equation for vemb
eff [FA,FB;rB] involves the

external and Coulomb potentials due to the environment B and
the vxc

nad[FA,FB](rB) and vt
nad[FA,FB](rB) components that arise

from the nonadditivities of the exchange-correlation and kinetic
energy functionals of the Kohn�Sham formulation70 of DFT,71

Exc[F] and Ts[F], respectively.
5. Kohn�Sham Equations with Constrained Electronic Den-

sity. Once vemb
eff [FA,FB;rB] is defined, as in eq 10, and if we use a

noninteracting reference system to perform the constrained
search given by eq 7, the corresponding orbitals φi

(A), i =
1, ..., NA, of the system A embedded in the environment B
are obtained from the following Kohn�Sham-like equations
[cf. eqs 20 and 21 in our earlier work47]:

�1
2
r2 þ vef fKS½FA; rB� þ vef femb½FA, FB; rB�

� �
φ
ðAÞ
i ¼ εðAÞi φ

ðAÞ
i

ð13Þ
where vKS

eff [FA;rB] is the usual expression for the potential of the
Kohn�Sham DFT for the isolated system A. After obtaining
the orbitals φi

(A) and the corresponding orbital energies εi
(A) by

solving eq 13, we proceed to the determination of the ground-
and excited-state energies and properties, which in this case
describe the system A embedded in the environment B, in a usual
manner, using standard techniques of DFT or TDDFT.
The effectiveness of methods based on eq 13, with

vemb
eff [FA,FB;rB] determined using eq 10, in the calculations of
changes in the electronic structure arising due to the interac-
tions between the embedded system and its environment was

demonstrated in a number of applications, including vertical
excitation energies,59,63 ESR hyperfine coupling constants,72,73

ligand-field splittings of f levels in lanthanide impurities,60

NMR shieldings,74 dipole and quadrupole moments, and electro-
nic excitation energies and frequency-dependent polarizabilities.75

The FDET strategy, as summarized above, is expected to cal-
culate the shifts in the vertical excitation energy corresponding
to the π f π* transition in the cis-7HQ system due to its
environment in a reasonable manner,52 and the present
paper verifies if this is indeed the case by comparing the
results of the FDET and δ-CR-EOMCC(2,3)-based EOMCC
calculations.
In this context, it is useful to mention two other approaches

related to FDET that aim at the description of a system consisting
of subsystems, including the situation of a molecule or a
molecular complex embedded in an environment which interests
us here, namely, the subsystem formulation of DFT (SDFT)76,77

and the recently developed partition DFT (PDFT).78 In analogy
to FDET, in the SDFT approach, the charge of each subsystem is
assumed to be an integer, whereas PDFT allows for fractional
subsystem charges. In the exact limit, both SDFT and PDFT lead
to the exact ground-state electronic density and energy of the
total system under investigation, providing an alternative to the
conventional supermolecular Kohn�Sham framework. This
should be contrasted with the FDET approach, which does not
target the exact ground-state electronic density of the total
system AB but, rather, the density of subsystem A that minimizes
the Hohenberg�Kohn energy functional of the total system,
EHK[FA þ FB], using a fixed form of the environment density
FB in the presence of constraints, as in eqs 6�9. Thus, FDETmay
lead to the same total ground-state density as SDFT, Kohn�
ShamDFT, or PDFT, but only when the specific set of additional
assumptions and constraints is employed.48 Indeed, in the case of
the total system AB consisting of two subsystems A and B, where
A is a molecular system embedded in environment B, the
SDFT approach searches for the pure-state, noninteracting,
v-representable subsystem densities FA and FB that minimize the
Hohenberg�Kohn energy functional EHK[FA þ FB]

EðABÞ ¼ min
FA, FB

EHK ½FA þ FB� ð14Þ

subject to the constraints given by eqs 6�9. Thus, the sufficient
condition for reaching the exact ground-state density of the total
system AB, FAB, in SDFT is the decomposability of FAB into a
sum of two pure-state, noninteracting, v-representable densities
FA and FB representing subsystems A and B consisting of the
integer numbers of electrons, NA and NB, respectively (see the
discussion in ref 48). The FDET approach does not search for
the exact ground-state density FAB of the total system AB. It uses
the variational principle described by eq 7 to find the density,
which minimizes the total ground-state energy in the presence of
the constraint

F g FB ð15Þ
with the subsystem density FB given in advance. As a result, the
total density obtained with FDET is not equal to the exact
ground-state density FAB except for one specific case where the
difference between FAB(rB) and the assumed density FB(rB) is
representable using one of the aforementioned auxiliary descrip-
tors, including orbitals of the noninteracting reference system,47

interacting wave function,49 or one particle-density matrix.50

Thus, by the virtue of the Hohenberg�Kohn theorem, unless
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FB(rB) is representable using the above auxiliary descriptors, the
FDET approach can only give the upper bound to the exact
ground-state energy of the total system AB,

EðAÞemb½FB� g EðABÞ ð16Þ
Although there are differences between SDFT and FDET, as

pointed out above, both methodologies have a lot in common as
well. In particular, any computer implementation of the FDET
approach can easily be converted into the SDFT algorithm. For
example, as shown in the original numerical studies based on
SDFT concerning atoms in solids76,77 and in the recent imple-
mentation of SDFT for molecular liquids,79 in the SDFT
approach one has to solve a system of coupled Kohn�Sham
equations, which is similar to the system represented by eq 13.
One of the most efficient schemes for solving such systems is the
“freeze-and-thaw” iterative procedure introduced in ref 80. The
“freeze-and-thaw” algorithm was exploited in a number of SDFT
studies, including those reported in refs 81�83, and the same
algorithm is used in the present work to carry out the FDET
calculations for the hydrogen-bonded complexes of the cis-7HQ
system. The “freeze-and-thaw” scheme for solving the coupled
Kohn�Sham-like equations of FDET and SDFT was previously
used by us in the methodological studies on approximants to
the bifunctional of the nonadditive kinetic energy potential
vt
nad[FA,FB](rB) (see, e.g., refs 64, 84, and 85) and in the pre-
paratory stages for the large-scale FDET simulations, in which
the search defined by eq 7 is initially performed for smaller model
systems in order to establish the adequacy of the simplified form
of FB(rB) to be used in the subsequent calculations for the target
large system. We also demonstrated that the “freeze-and-thaw”
procedure for solving the coupled Kohn�Sham-like equations of
the type seen in eq 13 can be performed simultaneously with
displacing nuclear positions, accelerating the SDFT-based geom-
etry optimizations.86

Finally, it should be noted that the relaxation of the environ-
ment density FB during the SDFT “freeze-and-thaw” iterations is
accompanied by errors which are introduced by the approximant
to the bifunctional of the nonadditive kinetic energy potential
vt
nad[FA,FB](rB), eq 12, and which can artificially be enhanced by
the relaxation of FB. Thus, when the expected polarization effects
are small, the relaxation of FB during the SDFT iterations should
be avoided, and the results presented in section 4 clearly show
this. This problem does not enter the nonrelaxed FDET con-
siderations, in which one fixes the form of FB prior to FDET
iterations. On the other hand, one needs to be aware of the fact
that if the electronic polarization effects are strong or if the goal is
to obtain embedding potentials that mimic supermolecular
TDDFT calculations, one should use the fully relaxed “freeze-
and-thaw” iterations to optimize both components of the total
electronic density FAB, i.e., FA and FB, not just FA. Indeed, as
shown in section 4, the FDET results for the spectral shifts in the
cis-7HQ chromophore induced by complexation, in which FB is
allowed to relax, are quite close to the results of supermolecular
TDDFT calculations, even though the latter results are generally
poor and far from the EOMCC benchmark values and the
corresponding experimental data. The fact that the relaxed
FDET calculations lead to a considerably worse description of
the complexation-induced shifts in cis-7HQ than the nonrelaxed
ones has several reasons. One of them is the aforementioned
problem of the errors introduced by the approximants used to
represent vt

nad[FA,FB](rB), which penalize the overlap between FA

and FB. Another is the realization of the fact that the relaxation of
FB in the FDET considerations is not necessarily the same as the
physical effect of the electronic polarization of the environment B
by subsystem A, i.e., one cannot expect automatic improvements
in the results of the FDET calculations when FB is allowed to
relax, particularly when the polarization effects are small. The
relaxation of the environment density FB within the FDET
framework is related to a complex notion of the pure-state
noninteracting v-representability of the target subsystem density
FA, which does not automatically translate into the physical
polarization of B by A. Indeed, let FB,iso designate the exact
ground-state density of the isolated species B and let FB,fro be a
particular choice of FB used in FDET. If FB,fro is chosen in such a
way that the density difference FA t FAB � FB,fro, where FAB
represents the exact ground-state density of the total system AB,
is pure-state v-representable, we can obtain this FA by solving the
Kohn�Sham system given by eq 13. Most likely, there is an
infinite number of densities FB,fro that lead to the pure-state
v-representable FA. Each one of them will result in a different
solution for FA and, what is more important here, in a different
relaxation, as measured by the differenceΔFB� FB,fro� FB,iso. In
particular, if FB,iso is one of the densities FB,fro that guarantees the
pure-state noninteracting v-representability of FA, there is no
physical relaxation at all (ΔFB = 0), and the “freeze-and-thaw”
calculations are not needed, regardless of whether the physical
polarization of B by A is significant or not. It is also worth
mentioning that although the pure-state noninteracting v-repre-
sentability of FA cannot be a priori assured, there are strong
indications from the recent studies of exactly solvable systems54

that even if the N-representable density FA associated with a
given FB,fro is not pure-state v-representable, it can be approached
arbitrarily closely by a solution of eq 13 obtained with a suitably
chosen smooth embedding potential. All of this demonstrates
that the connection between the mathematical (in practice,
numerical) relaxation of FB in the FDET considerations and
the physical polarization of the environment B by subsystem
A is far from obvious. For this reason, comparing the results of
the nonrelaxed and relaxed FDET calculations with the inde-
pendent high-level ab initio data obtained with the carefully
validated wave function theory is very important. The main
objective of the present study is to demonstrate that when the
polarization of the environment is small, as is the case when the
weakly bound complexes of the cis-7HQ molecule are examined,
one is better off by using a simplified FDET procedure in which
the relaxation of the a priori determined environment density
FB is neglected, as this leads to a considerably better agreement
with the results of the converged EOMCC calculations and the
experiment.
2.2. Equation-of-Motion Coupled-Cluster Calculations.

The main goal of the present work is to compare the shifts in
the πf π* excitation energy of the cis-7HQ system, induced by
the complexation of cis-7HQ with small hydrogen bonded
molecules, obtained with the FDET approach, with the results
of the supermolecular EOMCC calculations with singles, dou-
bles, and noniterative triples, exploiting the size-intensive mod-
ification of the CR-EOMCC(2,3) approach,29,30 abbreviated as
δ-CR-EOMCC(2,3), which is used to provide the required
reference theoretical data. The basic idea of the EOMCC
formalism is the following wave function ansatz:6�9

jΨμæ ¼ Rμ e
T jΦæ ð17Þ
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where |Ψμæ is the ground (μ = 0) or excited (μ > 0) state, |Φæ is
the reference determinant, which usually is the Hartree�Fock
state [in all of the EOMCC calculations reported in this work,
the restricted Hartree�Fock (RHF) configuration], and Rμ is
the linear excitation operator which generates the excited-state
wave functions |Ψμæ from the CC ground state |Ψ0æ = eT|Φæ.
Here and elsewhere in this article, we use a convention in which
the μ = 0 excitation operator Rμ=0 is defined as a unit operator,
Rμ=0 = 1, to incorporate the ground- and excited-state cases
within a single set of formulas. TheT operator entering the above
definitions is the usual cluster operator of the ground-state CC
theory, which is typically obtained by truncating the correspond-
ing many-body expansion

T ¼ ∑
N

n¼ 1
Tn ð18Þ

where

Tn ¼ ∑
i1 < ::: < in, a1 < ::: < an

ti1:::ina1:::ana
a1 :::aanain :::ai1 ð19Þ

is the n-body component of T, at some, preferably low, excitation
levelM <N, and by solving the nonlinear system of equations for
cluster amplitudes ta1...an

i1...in with n e M, which define the truncated
form of T, designated as T(M), resulting from the substitution of
the CC wave function ansatz into the electronic Schr€odinger
equation and the projection of the resulting equation on the
excited determinants |Φi1...in

a1...anæ that correspond to the many-body
components Tn included in T(M). Here and elsewhere in the
present article, we use a standard notation in which i1,i2,... or i,j,...
and a1,a2,... or a,b,... are the occupied and unoccupied spin�
orbitals, respectively, and aak (aik) designate the usual creation
(annihilation) operators. Once the ground-state operator T and
the corresponding ground-state CC energy E0 are determined,
one obtains the many-body components

Rμ, n ¼ ∑
i1 < ::: < in, a1 < ::: < an

ri1:::inμ, a1:::ana
a1 :::aanain :::ai1 ð20Þ

of the linear excitation operator

Rμ ¼ rμ, 01þ ∑
N

n¼ 0
Rμ, n ð21Þ

which is typically truncated at the same excitation levelM as the
cluster operator T, and the corresponding vertical excitation
energies

ωμ ¼ Eμ � E0 ð22Þ
by solving the EOMCC eigenvalue problem involving the similarity-
transformed Hamiltonian H

_
(M) = e�T(M)

H eT
(M)

in the subspace of
the N-electron Hilbert space spanned by the excited determinants
|Φi1...in

a1...anæ that correspond to the many-body components Rμ,n in-
cluded in Rμ.
The basic EOMCC approximation, in which M = 2, so that

T≈ T(2) = T1þ T2 and Rμ≈ Rμ
(2) = rμ,01þ Rμ,1þ Rμ,2, defining

the EOMCCSD approach,7�9 in which one diagonalizes
the similarity-transformed Hamiltonian of CCSD, H

_
(2) =

e�T(2)

H eT
(2)

, in the space spanned by singly and doubly excited
determinants |Φi

aæ and |Φij
abæ, and its linear-response CCSD

counterpart15,16 have been successful in describing excited
states dominated by one-electron transitions, but this success
does not automatically extend to the more complicated, more

multireference excited electronic states, such as those character-
ized by a significant two-electron excitation nature (cf. refs 29, 30,
87�93 for examples). There also are cases of excited states
dominated by singles, where the EOMCCSD theory level may be
insufficient to obtain high-quality results.94,95 Thus, particularly
in the context of this study, where we expect the EOMCC theory
to provide accurate reference data for the FDET and TDDFT
calculations, it is important to examine if the EOMCC results
used by us are reasonably well converged with the truncations
in T and Rμ. Ideally, one would like to perform the full
EOMCCSDT (EOMCC with singles, doubles, and triples)
calculations96�98 and compare them with the corresponding
EOMCCSD results to see if the latter results are accurate enough.
Unfortunately, it is virtually impossible to carry out the full
EOMCCSDT calculations for the cis-7HQ system and its com-
plexes investigated in this work due to a steep increase of
the CPU time and storage requirements characterizing the
EOMCCSDT approach that scale as no

3nu
5 and ∼no

3nu
3 with

the numbers of occupied and unoccupied orbitals, no and nu,
respectively, as opposed to the no

2nu
4 CPU time and ∼no

2nu
2

storage requirements of EOMCCSD. Thus, one has to resort to
one of the approximate treatments of triple excitations in
EOMCC that replace the prohibitively expensive iterative CPU
steps of EOMCCSDT that scale asN 8 with the system sizeN to
the more manageable N 6�N 7 steps.
A large number of approximate EOMCCSDT approaches

and their linear-response analogs have been proposed to
date.29�32,87�89,91,92,96,97,99�106 The noniterative EOMCC
methods, in which one adds corrections due to triples to the
EOMCCSD energies, such as EOM-CC(2)PT(2)100 and its
size-intensive EOM-CCSD(2)T

31 analog, CCSDR3,102,103

EOMCCSD(T),101 EOMCCSD(~T),32 EOMCCSD(T0),32

CR-EOMCCSD(T)87,88,91,92 and the related N-EOMCCSD(T)
approach,106 and CR-EOMCC(2,3),29,30 including the spin-flip
variant of the CR-EOMCC(2,3) approach of refs 29 and 30
considered in ref 107, are particularly promising in this regard,
since they represent computational black boxes similar to those
of the popular CCSD(T) ground-state approach108 or its CR-
CC(2,3) extension.26�28 All of the abovemethods greatly reduce
the computer costs of full EOMCCSDT calculations, while
improving the EOMCCSD results. The improvements are
particularly significant for the excited states characterized by
significant double-excitation components, but they are often
non-negligible for states dominated by one-electron transitions.
For example, the most promising EOM-CCSD(2)T, CCSDR3,
EOMCCSD(~T), CR-EOMCCSD(T), N-EOMCCSD(T), and
CR-EOMCC(2,3) approaches are characterized by the iterative
no

2nu
4 steps of EOMCCSD and the noniterative no

3nu
4 steps

needed to construct the triples corrections to the EOMCCSD
energies, while eliminating the need for storing the∼no

3nu
3 triply

excited amplitudes defining the T and Rμ operators. This makes
these methods applicable to much larger problems than those
that can be handled by full EOMCCSDT, including the hydro-
gen-bonded complexes of the cis-7HQ system considered in
this work.
In this paper, we focus on the size-intensivemodification of the

CR-EOMCC(2,3) method of refs 29 and 30 defining the δ-CR-
EOMCC(2,3) approach implemented in this work. The
CR-EOMCC(2,3) approach and the underlying ground-state
CR-CC(2,3) approximation26�28 are examples of the renorma-
lized CC/EOMCC schemes, which are based on the idea of
adding the a posteriori, noniterative, and state-specific corrections
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δμ due to higher-order excitations, neglected in the conventional
CC/EOMCC calculations defined by some truncation level M,
such as CCSD or EOMCCSD, to the corresponding CC/
EOMCC energies. The formal basis for deriving the computa-
tionally manageable expressions for corrections δμ is provided
by one of the forms26,27,87�89,109�111 of the expansion describing
the difference between the full CI and CC/EOMCC energies
in terms of the generalized moments of the CC/EOMCC
equations characterizing the truncated CC/EOMCC method
we want to correct. If we are interested in correcting the results
of the CC/EOMCC calculations truncated at M-tuple excita-
tions, the moments that enter the expressions for the relevant
energy corrections δμ are defined as projections of the CC/
EOMCC equations with T and Rμ truncated atM-body compo-
nents on the excited determinants |Φi1...in

a1...anæ with n > M that
are disregarded in the conventional CC/EOMCC considera-
tions, i.e.

M i1:::in
μ, a1:::anðMÞ ¼ ÆΦa1:::an

i1:::in
jðH
_ðMÞRðMÞ

μ ÞjΦæ ð23Þ
[Rμ

(M) in eq 23 is the Rμ operator truncated at the M-body
component Rμ,M]. All of the resulting moment expansions of the
full CI energy of the μth electronic state can be cast into the
generic form

δμ ¼ ∑
Nμ,M

n¼M þ 1
∑

i1 < ::: < in, a1 < ::: < an

l a1:::anμ, i1:::inM
i1:::in
μ, a1:::anðMÞ ð24Þ

withNμ,M representing thehighest value ofn forwhichM μ, a1...an
i1...in (M)

is still nonzero, and the only essential difference between various
approximations based on eq 24 is in the way one handles the
coefficients l μ,i1...in

a1...an .
In the specific case of the CR-EOMCC(2,3) approach that

interests us here, one calculates the energies of the ground and
excited states as

Eμ ¼ EðCCSDÞμ þ ∑
i < j < k, a < b < c

l abcμ, ijk M
ijk
μ, abcð2Þ ð25Þ

where Eμ
(CCSD) are the CCSD (μ = 0) and EOMCCSD (μ > 0)

energies, M μ,abc
ijk (2) are the moments of the CCSD/

EOMCCSD equations corresponding to triple excitations,
which are defined by eq 23 in which M = 2, and l μ,ijk

abc are the
deexcitation amplitudes that one can calculate using the quasi-
perturbative expressions shown in refs 29 and 30. The l μ,ijk

abc

amplitudes used in the CR-EOMCC(2,3) considerations are
expressed in terms of the one- and two-body components of the
deexcitation operator defining the left EOMCCSD eigenstate,9

and the one-body, two-body, and—in the full implementation of
CR-EOMCC(2,3) defining variant D of it designated as CR-
EOMCC(2,3),D—selected three-body components of the si-
milarity-transformed Hamiltonian of CCSD, H

_
(2). The latter

components enter the Epstein�Nesbet-like denominator for
triples defining the l μ,ijk

abc amplitudes in the CR-EOMCC(2,3),D
approach. In the simplified variant A of CR-EOMCC(2,3),
abbreviated as CR-EOMCC(2,3),A and equivalent to the
EOM-CC(2)PT(2) method of ref 100, one replaces the
Epstein�Nesbet-like denominator defining l μ,ijk

abc , which in
variant D of CR-EOMCC(2,3) is calculated as ωμ

(CCSD) �
(ÆΦijk

abc|H
_
1
(2)|Φijk

abcæ þ ÆΦijk
abc|H

_
2
(2)|Φijk

abcæ þ ÆΦijk
abc|H

_
3
(2)|Φijk

abcæ),
where ωμ

(CCSD) is the EOMCCSD excitation energy and H
_
n
(2)

is the n-body component of H
_
(2), by the simplified form of it,

which represents theMøller�Plesset-like denominator for triple
excitations, ωμ

(CCSD)�(εa þ εb þ εc � εi � εj � εk). The
differences between variants A and D are substantial, in favor of
CR-EOMCC(2,3),D, when the excited states of interest are
dominated by two-electron transitions. When the excited states
in question are dominated by one-electron transitions, as is the
case when we examine the πf π* excitations in cis-7HQ and its
complexes, the CR-EOMCC(2,3),A and CR-EOMCC(2,3),D
approaches provide similar results. We refer the reader to the
original work on the CR-EOMCC(2,3) approach and its
variants29,30 for further details. The similarity of the CR-
EOMCC(2,3),A and CR-EOMCC(2,3),D excitation energies
for the cis-7HQ system and its hydrogen-bonded complexes
examined in this study is shown in section 4.1.
Before discussing the computational details of the FDET,

TDDFT, and EOMCC calculations reported in this work, we
must explain how one obtains the desired δ-CR-EOMCC(2,3)
results. As shown in refs 30 and 31, although the ground-state
CR-CC(2,3),D energy and its CR-CC(2,3),A analog, which is
equivalent to the CCSD(2)T approach of ref 112, are size
extensive, being ideally suited for examining the weakly bound
complexes involving larger molecules,43�45 such as those studied
in this work, their excited state CR-EOMCC(2,3),D and CR-
EOMCC(2,3),A [or EOM-CC(2)PT(2)] analogs do not satisfy
the property of size intensivity satisfied by EOMCCSD,16,33

i.e., the vertical excitation energy of a noninteracting system
A þ B, in which fragment A is excited, resulting from the
CR-EOMCC(2,3) or EOM-CC(2)PT(2) calculations, is not
the same as that obtained for the isolated system A. Although
the departure from strict size intensivity in the CR-EOMCC
calculations of vertical and adiabatic excitation energies is in many
cases of relatively minor significance when compared to other
sources of errors,92 this may be a more serious issue when
examining the shifts in the excitation energy due to the formation
of weakly bound complexes. The lack of size intensivity of the
CR-EOMCC(2,3) and EOM-CC(2)PT(2) excitation energies
can be traced back to the presence of the size-extensive contribution

βμ ¼ ∑
i < j < k, a < b < c

ðrμ, 0l abcμ, ijk � l abc0, ijkÞM ijk
0, abcð2Þ ð26Þ

in the vertical excitation energy

ωðCR-EOMCCð2, 3ÞÞ
μ ¼ EðCR-EOMCCð2, 3ÞÞ

μ � EðCR-CCð2, 3ÞÞ0 ð27Þ
Indeed, using the above equations for the CR-EOMCC(2,3) ener-
gies, particularly eq 25, we can decompose the CR-EOMCC(2,3)
excitation energy as follows:30,31

ωðCR-EOMCCð2, 3ÞÞ
μ ¼ ωðCCSDÞ

μ þ Rμ þ βμ ð28Þ
Here, ωμ

(CCSD) is the vertical excitation energy of EOMCCSD,

Rμ ¼ ∑
i < j < k, a < b < c

l abcμ, ijk ~M ijk
μ, abcð2Þ ð29Þ

where ~M ijk
μ, abc(2) = ÆΦijk

abc|H
_
(2)(Rμ,1þ Rμ,2)|Φæ is the contribu-

tion to the triply excited momentM ijk
μ, abc(2) of EOMCCSD due

to the one- and two-body components of Rμ
(2), and βμ is the

quantity defined by eq 26. Since the EOMCCSD approach is
rigorously size intensive and, as shown in ref 31, the Rμ term is
size intensive as well, the [ωμ

(CCSD) þ Rμ(2,3)] part of the
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CR-EOMCC(2,3) excitation energy ωμ
(CR-EOMCC(2,3)) is a

size-intensive quantity. Unfortunately, the βμ term defined by
eq 26, being a size-extensive contribution that does not cancel
out, grows with the size of the system,30,31 destroying the size
intensivity of ωμ

(CR-EOMCC(2,3)). In order to address this concern
and following the discussion in refs 30 and 31 in this work, we
have implemented the rigorously size-intensive variant of CR-
EOMCC(2,3), designated as δ-CR-EOMCC(2,3), by neglecting
the problematic βμ term in eq 28 and redefining the excitation
energy as follows:

ωðδ-CR-EOMCCð2, 3ÞÞ
μ ¼ ωðCCSDÞ

μ þ Rμ ð30Þ
with Rμ given by eq 29. The resulting δ-CR-EOMCC(2,3)
approach provides a size-intensive description of the excitation
energies and, by defining the total energy of a given electronic
state μ, i.e., Eμ, as a sum of the size-extensive ground-state
CR-CC(2,3) energy and size-intensive excitation energy
ωμ
(δ-CR-EOMCC(2,3)), eq 30, so that

Eμ ¼ EðCR-CCð2, 3ÞÞ0 þωðδ-CR-EOMCCð2, 3ÞÞ
μ

¼ EðCCSDÞμ þ ∑
i < j < k, a < b < c

l abc0, ijkM
ijk
0, abcð2Þ

þ ∑
i < j < k, a < b < c

l abcμ, ijk ~M ijk
μ, abcð2Þ ð31Þ

the size extensive description of state μ, assuming that the
electronic excitation in AB is either in A or in B, but not in both
fragments simultaneously (cf. refs 16, 33, and 92). Again, as in the
regular CR-EOMCC(2,3) approach, we can distinguish between
the full variant D of ωμ

(δ-CR-EOMCC(2,3)) and its various approx-
imations, including variant A. The δ-CR-EOMCC(2,3),A meth-
od is equivalent to the EOMCCSD(2)T approach of ref 31 and, if
we limit ourselves to the vertical excitation energies only, to the
EOMCCSD(~T) approach of ref 32. As shown in section 4.1,
variants A and D provide nearly identical results for the vertical
excitation energies in the cis-7HQ chromophore and its com-
plexes, corresponding to the lowest π f π* transition, which
seem to be in good agreement with the experimental data
reported in refs 5 and 59.

3. COMPUTATIONAL DETAILS

In order to examine the performance of the FDET approach
and to demonstrate its advantages when compared with the
results of supermolecular TDDFT calculations, both bench-
marked against the high-level EOMCC data of δ-CR-EOM-
CC(2,3) quality, we have investigated the shifts in the vertical
excitation energy ωπfπ* corresponding to the lowest π f π*
transition in the cis-7HQ chromophore induced by the formation
of hydrogen-bonded complexes shown in Figure 1, which were
previously examined using laser resonant two-photon UV
spectroscopy.5,59 The eight complexes considered in this work
include the cis-7HQ 3 3 3 B systems, where B represents one of the
following environments: a single water molecule, a single am-
monia molecule, a water dimer, a single molecule of methanol, a
single molecule of formic acid, a trimer consisting of ammonia
and two water molecules, a trimer consisting of ammonia, water,
and ammonia, and a trimer consisting of two ammonia and one
water molecules (see Figure 1). For each cis-7HQ 3 3 3 B complex
and for each electronic structure approach employed in this
study, the corresponding environment-induced shift Δωπfπ*

was calculated as a difference between the value of ωπfπ*

characterizing the complex and that obtained for the isolated
cis-7HQmolecule, using the nuclear geometries of cis-7HQ 3 3 3 B
and cis-7HQ optimized in the second-order Møller�Plesset
perturbation theory (MP2)113 calculations employing the aug-
cc-pVTZ basis set.114,115 The optimizations of nuclear geome-
tries of the cis-7HQ and cis-7HQ 3 3 3 B systems were performed
using the analytic gradients of MP2 available in the Gaussian
03 package.116 As in all other post-Hartree�Fock wave function
calculations discussed in this article, the lowest-energy core
molecular orbitals (MOs) correlating with the 1s shells of the
C, N, and O atoms were frozen in these optimizations.

Once the nuclear geometries of the cis-7HQ and cis-7HQ 3 3 3 B
systems were determined, we performed the desired FDET and
supermolecular TDDFT and EOMCC calculations of the ver-
tical excitation energies Δωπfπ* and the environment-induced
shifts Δωπfπ*. The most essential information about these
calculations, including basis sets, key algorithmic details, and
computer codes used to perform them, is provided below.
3.1. Reference EOMCC Calculations. In order to establish

the reference EOMCC values of the environment-induced shifts
Δωπfπ*, we performed a series of EOMCCSD calculations
for the cis-7HQ, 7HQ 3 3 3H2O, and 7HQ 3 3 3NH3 systems
using five different basis sets, including 6-31þG(d),117�119

6-31þþG(d,p),117�119 6-311þG(d),119,120 aug-cc-pVDZ,114,115

and the [5s3p2d/3s2p] basis of Sadlej,121 designated as POL,
followed by the EOMCCSD and δ-CR-EOMCC(2,3) computa-
tions for all eight cis-7HQ 3 3 3 B complexes examined in this work
using the largest basis sets that we could afford, namely,

Figure 1. The eight hydrogen-bonded complexes of the cis-7HQ
molecule studied in the present work.



1655 dx.doi.org/10.1021/ct200101x |J. Chem. Theory Comput. 2011, 7, 1647–1666

Journal of Chemical Theory and Computation ARTICLE

6-311þG(d) in the EOMCCSD case and 6-31þG(d) in the case
of the δ-CR-EOMCC(2,3) approach. The main purpose of all of
these calculations was to examine the stability of the final
EOMCC values of the Δωπfπ* shifts, recommended for use
in benchmarking the FDET and supermolecular TDDFT data,
with respect to the choice of the basis set and higher-order
correlation effects neglected in EOMCCSD, but included in δ-
CR-EOMCC(2,3). As explained in section 4.1, the final EOMCC
values of the vertical excitation energies ωπfπ* that are used in
this paper to benchmark the FDET and supermolecular TDDFT
methods were obtained using the composite approach, in which
we augment the EOMCCSD/6-311þG(d) results by the triples
corrections to EOMCCSD energies extracted from the δ-CR-
EOMCC(2,3)/6-31þG(d) calculations, as in the following
formula:

ωπ f π�ðEOMCCÞ ¼ ωπ f π�ðEOMCCSD=6-311þGðdÞÞ
þ ½ωπf π�ðδ-CR-EOMCCð2,3Þ=6-31þGðdÞÞ
�ωπ f π�ðEOMCCSD=6-31þGðdÞÞ� ð32Þ

All of the EOMCC calculations reported in this work were
carried out with the programs developed at Michigan State
University described, for example, in refs 26, 30, 91, and 92, that
form part of the GAMESS package.122,123 In order to obtain the
final δ-CR-EOMCC(2,3) results, we had to modify the pre-
viously developed26,30 CR-CC(2,3)/CR-EOMCC(2,3) GA-
MESS routines, since we had to replace the vertical excitation
energy of CR-EOMCC(2,3) given by eq 28 with its size-intensive
δ-CR-EOMCC(2,3) counterpart defined by eq 30. Thanks to
this effort, the present GAMESS code enables the calculations of
three different types of triples corrections to EOMCCSD en-
ergies, including CR-EOMCCSD(T),87,88,91,92 CR-EOM-
CC(2,3),29,30 and δ-CR-EOMCC(2,3), as defined by eqs 30
and 31. The corresponding ground-state CCSD calculations,
which precede the determination of the left CCSD and right and
left EOMCCSD eigenstates that enter the formulas for the triples
corrections of δ-CR-EOMCC(2,3) and the steps needed to
compute the triples corrections of the ground-state CR-CC(2,3)
and excited-state CR-EOMCC(2,3) and δ-CR-EOMCC(2,3)
approaches, were performed with the routines described in ref
124, which form part of GAMESS as well. The RHF orbitals were
employed throughout, and as pointed out above, the lowest-
energy core MOs that correlate with the 1s shells of the non-
hydrogen atoms were frozen in the CCSD, EOMCCSD, and
δ-CR-EOMCC(2,3) calculations. The CCSD/EOMCCSD en-
ergies were converged to 10�7 Hartree. We refer the reader to
refs 26, 30, 91, and 92 for further details of the EOMCC
computer codes and algorithms exploited in this work.
3.2. FDET and Supermolecular TDDFT Calculations. All of

the FDET and supermolecular TDDFT calculations reported in
this article were performed using the linear-response TDDFT
routines available in the ADF2009.01 code.125 In particular, the
FDET calculations followed the general protocol introduced in
ref 58 in which the occupied and unoccupied orbitals for the
embedded chromophore that are obtained by solving the Kohn�
Sham-like system defined by eq 13 are subsequently used within
the linear-response TDDFT framework46 to obtain excitation
energies.
In order to examine the effect of the basis set on the

complexation-induced shifts Δωπfπ*, three STO-type basis
sets125 were employed in the FDET and supermolecular TDDFT
calculations: STO DZP (double-ζ basis with one set of

polarization functions), STO TZ2P (triple-ζ basis with two sets
of polarization functions), and STO ATZ2P, which includes all
TZ2P functions plus one set of diffuse s-STO and p-STO
functions.
The environment density FB used in the FDET calculations

was either nonrelaxed, i.e., constructed using the ground-state
electronic density of the environment obtained by solving the
conventional Kohn�Sham equations for the environment mol-
ecules in the absence of the chromophore, or relaxed, i.e., obtained
with the aforementioned “freeze-and-thaw” procedure.80 We also
examined two types of basis expansions to represent the occupied
and unoccupied orbitals of the chromophore A embedded in the
environment B and densities FA and FB in the FDET calculations.
In the supermolecular expansion approach, all atomic centers of
the total system AB were used to represent the orbitals and
densities. In the monomer-expansion FDET calculations, the
orbitals of the chromophore A embedded in B and the corre-
sponding density FA were represented using the atomic centers of
A, whereas the environment density FB was represented using the
atomic centers of B (see refs 80 and 126 for further information).
The monomer-expansion technique using nonrelaxed FB, which is
the recommended variant of FDET for the type of applications
reported in this article, relies on the approximation, referred to
as the Neglect of Dynamic Response of the Environment
(NDRE), in which we assume that the dynamic response of
the whole system AB to the process of electronic excitation is
limited to chromophore A and that the coupling between the
excitations in the embedded system and in its environment can
be neglected. A comparison of the complexation-induced shifts
Δωπfπ* in the cis-7HQ 3 3 3 B systems resulting from the FDET
and EOMCC calculations, discussed in the next section, clearly
shows that such coupling can indeed be neglected, as the
spectral overlap between cis-7HQ and the environment mol-
ecules bound to it is negligible. The NDRE approximation and
the monomer-expansion-based FDET approach that results
from it are very effective in eliminating spurious electronic
excitations involving the environment (see the discussion in ref
52). If the coupling between the excitations in the embedded
system and in its environment could not be neglected, we would
have to rely on the more general formalism introduced in ref
127 (for the additional discussion of the importance of such
couplings in FDET calculations, see ref 128).
In both the FDET and supermolecular TDDFT calculations,

we used the SAOP scheme129 to approximate the relevant
exchange-correlation potential contributions for the isolated
and embedded chromophore (the FDET case) and for the total
system (the supermolecular TDDFT case). The nonadditive
kinetic energy potential vt

nad[FA,FB](rB), eq 12, that forms part
of the local, orbital-free embedding potential vemb

eff [FA,FB;rB],
eq 10, used in the FDET calculations was approximated
using the generalized gradient approximation (GGA97),126

whereas the nonadditive exchange-correlation component of
vemb
eff [FA,FB;rB], eq 11, was approximated using the Perdew�
Wang (PW91) functional. We also performed calculations in
which the nonadditive kinetic energy potential vt

nad[FA,FB](rB)
was approximated with the help of the recently developed
NDSD approximant,64 which takes into account the exact
conditions that become relevant for the proper behavior of
vt
nad[FA,FB](rB) in the vicinity of nuclei, but we do not show
these results in this article, since they are very similar to those
obtained with GGA97. Because of the small energy differences
that define the spectral shifts examined in this work, we used
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tight convergence criteria when solving the Kohn�Sham and
linear-response TDDFT equations (10�10 hartree).

4. RESULTS AND DISCUSSION

The results of our FDET, supermolecular TDDFT, and
EOMCC calculations for the shifts in the vertical excitation
energy ωπfπ* corresponding to the lowest πf π* transition in
the cis-7HQ chromophore induced by the formation of the eight
complexes shown in Figure 1 are summarized in Tables 1�8 and
Figures 2�5. We begin our discussion with the analysis of the
EOMCCSD and δ-CR-EOMCC(2,3) calculations aimed at
establishing the reference EOMCC values for benchmarking
purposes. The comparison of the FDET shifts Δωπfπ* with the
reference EOMCC, supermolecular TDDFT, and experimental

data is presented immediately afterward. Among the key dis-
cussed aspects are the basis set dependence of the FDET and
supermolecular TDDFT results, the issues created by relaxing
the environment density FB in the FDET calculations, the
usefulness of the monomer vs supermolecular basis expansions
in the FDET considerations, and the effect of the approximations
that are used for the exchange-correlation potentials on the
FDET and supermolecular TDDFT results.
4.1. Reference EOMCC Results. In order to establish the level

of EOMCC theory that would be appropriate for serving as a
reference for the FDET and supermolecular TDDFT calculations
reported in this work, we first examine the dependence of the
environment-induced shifts Δωπfπ* resulting from the
EOMCCSD calculations on the basis set. In Table 1, we compare
the results of the EOMCCSD calculations obtained with the

Table 1. Basis-Set Dependence of the Vertical Excitation Energies ωπfπ* and the Environment-Induced Shifts Δωπfπ*

(in cm �1) Obtained with the EOMCCSD Approach Corresponding to the Lowest π f π* Transition in the cis-7HQ
Chromophore and Its Complexes with the Water and Ammonia Molecules

ωπfπ* Δωπfπ*

basis set 7HQ 7HQ 3 3 3H2O 7HQ 3 3 3NH3 7HQ 3 3 3H2O 7HQ 3 3 3NH3

6-31þG(d) 35171 34643 34396 �528 �775

6-31þþG(d,p) 35120 34597 34351 �523 �769

6-311þG(d) 35046 34500 34263 �546 �783

aug-cc-pVDZ 34707 34182 33923 �525 �784

POL 34596 34077 33819 �519 �777

Table 2. Vertical Excitation Energies ωπfπ* and the Environment-Induced Shifts Δωπfπ* (in cm�1) Obtained with the
EOMCCSD/6-31þG(d), EOMCCSD/6-311þG(d),δ-CR-EOMCC(2,3),A/6-31þG(d), andδ-CR-EOMCC(2,3),D/6-31þG(d)
Approaches, and Their Composite EOMCC,A and EOMCC,D Analogs Defined by eq 32, Corresponding to the Lowest πf π*
Transition in the cis-7HQ Chromophore and Its Various Complexes

environment

EOMCCSD/

6-31þG(d)

EOMCCSD/

6-311þG(d)

δ-CR-EOMCC(2,3),A/

6-31þG(d)

δ-CR-EOMCC(2,3),D/

6-31þG(d) EOMCC,Aa EOMCC,Db Exp.c

ωπfπ*

none 35171 35046 31103 30711 30977 30586 30830

H2O 34643 34500 30558 30199 30415 30056 30240

NH3 34396 34263 30291 29922 30157 29788 29925

2H2O 33867 33699 29700 29378 29532 29210 29193

CH3OH 34830 34695 30717 30428 30582 30293 30363

HCOOH 34505 34371 30368 30056 30235 29922 29816

NH3�H2O�H2O 33381 33218 29171 28863 29008 28701 28340

NH3�H2O�NH3 33542 33385 29355 29036 29197 28879 28694

NH3�NH3�H2O 33302 33136 29088 28812 28922 28646 28348

Δωπfπ*

H2O �528 �546 �544 �512 �562 �530 �590

NH3 �775 �783 �812 �789 �820 �797 �905

2H2O �1304 �1347 �1403 �1333 �1446 �1376 �1637

CH3OH �341 �351 �386 �283 �396 �292 �467

HCOOH �666 �675 �734 �655 �743 �664 �1014

NH3�H2O�H2O �1790 �1828 �1932 �1847 �1969 �1885 �2490

NH3�H2O�NH3 �1629 �1661 �1748 �1675 �1780 �1707 �2136

NH3�NH3�H2O �1869 �1910 �2014 �1899 �2055 �1940 �2482
aDefined by eq 32, in which variant A of CR-EOMCC(2,3) is employed. bDefined by eq 32, in which variant D of CR-EOMCC(2,3) is employed.
cObtained with laser resonant two-photon ionization UV spectroscopy.5
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6-31þG(d), 6-31þþG(d,p), 6-311þG(d), aug-cc-pVDZ, and
POL basis sets for the two smallest complexes, 7HQ 3 3 3H2O
and 7HQ 3 3 3NH3, for whichwe could afford the largest number of
computations. The results in Table 1 indicate that although the
vertical excitation energiesωπfπ* in the bare cis-7HQ system and
its complexes with the water and ammoniamolecules vary with the
basis set (for the basis sets tested here by as much as about
600 cm�1), the environment-induced shifts Δωπfπ* are almost
insensitive to the basis set choice. Although we were unable to
perform a similarly thorough analysis for the remaining complexes
due to prohibitive computer costs, we were able to obtain the
EOMCCSD ωπfπ* and Δωπfπ* values for all of the complexes
examined in this study using the 6-31þG(d) and 6-311þG(d)
basis sets. As shown in Table 2, the differences between the
EOMCCSD/6-31þG(d) and EOMCCSD/6-311þG(d) values

of the environment-induced shifts Δωπfπ* remain small for all
complexes of interest, ranging from 8 cm�1 in the 7HQ 3 3 3NH3

case to 43 cm�1 in the case of 7HQ 3 3 3 (H2O)2, or 1�3%. Thus,
we can conclude that the choice of the basis set, although
important for obtaining the converged ωπfπ* values, is of
relatively little significance when the environment-induced shifts
in the vertical excitation energy corresponding to the lowest πf
π* transition in the cis-7HQ chromophore are considered.
Although the EOMCCSD approach is known to provide an

accurate description of excited states dominated by one-electron
transitions, such as the π f π* transition in cis-7HQ and its
complexes, there have been cases of similar states reported in
the literature, where the EOMCCSD level has not been suffi-
cient to obtain high-quality results.94,95 Moreover, our interest
in this study is in the small energy differences defining the

Table 3. Comparison of the Environment-Induced Shifts
Δωπfπ* (in cm�1) of the Vertical Excitation Energy Corre-
sponding to the Lowest π f π* Transition in the cis-7HQ
Chromophore Resulting from the Monomer-Expansion-
Based FDET and Supermolecular TDDFTCalculations Using
the STOATZ2P Basis Set with the Reference EOMCC,AData

supermolecular FDET

environment EOMCC,A TDDFT

nonrelaxed

FB

relaxed

FB

H2O �562 �944 �645 �768

NH3 �820 �1222 �816 �1005

2H2O �1446 �2280 �1624 �1975

CH3OH �396 �805 �454 �625

HCOOH �743 �1569 �972 �1312

NH3�H2O�H2O �1969 �2838 �1863 �2342

NH3�H2O�NH3 �1780 �2594 �1791 �2232

NH3�NH3�H2O �2055 �2899 �1890 �2436

av. dev. from EOMCC,A 0 �673 �36 �366

av. abs. dev. from EOMCC,A 0 673 104 366

Table 4. Environment-Induced Shifts Δωπfπ* (in cm �1) of
the Vertical Excitation Energy Corresponding to the Lowest
π f π* Transition in the cis-7HQ Chromophore Resulting
from the Supermolecular-Expansion-Based FDET and
Supermolecular TDDFT Calculations Using the STO ATZ2P
Basis Set, along with the Average Errors Relative to the
Reference EOMCC,A Data

supermolecular FDET

environment TDDFT nonrelaxed FB relaxed FB

H2O �944 �529 �840

NH3 �1222 �849 �1082

2H2O �2280 �1659 �2032

CH3OH �805 �474 �698

HCOOH �1569 �1025 �1587

NH3�H2O�H2O �2838 �1933 �2526

NH3�H2O�NH3 �2594 �1859 �2372

NH3�NH3�H2O �2899 �1940 �2524

av. dev. from EOMCC,A �673 �62 �486

av. abs. dev. from EOMCC,A 673 108 486

Table 5. Environment-Induced Shifts Δωπfπ* (in cm �1) of
the Vertical Excitation Energy Corresponding to the Lowest
π f π* Transition in the cis-7HQ Chromophore Resulting
from the Monomer-Expansion-Based FDET and Supermole-
cular TDDFT Calculations Using the STO TZ2P Basis Set,
along with the Average Errors Relative to the Reference
EOMCC,A Data

supermolecular FDET

environment TDDFT nonrelaxed FB relaxed FB

H2O �876 �636 �757

NH3 �1227 �849 �1016

2H2O �2298 �1635 �1962

CH3OH �847 �491 �665

HCOOH �1602 �1012 �1334

NH3�H2O�H2O �2811 �1911 �2355

NH3�H2O�NH3 �2519 �1806 �2177

NH3�NH3�H2O �2871 �1896 �2370

av. dev. from EOMCC,A �660 �58 �358

av. abs. dev. from EOMCC,A 660 113 358

Table 6. Environment-Induced Shifts Δωπfπ* (in cm �1) of
the Vertical Excitation Energy Corresponding to the Lowest
π f π* Transition in the cis-7HQ Chromophore Resulting
from the Monomer-Expansion-Based FDET and Supermole-
cular TDDFT Calculations Using the STO DZP Basis Set,
along with the Average Errors Relative to the Reference
EOMCC,A Data

supermolecular FDET

environment TDDFT nonrelaxed FB relaxed FB

H2O �884 �641 �764

NH3 �1220 �832 �1014

2H2O �2324 �1653 �1956

CH3OH �884 �525 �678

HCOOH �1644 �1027 �1321

NH3�H2O�H2O �2862 �1925 �2364

NH3�H2O�NH3 �2546 �1787 �2160

NH3�NH3�H2O �2886 �1896 �2353

av. dev. from EOMCC,A �685 �64 �355

av. abs. dev. from EOMCC,A 685 115 355
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environment-induced shifts Δωπfπ*, which may be sensitive to
the higher-order correlation effects neglected in the EOMCCSD
calculations. For this reason, we also examined the effect of triples
corrections to EOMCCSD energies on the calculated ωπfπ*

and Δωπfπ* values by performing the δ-CR-EOMCC(2,3)
calculations with the 6-31þG(d) basis set. The results of
these calculations, shown in Table 2, indicate that triple excita-
tions have a significant effect on the vertical excitation energies
ωπfπ*, reducing the 4000�5000 cm�1 differences between
the EOMCCSD and experimental data to no more than
about 800 cm�1, when the δ-CR-EOMCC(2,3),A/6-31þG(d)

calculations are performed, and no more than about 500 cm�1

when the δ-CR-EOMCC(2,3),D/6-31þG(d) approach is em-
ployed, while bringing the Δωπfπ* values closer to the experi-
mentally observed shifts when compared with EOMCCSD.
Although the differences between the δ-CR-EOMCC(2,3) and
EOMCCSD values of the environment-induced shifts Δωπfπ*

resulting from the calculations with the 6-31þG(d) basis set do
not exceed 15�16% of the EOMCCSD values, triples correc-
tions improve the EOMCCSD results and, as such, are useful for
the generation of the reference EOMCC data.
Ideally, one would like to perform the δ-CR-EOMCC(2,3)

calculations for basis sets larger than 6-31þG(d), such as
6-311þG(d), but complexes of cis-7HQ examined in this study

Table 7. Dependence of the Vertical Excitation Energy Cor-
responding to the Lowest π f π* Transition in cis-7HQ
Resulting from the Supermolecular TDDFT Calculations
Using the STO TZ2P Basis Set (in cm�1) on the Position of
Ghost Functions

position of ghost functions excitation energy

none 30494

H2O 30470

NH3 30503

2H2O 30536

CH3OH 30478

HCOOH 30500

(NH3�H2O�H2O) 30468

(NH3�H2O�NH3) 30516

(NH3�NH3�H2O) 30454

Table 8. Effect of the Approximation Used for the Exchange-
Correlation Energy Functional on the Environment-Induced
Shifts Δωπfπ* (in cm �1) of the Vertical Excitation Energy
Corresponding to the Lowest π f π* Transition in the
cis-7HQ Chromophore Calculated Using the FDET and
Supermolecular TDDFTMethodologies and the STOATZ2P
Basis Set

FDETa supermolecular

environment PW91b LDAc SAOPd PW91b LDAc SAOPd

H2O �724 �718 �645 �1031 �1014 �944

NH3 �933 �922 �816 �1415 �1405 �1222

2H2O �1767 �1756 �1624 �2440 �2480 �2280

CH3OH �465 �461 �454 �856 �895 �805

HCOOH �1007 �998 �972 �1578 �1611 �1569

NH3�H2O�H2O �2030 �2017 �1863 �3143 �3162 �2838

NH3�H2O�NH3 �1975 �1960 �1791 �2899 �2930 �2594

NH3�NH3�H2O �2065 �2050 �1890 �3145 �3204 �2899

av. dev. from

EOMCC,A

�149 �139 �36 �842 �866 �673

av. abs. dev. from

EOMCC,A

149 140 104 842 866 673

a In FDET calculations, PW91, LDA, and SAOP refer to three different
approximations for the exchange-correlation potential evaluated at the
chromophore density FA. The nonadditive contributions to the orbital-
free embedding potential use the same approximants in all cases (PW91
for exchange-correlation and GGA97 for the kinetic energy). The FDET
calculations use the nonrelaxed environment density FB and the mono-
mer basis expansion. bRef 136. cRef 135. dRef 129.

Figure 2. The dependence of the environment-induced shifts Δωπfπ*

of the vertical excitation energy corresponding to the lowest π f π*
transition in the cis-7HQ chromophore on the STO-type basis set used
in the FDET calculations employing the monomer (m) and super-
molecular (s) expansions and nonrelaxed FB, and a comparison of the
resulting FDET shifts with the reference EOMCC,A data.

Figure 3. The dependence of the environment-induced shifts Δωπfπ*

of the vertical excitation energy corresponding to the lowest π f π*
transition in the cis-7HQ chromophore on the type of the frozen
electron density FB used in the FDET calculations employing the
STO ATZ2P basis set and the monomer (m) and supermolecular (s)
expansions, and a comparison of the resulting shifts with the reference
EOMCC,A and supermolecular TDDFT data.
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are too large for performing such calculations on our computers.
Thus, in the absence of the δ-CR-EOMCC(2,3) larger basis set
data and considering the fact that the triples corrections to the
environment-induced shifts Δωπfπ* are relatively small when
compared to the EOMCCSD Δωπfπ* values, we have decided
to combine the EOMCCSD/6-311þG(d) results with the
triples corrections to EOMCCSD energies extracted from the
δ-CR-EOMCC(2,3)/6-31þG(d) calculations, as in eq 32. As
shown in Table 2, the resulting composite EOMCC,A and
EOMCC,D approaches provide vertical excitation energies
ωπfπ* that are in excellent agreement with the experimental
excitation energies, while offering further improvements in the

environment-induced shifts Δωπfπ* when compared with the
EOMCCSD/6-311þG(d) and δ-CR-EOMCC(2,3)/6-31þG(d)
calculations. Indeed, the EOMCC,A approach, which adds the triples
correction extracted from the δ-CR-EOMCC(2,3),A/6-31þG(d)
calculation to the EOMCCSD/6-311þG(d) energy, gives errors in
the calculated excitation energies ωπfπ* relative to experimental
results that range between 147 cm�1 in the case of the bare cis-7HQ
system and 668 cm�1 in the case of the 7HQ 3 3 3 (NH3�H2O�
H2O) complex, never exceeding 2% of the experimental excitation
energies. TheEOMCC,D approach, which adds the triples correction
obtained in the δ-CR-EOMCC(2,3),D/6-31þG(d) calculation to
the EOMCCSD/6-311þG(d) energy, gives errors in the calculated
excitation energies ωπfπ* relative to experimental results that range
between 17 cm�1 in the case of the 7HQ 3 3 3 (H2O)2 complex and
361 cm�1 for 7HQ 3 3 3 (NH3�H2O�H2O), or nomore than 1% of
the experimental values. These results should be compared to the
much larger differences between the EOMCCSD/6-311þG(d) and
experimental excitation energies that range between 14 and 17%. The
complexation-induced spectral shifts Δωπfπ* resulting from the
EOMCC,A and EOMCC,D calculations agree with their experimen-
tal counterparts to within 5�27% or 15% on average in the case of
EOMCC,A and 10�37% or 22% on average in the EOMCC,D
case. The EOMCC,D approach, while bringing the excitation
energies ωπfπ* to a much closer agreement with experimental
results than the EOMCCSD/6-311þG(d) calculations, does not
offer improvements in the calculated shiftsΔωπfπ*. The compo-
site EOMCC,A approach provides additional small improvements
in the calculated Δωπfπ* values, reducing the 7�33% errors
relative to experiment obtained in the EOMCCSD/6-311þG(d)
calculations to 5�27%. For this reason, we consider the
EOMCC,A values of the spectral shifts Δωπfπ* as the theore-
tical reference values for assessing the quality of the FDET and
supermolecular TDDFT calculations, although the use of
EOMCC,D would not change any of our main conclusions.
Clearly, a comparison of the purely electronic EOMCC and

experimental data discussed above has limitations, since we
would have to examine the effect of nuclear motion on the
calculated EOMCCSD and δ-CR-EOMCC(2,3) excitation en-
ergies and use basis sets larger than 6-31þG(d) in the δ-CR-
EOMCC(2,3) calculations to make more definitive statements,
which we cannot do at this time within the EOMCC framework
due to the size of systems examined in this work. To overcome
this difficulty, we could try to combine the EOMCC andTDDFT
or FDET data, using TDDFT or FDET to examine the role of
nuclear geometries and vibrational motions and δ-CR-EOM-
CC(2,3) to provide electronic excitation energies. The problem
is that this would defeat the main purpose of the present study, in
which we want to objectively compare the purely electronic
FDET and supermolecular TDDFT results for the complexa-
tion-induced spectral shifts Δωπfπ* with the corresponding,
also purely electronic, EOMCC data, using the best EOMCC
approach we can afford and using the same nuclear geometries in
all calculations. Thus, although there are limitations in our
EOMCC calculations when compared with experimental results
which the present study cannot completely overcome, we
believe that the EOMCC,A results obtained by combining
the EOMCCSD/6-311þG(d) excitation energies with the tri-
ples corrections extracted from the δ-CR-EOMCC(2,3),A/
6-31þG(d) calculations, as in eq 32, are of sufficiently high
quality to allow us to assess the quality of the FDET and
supermolecular TDDFT methods in applications involving the
environment-induced spectral shifts in complexes of cis-7HQ.

Figure 4. The dependence of the environment-induced shifts Δωπfπ*

of the vertical excitation energy corresponding to the lowest π f π*
transition in the cis-7HQ chromophore and resulting from the FDET
and supermolecular TDDFT calculations with the STOATZ2P basis set
on the form of the exchange-correlation functional of the effective
Kohn�Sham potential, and a comparison of the resulting shifts with the
reference EOMCC,A data.

Figure 5. A comparison of the environment-induced shifts Δωπfπ* of
the vertical excitation energy corresponding to the lowest π f π*
transition in the cis-7HQ chromophore and resulting from the FDET
with nonrelaxed-FB and supermolecular TDDFT calculations using the
STO ATZ2P basis set, with the reference supermolecular EOMCC,A
and experimental5 data (the latter obtained with laser resonant two-
photon ionization UV spectroscopy).
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4.2. A Comparison of the Excitation Energy Shifts from the
FDETCalculationsUsingNonrelaxed EnvironmentDensities
with the Reference EOMCC Data. As shown in Table 2 and in
agreement with the experimental data,5 the excitation energy shifts
Δωπfπ* for the hydrogen-bonded 7HQ 3 3 3B complexes exam-
ined in this work resulting from the EOMCC calculations are
always negative. Although this is not a strict rule, the magnitude of
Δωπfπ* correlates, to a large extent, with the size of the hydrogen-
bonded environment B in the cis-7HQ 3 3 3B complex. According
to the reference EOMCC,A calculations, the shifts in the vertical
excitation energy ωπfπ* corresponding to the lowest π f π*
transition in the cis-7HQ chromophore vary from �396 to
�820 cm�1 in the case of the smaller 7HQ 3 3 3B complexes
involving the CH3OH, H2O, HCOOH, and NH3 monomers,
through�1446 cm�1 in the case of the 7HQ 3 3 3 (H2O)2 complex
involving the water dimer, to�1780 to�2055 cm�1 in the case of
the largest 7HQ 3 3 3B systems involving the (NH3�H2O�NH3),
(NH3�H2O�H2O), and (NH3�NH3�H2O) trimers. It is
interesting to examine how well the FDET and supermolecular
TDDFT calculations reproduce these data.
We begin our discussion by assessing the quality of the FDET

results employing the nonrelaxed density FB, which is obtained
by solving the Kohn�Sham equations for the environment
molecule(s) in the absence of the cis-7HQ chromophore, with
a focus on the results obtained with the monomer basis expan-
sions to represent the chromophore density FA and the environ-
ment density FB. As explained in section 3.2, the combined use of
the nonrelaxed environment density FB and monomer expan-
sions in the FDET calculations relies on the simplifying assump-
tions that the response of system AB to the process of electronic
excitation is limited to chromophore A, that the coupling
between the excitations in the embedded system and its envir-
onment can be neglected, and that the polarization of the
environmentmolecules by the chromophore is of no importance.
The supermolecular EOMCC calculations performed in this
work do not rely on any of these assumptions, so a comparison
of the FDET results employing the nonrelaxed density FB and
monomer expansions of FA and FB with the EOMCC data is
particularly interesting.
As shown in Table 3 and Figure 2, the overall agreement of the

monomer-expansion-based FDET/ATZ2P data using the non-
relaxed FB with the reference EOMCC,A data is excellent. The
absolute values of the deviations between the Δωπfπ* values
resulting from the nonrelaxed, monomer-expansion-based
FDET/ATZ2P and supermolecular EOMCC,A calculations
range from 4 cm�1 in the case of the 7HQ 3 3 3NH3 complex,
where the EOMCC,A shift is �820 cm�1, to 229 cm�1 in the
case of the 7HQ 3 3 3HCOOH system, where the EOMCC,A
result forΔωπfπ* is�743 cm�1. Themean signed and unsigned
errors in the nonrelaxed, monomer-expansion-based FDET/
ATZ2P results for the environment-induced shifts Δωπfπ*

relative to the EOMCC,A reference data are �36 and
104 cm�1, respectively, or 11%, if we average the individual
relative errors. On the basis of the analysis of the EOMCCSD and
δ-CR-EOMCC(2,3) calculations presented in section 4.1, the
deviations between the nonrelaxed, monomer-expansion-based
FDET/ATZ2P and reference EOMCC,A data shown in Table 3
and Figure 2 are well within the accuracy of the EOMCC
calculations, indicating the excellent performance of the non-
relaxed FDET approach.
Remarkably, the nonrelaxed, monomer-expansion-based

FDET values of the Δωπfπ* shifts do not vary with the basis

set (see Table 3�6), allowing us to obtain reasonably well
converged results with the relatively small basis sets, such as
STO DZP (cf. Table 6). Moreover, although we prefer to use
the monomer expansion within the FDET approach, where the
orbitals of the chromophore A and the corresponding density FA
are represented using the atomic centers of A, whereas the
environment density FB is represented using the atomic centers
of B, the use of the supermolecular expansion within the FDET
methodology employing the nonrelaxed FB does not seem to
change the calculated shift values. For example, as a comparison
of the results shown in Tables 3 and 6 demonstrates, the average
deviation from EOMCC,A characterizing the nonrelaxed, mono-
mer-expansion-based FDET calculations using the smallest STO
DZP basis set, of 115 cm�1, is virtually identical to the analogous
average deviation characterizing the nonrelaxed, supermolecular-
expansion-based FDET calculations using the largest STO
ATZ2P basis (108 cm�1). It is also worth mentioning that the
quality of the shifts calculated with the FDET approach using the
nonrelaxed environment density FB does not diminish with or
significantly depend on the size of the environment. For example,
the absolute value of the difference between the Δωπfπ* values
resulting from the nonrelaxed, monomer-expansion-based
FDET/ATZ2P and supermolecular EOMCC,A calculations for
the smallest 7HQ 3 3 3H2O complex is 83 cm�1 or 15%. The
analogous difference characterizing the considerably larger
7HQ 3 3 3 (NH3�H2O�NH3) complex is 11 cm�1 or 1%.
All of the above observations show that the FDET approach

employing the nonrelaxed environment densities FB, includ-
ing its simplest, monomer-expansion-based variant, is as accu-
rate in describing complexation-induced shifts as the high-level
EOMCC approach with singles, doubles, and noniterative triples,
represented here by the composite EOMCC,A approximation.
The FDET results with relaxed densities FB are discussed next.
4.3. The Dependence of the FDET Shifts on the Choice of

GB. By determining the environment density FB in the absence of
the chromophore, the nonrelaxed FDET model examined in
section 4.2 ignores the complexation-induced changes in the
electronic density of the environment, such as polarization of the
environment molecule(s) by the chromophore. Furthermore,
the use of monomer basis expansions to represent the chromo-
phore density FA and the environment density FB does not allow
for a penetration of the region of space occupied by the
chromophore by the electronic density of the environment or
for a penetration of space occupied by the environment by the
electronic density of the chromophore. These simplifying as-
sumptions make the nonrelaxed, monomer-expansion-based
FDET approach computationally very attractive, as the costs of
such calculations are defined by the size of the chromophore
only. However, they represent an arbitrary choice, prompting the
question of whether relaxing the environment density FB in the
presence of the chromophore would help the FDET results.
As explained in section 3.2, for a given choice of approximants

for the functionals used in the FDET calculations, one can
optimize the environment density FB, adjusting it to the density
of the chromophore FA, when solving the Kohn�Sham-like
system for the chromophore A embedded in the environment
B defined by eq 13, by exploiting the “freeze-and-thaw”
procedure.80 One might think that such relaxed FDET calcula-
tions should be more accurate than the nonrelaxed ones in which
FB is not adjusted, since relaxation of FB takes into account the
effect of electronic polarization of the environment by the
chromophore. Unfortunately, this is not necessarily the case
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because of the inaccuracies in describing the nonadditive
kinetic energy potential vt

nad[FA,FB](rB), eq 12, that couples
the two densities and that enters eq 13, especially when the
full, supermolecular set of atomic orbitals, including those
centered on A and those centered on B, is used to represent
the chromophore density FA and the environment density
FB.64,84,130,131 It is usually impossible to a priori determine
which effect is numerically more important in a molecular
system of interest, the neglect of the electronic polarization of
the environment by the chromophore or the errors produced
by the approximations used to define the vt

nad[FA,FB](rB)
potential. In order to examine this issue, we performed the
FDET calculations in which the environment density FB was
relaxed in the iterative process of solving eq 13 for the orbitals
of the cis-7HQ chromophore.
As shown in Tables 3�6 and Figure 3, the relaxation of

the environment density FB in the FDET calculations for each of
the eight complexes examined in this study substantially worsens
the results for the Δωπfπ* shifts when compared with the
EOMCC,A reference data. The differences between theΔωπfπ*

values resulting from the relaxed FDET calculations using the
STO ATZ2P basis set and the corresponding EOMCC,A
data range, in absolute value, from 185 cm�1 in the case of the
7HQ 3 3 3NH3 complex, where the EOMCC,A shift is�820 cm�1,
to 569 cm�1, in the case of the 7HQ 3 3 3HCOOH system, where
the EOMCC,A result forΔωπfπ* is�743 cm�1. These are much
larger differences when compared with the corresponding non-
relaxed FDET calculations, which, as pointed out in section 4.2,
give substantially smaller differences with the EOMCC,A data that
range from 4 to 229 cm�1 when the same basis set is employed. As
shown in Table 3, the mean signed and unsigned errors in the
relaxed FDET/ATZ2P results for the environment-induced shifts
Δωπfπ* relative to the EOMCC,A reference data are �366 and
366 cm�1, respectively, or, if we average the individual relative
errors, 37%. This should be contrasted with the mean signed error
of�36 cm�1, mean unsigned error of 104 cm�1, and average rela-
tive error of 11% in the analogous nonrelaxed FDET calculations.
In some cases, the effect of relaxing FB in the FDET calculations
on the calculated Δωπfπ* shifts is enormous, e.g., 546 cm�1 in
the 7HQ 3 3 3 (NH3�NH3�H2O) case. As in the case of the
FDET calculations using the nonrelaxed densities FB, neither the
type of the basis expansion used to represent densities FA and FB
(monomer or supermolecular) nor the computational basis
set used in the calculations affect the above observations (see
Tables 3�6), although the use of the supermolecular expansion
to represent FA and FB in the context of the relaxed FDET
calculations with the STO ATZ2P basis set seems to worsen the
results, increasing the mean unsigned error in the calculated
Δωπfπ* values relative to EOMCC,A from 366 cm�1 in the
monomer-expansion case to 486 cm�1, when the supermolecular
expansion is employed (cf. the results in Tables 3 and 4),
bringing the relaxed FDET results closer to the supermolecular
TDDFT data (cf. the discussion below).
The substantial increase in the differences between the FDET

and EOMCC,A shift values due to the relaxation of the environ-
ment densities FB may be related to the fact that the Kohn�
Sham-type methods applying semilocal approximants to the
exchange-correlation energy used in this work tend to over-
estimate molecular polarizabilities in organic molecules.132,133

The exaggerated polarizability values would certainly lead to the
overestimated chromophore polarization effects that could result
in the artificially enhanced effects of relaxation of environment

densities on the calculated Δωπfπ* values observed in our
calculations. We must remember though that this argument,
although reasonable here, may not be generally applicable, since
going to the left-hand side of the periodic table shows that the
same functionals underestimate polarizabilities.134

It is worth pointing out that the result of the “freeze-and-
thaw” FDET calculations employing the complete supermole-
cular basis expansion to represent the FA and FB densities, in
which the environment density FB is allowed to relax when
solving eq 13 for the orbitals of A, represents the variational limit
for a given approximant to the nonadditive kinetic energy
potential vt

nad[FA,FB](rB). If such an approximant were exact
and if the same approximant were used to represent all of the
exchange-correlation contributions in both supermolecular
TDDFT and FDET calculations, the total electron density
obtained in the relaxed “freeze-and-thaw” FDET calculations
and its analog obtained in the supermolecular TDDFT calcula-
tions would be identical (see ref 48 and the references therein).
This explains why the results of the relaxed FDET calculations
using the supermolecular basis expansions to represent the FA
and FB densities and their supermolecular TDDFT analogs
shown in Table 4 and Figure 3 are so similar. Indeed, by relaxing
the FA and FB densities simultaneously and by allowing them to
penetrate both subsystems A and B when solving eq 13, we
produce the situation in which the differences between the
supermolecular and embedding strategies for calculating the
Δωπfπ* shifts become small. We must remember though that
by relaxing the environment densities in the FDET approach or
by performing the supermolecular TDDFT calculations with the
functionals that are certainly imperfect, we introduce new errors,
such as the inadequacy of the representation of the nonadditive
kinetic energy potential vt

nad[FA,FB](rB) in the FDET considera-
tions that may be significantly enhanced when FB is relaxed or
the difficulties with maintaining a balanced treatment of the
chromophore and its complex with the environment within the
supermolecular TDDFT framework. These are the reasons why
the nonrelaxed FDET approach may represent a better compu-
tational strategy in determining the excitation energy shifts in
weakly bound systems of the type of complexes examined in this
work, when compared with the relaxed FDET and supermole-
cular TDDFT methodologies, as the results in Tables 3�6 and
Figures 2�5 clearly illustrate.
4.4. A Comparison of the Excitation Energy Shifts from the

Supermolecular TDDFT Calculations with the Nonrelaxed
FDET and Reference EOMCCData.As already alluded to above,
the excitation energy shifts in the eight complexes of cis-7HQ
examined in this study resulting from the supermolecular
TDDFT calculations are a lot less accurate than their FDET
counterparts employing the nonrelaxed environment densities,
when both types of calculations are compared with the reference
EOMCC,A data. They are also less accurate than the FDET
results obtained with the relaxed environment densities,
although, as pointed out at the end of section 4.3, the differences
between the Δωπfπ* values obtained in the supermolecular
TDDFT and relaxed FDET calculations are smaller than the
analogous differences between the results of the supermolecular
TDDFT and nonrelaxed FDET calculations. Indeed, as shown in
Table 3 (cf., also, Figure 3), the differences between theΔωπfπ*

shift values obtained in the supermolecular TDDFT calculations
using the STO ATZ2P basis set and their reference EOMCC,A
counterparts range, in absolute value, from 382 cm�1 in the case
of the 7HQ 3 3 3H2O complex, where the EOMCC,A shift
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is �562 cm�1, to 869 cm�1, in the case of the 7HQ 3 3 3
(NH3�H2O�H2O) system, where the EOMCC,A Δωπfπ*

value is �1969 cm�1. The mean unsigned error in the super-
molecular TDDFT/ATZ2P values of the Δωπfπ* shifts relative
to EOMCC,A is 673 cm�1 or, if we average the individual relative
errors, 65%. These clearly are much larger differences when
compared with the corresponding nonrelaxed, monomer-expan-
sion-based FDET calculations that give the 4�229 cm�1 devia-
tions from the EOMCC,A data and the differences, which are
about twice as large as those characterizing the relaxed, mono-
mer-expansion-based FDET approach. The 65% average relative
error characterizing the Δωπfπ* values resulting from the
supermolecular TDDFT/ATZ2P calculations is 6 times bigger
than the analogous error characterizing the nonrelaxed, mono-
mer-expansion-based FDET/ATZ2P calculations. On the basis
of the analysis of the EOMCC calculations performed in this
work presented in section 4.1, the differences between the
supermolecular TDDFT and reference EOMCC,A data are well
outside the accuracy of the EOMCC calculations for theΔωπfπ*

shifts, indicating the poor performance of the supermolecular
TDDFT approach. Unlike in the FDET case, the differences
between the supermolecular TDDFT and EOMCC,A Δωπfπ*

values increase with the size of the environment bound to the cis-
7HQ chromophore. This indicates the difficulties with obtaining
the balanced description of excitation energies in systems that
have different sizes in the supermolecular TDDFT calculations,
which are not present in the FDET and EOMCC calculations.
The large inaccuracies in the supermolecular TDDFT results

might be due to various reasons. One possibility might be the
basis set superposition error (BSSE), which could potentially be
well pronounced due to the difficulties the supermolecular
TDDFT approach has with obtaining a balanced description of
excitation energies in systems that have different sizes, but, as
shown in Table 7, theπfπ* excitation energy in the isolated cis-
7HQ system is barely affected by the position of ghost basis
functions centered on the atoms of environment molecules.
Another possibility might be a particular choice of the approx-
imation used to determine the exchange-correlation potential
contributions in the TDDFT calculations (the SAOP scheme129).
To investigate this issue, we performed additional supermolecu-
lar TDDFT calculations using two other treatments of the
exchange-correlation contributions, namely, the local density
approximation (LDA)135 and the PW91 functional,136 which is
a representative functional from the GGA family. The results of
these additional calculations are shown in Table 8 and Figure 4.
It is quite clear that the use of the LDA and PW91 functionals to
treat the exchange-correlation contributions does not help the
supermolecular TDDFT results, making them, in fact, even less
accurate than in the SAOP case. Interestingly, the use of the LDA
and PW91 functionals in the nonrelaxed FDET calculations has a
small effect on these calculations, increasing the mean unsigned
errors relative to EOMCC,A characterizing the SAOP-based
nonrelaxed, monomer-expansion-based FDET/ATZ2P calcula-
tions of 104 cm�1 to 140 cm�1 in the LDA case and 149 cm�1 in
the PW91 case. This makes us believe that the primary reason for
the poor performance of the supermolecular TDDFT ap-
proach is the difficulty with obtaining a balanced description
of excitation energies in systems that have different sizes in the
supermolecular TDDFT calculations, which are not present in
the size-intensive FDET and EOMCC calculations and which
are only enhanced in the supermolecular TDDFT calculations
by incorrect asymptotic behavior of the LDA and PW91

(GGA) potentials, critical for the determination of the rela-
tively small spectral shifts in weakly bound molecular clusters.
This is yet another argument in favor of the embedding
strategy represented here by the FDET approach, which is
much less sensitive to the asymptotic behavior of the exchange-
correlation potentials.
4.5. A Comparison of the Excitation Energy Shifts from the

FDETCalculationsUsingNonrelaxed EnvironmentDensities
with the Experimental Data. Although the main goal of this
work is to compare the FDET and supermolecular TDDFT
values of the vertical excitation energy shifts characterizing the
hydrogen-bonded complexes of the cis-7HQ system with the
corresponding EOMCC,A data, all obtained using the same
nuclear geometries, it is useful to comment on the quality of
the shifts resulting from our best FDET calculations employing
the nonrelaxed environment densities, when compared with the
available experimental data.5 In analogy to the EOMCC,A results
discussed in section 4.1, a comparison of the purely electronic
FDET and experimental data discussed above has limitations,
since one cannot measure vertical excitation energies obtained in
the FDET calculations in a direct manner. The experimental
shifts reported in ref 5 that we refer to in this work correspond to
the complexation-induced shifts in the maxima of the π f π*
absorption band in the cis-7HQ chromophore. Thus, although
the experimental shifts reported in ref 5 are closely related to the
theoretical shifts obtained in this study, the two types of
quantities differ because of the following factors: (i) the maxima
of the absorption bands characterizing the isolated cis-7HQ
system and its complexes may not occur between the same
vibrational levels as a result of the geometry relaxation in the
excited states of the cis-7HQ 3 3 3 B complexes when compared to
the corresponding ground electronic states, and (ii) the MP2/
aug-cc-pVTZ geometries of cis-7HQ and its complexes used in
this work, although probably quite reasonable, are not the
experimental geometries. All of these factors certainly contribute
to the deviations between the theoretical shifts calculated in this
study and their experimental counterparts reported in ref 5.
On the other hand, the careful EOMCC calculations reported

in this work which, as analyzed in section 4.1, closely follow the
experimental excitation energies corresponding to the lowest
π f π* transition in the cis-7HQ and cis-7HQ 3 3 3B systems,
particularly when the EOMCC,A and EOMCC,B approaches
corrected for triple excitations are employed (see Table 2), seem
to indicate that all of the above factors, although important, lead
to a relatively small overall effect. It is, therefore, interesting to
compare our best FDET results for the excitation energy shifts
Δωπfπ*, obtained in the nonrelaxed, monomer-expansion-
based FDET calculations employing the STO ATZ2P basis set,
given in Table 3, which are in excellent agreement with the
reference EOMCC,A data, with the experimentally derived shifts
reported in ref 5 and listed in Table 2. This comparison is shown
in Figure 5. As one can see by inspecting Tables 2 and 3 and
Figure 5, the Δωπfπ* values obtained in the nonrelaxed,
monomer-expansion-based FDET/ATZ2P calculations are in
very good agreement with the shifts in the experimental UV
absorption spectra. The mean unsigned error in the Δωπfπ*

values resulting from the nonrelaxed, monomer-expansion-based
FDET/ATZ2P calculations, relative to the spectral shifts ob-
served in experiment, is 222 cm�1, in excellent agreement with
the EOMCC,A approach, which gives 244 cm�1. The analogous
mean unsigned error characterizing the supermolecular TDDFT
calculations is twice as large (429 cm�1), demonstrating once
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again the advantages of the embedding vs supermolecular strat-
egy within the TDDFT framework. It is clearly very encouraging
that the nonrelaxed FDET approach, which can be applied
to large molecular systems, can provide shifts in the excita-
tion energy corresponding to the lowest πf π* transition in the
cis-7HQ system due to the formation of hydrogen-bonded
complexes involving cis-7HQ and a variety of small molecules
that can compete with the results of the considerably more
expensive EOMCC calculations.

5. SUMMARY AND CONCLUSIONS

We used the embedding FDET approach to determine
the shifts in the excitation energy corresponding to the lowest
πf π* transition in cis-7-hydroxyquinoline (cis-7HQ), induced
by the formation of hydrogen-bonded complexes of cis-7HQ
with a number of small molecules, and compared the resulting
shift values with the reference EOMCC data and the analogous
shifts obtained in the conventional supermolecular TDDFT
calculations. The main difference between the embedding strat-
egy, represented in the present study by the FDET method, and
the conventional supermolecular approach is in the fact that in
the former case one evaluates the excitation energy shifts induced
by the interactions of the chromophore with its molecular
environment as the differences of the excitation energies of the
same many-electron system, representing the chromophore
fragment with two different effective potentials, whereas in the
latter case one has to perform calculations for two systems that
differ in the number of electrons, the complex formed by the
chromophore and its molecular environment, and the isolated
chromophore.

By considering eight complexes of cis-7HQ with up to three
small hydrogen-bonded molecules, we demonstrated that the
spectral shifts resulting from the FDET calculations with the a
priori determined nonrelaxed environment densities are in
excellent agreement with the reference EOMCC data obtained
in the supermolecular, rigorously size-intensive EOMCC calcu-
lations with singles, doubles, and noniterative triples, whereas the
analogous shifts obtained with the supermolecular TDDFT
approach are far from those obtained with EOMCC. The
nonrelaxed FDET calculations provide shifts that agree with
their EOMCC analogs to within about 100 cm�1 or 10% on
average, where the absolute values of the excitation energy shifts
in the complexes of cis-7HQ examined in this study resulting
from the EOMCC calculations range between about 500 and
2000 cm�1. As shown in the present study, the accuracy of the
FDET shift calculations employing nonrelaxed environment
densities is on the order of the accuracy of the high-level
EOMCC calculations. This should be contrasted with the
excitation energy shifts obtained with the supermolecular
TDDFT approach, which differ from the reference EOMCC
values reported in this work by about 700 cm�1 or 65% on
average and which are well outside the accuracy of the EOMCC
calculations. We demonstrated that none of the above findings
are significantly affected by the type of basis expansion used in the
FDET calculations (monomer or supermolecular), by the com-
putational basis set used in the FDET and supermolecular
TDDFT calculations, or by the approximations applied to the
exchange-correlation potentials in the FDET and supermolecular
TDDFT calculations, although it is quite clear that better
approximations for the exchange-correlation potential would
help the supermolecular TDDFT approach. One of the key

findings of the present study is the fact that the FDET metho-
dology, particularly the nonrelaxed form of it, works well even
with the functionals that are characterized by the relatively poor
long-range behavior, offering results that are competitive with the
high-level EOMCC approaches.

We demonstrated that the relaxation of the environment
density in the FDET calculations worsens the quality of the
calculated spectral shifts, although the shifts resulting from the
relaxed FDET calculations are typically somewhat more accurate
than those obtained with the supermolecular TDDFT approach.
Among the reasons that may contribute to the worsening of the
results obtained with the FDET approach using relaxed environ-
ment densities are the difficulties the Kohn�Sham-typemethods
applying semilocal approximants to the exchange-correlation
energy, used in this work, have with describing molecular
polarizabilities and the inadequacies in representing the non-
additive kinetic energy potential in the FDET considerations that
may be significantly enhanced when the environment density
is allowed to relax when solving a coupled system of Kohn�
Sham-like equations defining the FDET approach and involving
the chromophore and environment densities. Our calculations
strongly suggest that at least in the applications involving shifts in
the electronic spectrum due to the formation of weakly bound
complexes, where the electronic excitation is localized on the
absorbing chromophore, the neglect of the electronic polariza-
tion of the environment by the chromophore, implicitly assumed
in the FDET calculations using nonrelaxed environment densi-
ties, is of much lesser significance than the errors that result from
the approximations used to define the nonadditive kinetic energy
potential, which can be quite substantial. On the basis of a direct
comparison of the FDET results obtained with nonrelaxed and
relaxed environment densities, the nonrelaxed FDET approach
is a preferred strategy for the embedding calculations if the
polarization of the environment by the chromophore is small, as
is the case when the weakly bound complexes of cis-7HQ are
examined. On the other hand, if one is interested in generating
results that are similar to those obtained with the supermolecular
TDDFT methodology, relaxing environment density in the
FDET calculations may be more appropriate. We demonstrated
that the fully relaxed FDET calculations are capable of producing
spectral shifts that are quite close to the results of the super-
molecular TDDFT calculations, even though both sets of
calculations led to results that are quite far from the benchmark
EOMCC and experimental data.

As shown in our study, the FDET approach with nonrelaxed
environment densities represents a robust computational meth-
odology, which works much better than the FDETmethods with
relaxed densities and supermolecular TDDFT schemes and
which can provide complexation-induced spectral shifts that
can compete with the high-quality ab initio data resulting from
EOMCC calculations, as long as one can neglect the polarization
of the environment by the chromophore. This is very encoura-
ging from the point of view of spectroscopic applications
involving large weakly bound molecular complexes, since the
FDET approach with nonrelaxed environment densities is less
expensive than its relaxed and supermolecular TDDFT counter-
parts, not to mention the EOMCC methods. In the FDET
calculations employing nonrelaxed environment densities, one
obtains these densities only once and a priori by solving the
ground-state Kohn�Sham equations for the environment
molecule(s) in the absence of the absorbing chromophore. This
should be contrasted with the relaxed FDET calculations, where
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the environment density is allowed to vary during the Kohn�
Sham-like calculations for the orbitals of the chromophore
embedded in the environment, and with the supermolecular
TDDFT and EOMCC calculations, where one has to consider
larger many-electron systems corresponding to the chromo-
phore complexes that do not have to be considered in the FDET
calculations. The latter is challenging for the supermolecular
TDDFT approaches, since they have difficulties with balancing
accuracies involving systems of different sizes, and for methods
based on the EOMCC theory, which can balance these accura-
cies, but are often prohibitively expensive.

Although the main focus of this study was the comparison of
the FDET and supermolecular TDDFT results for the com-
plexation-induced shifts in the excitation energy corresponding
to the lowest π f π* transition in cis-7HQ with the EOMCC
data, we also compared the FDET, supermolecular TDDFT, and
reference EOMCC shift values with the experimental shifts
reported in ref 5. Although, as explained in the previous sections,
such comparison has obvious limitations due to the neglect of the
effect of nuclear motion on photoabsorption spectra in our
purely electronic calculations, the spectral shifts obtained with
the FDET approach using nonrelaxed environment densities and
those obtained with the EOMCC methodology agree with the
experimental shifts quite well, whereas the supermolecular
TDDFT calculations produce once again very large errors. This
confirms the superiority of the FDET strategy when compared
with the conventional supermolecular TDDFT approach in
applications involving complexation-induced spectral shifts.
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ABSTRACT:We introduce a new database called TSG48 containing 48 transition state geometrical data (in particular, internuclear
distances in transition state structures) for 16main group reactions. The 16 reactions are the 12 reactions in the previously published
DBH24 database (which includes hydrogen transfer reactions, heavy-atom transfer reactions, nucleophilic substitution reactions,
and association reactions plus one unimolecular isomerization) plus four H-transfer reactions in which a hydrogen atom is
abstracted by the methyl or hydroperoxyl radical from the two different positions in methanol. The data in TSG48 include data for
four reactions that have previously been treated at a very high level in the literature. These data are used to test and validate methods
that are affordable for the entire test suite, and themost accurate of thesemethods is found to be themultilevel BMC-CCSDmethod.
The data that constitute the TSG48 database are therefore taken to consist of these very high level calculations for the four reactions
where they are available and BMC-CCSD calculations for the other 12 reactions. The TSG48 database is used to assess the
performance of the eight Minnesota density functionals from the M05�M08 families and 26 other high-performance and popular
density functionals for locating transition state geometries. For comparison, the MP2 and QCISD wave function methods have also
been tested for transition state geometries. The MC3BB and MC3MPW doubly hybrid functionals and the M08-HX and M06-2X
hybrid meta-GGAs are found to have the best performance of all of the density functionals tested. M08-HX is the most highly
recommended functional due to the excellent performance for all five subsets of TSG48, as well as having a lower cost when
compared to doubly hybrid functionals. The mean absolute errors in transition state internuclear distances associated with breaking
and forming bonds as calculated by the B2PLYP,MP2, and B3LYPmethods are respectively about 2, 3, and 5 times larger than those
calculated by MC3BB and M08-HX.

1. INTRODUCTION

Computational thermochemical kinetics is an important
branch of theoretical chemistry focused on the prediction of
thermal rate constants of chemical reactions. Reliable transition
state properties (e.g., geometry and vibrational frequencies) and
reaction barrier heights are indispensable information for calcu-
lating rate constants by transition state theory. Therefore, the
reliability of the electronic structure method chosen for locating
transition states and calculating their barrier heights will directly
affect the quality of thermochemical kinetics calculations.

In the past 20 years, Kohn�Sham density functional theory
(DFT) has become a workhorse of computational thermochem-
istry and thermochemical kinetics due to its lower computational
cost compared to wave function theory (WFT) and to the
continuing improvement of exchange-correlation functionals.
However, the appropriate choice of functional is still a key issue
for getting accurate results. Some benchmark databases1�10 of
barrier heights for diverse types of reactions have been estab-
lished for the assessment of DFT functionals. DBH24/0810 is of
special interest because it was designed as a representative data-
base, and it includes 24 accurate barrier heights for 12 reactions:
three hydrogen transfer reactions, three heavy-atom transfer
reactions, three nucleophilic substitution reactions of anions,
and three unimolecular and association reactions. Recently, the
DBH24/08 database was used10 to assess 348 model chemistries.
Several hybrid density functionals, in particular, M08-SO,11

M06-2X,12,13 M08-HX,11 BB1K,14 BMK,15 PWB6K,16 MPW1K,17

BHandHLYP,18c,d and TPSS25B95,19 were recommended for
calculations of barrier heights.

Although considerable attention has been paid to the perfor-
mance of DFT for barrier heights, the ability of density func-
tionals to accurately calculate transition state geometries has
been less well investigated. Inaccurate calculations of transition
state geometries could lead to unrealistic potential energy
surfaces, unreliable vibrational frequencies, and inaccurate pre-
dictions of rate constants and kinetic isotope effects. By 1998, it
had already been learned that even themost successful functional
(at that time), B3LYP,18a,b,20 is quantitatively unreliable for
transition state geometries and energies for a number of cases.21

In 2001, the performance of four hybrid density functionals
(MPW1K, mPW1PW91,22 B3LYP, and BHandHLYP) was
tested for predicting the transition state geometries of five
reactions, as compared to very high-level calculations,23 and only
the MPW1K functional, which was optimized for kinetics, was
recommended for locating transition state geometries. In 2005,24

some newer DFT methods were tested for the transition state
geometries and energetics of the hydrogen abstraction reaction
from methanol by a hydrogen atom. The MC3BB doubly hybrid
DFT method25 and the BB1K hybrid meta-GGA, which was
specially optimized for kinetics, were suggested as reasonably
accurate DFT methods.

Since 2005, some new functionals have been developed, and
we are especially concerned here with the Minnesota func-
tionals,26,27 which were designed for broad applicability in
chemistry. As mentioned above, the Minnesota family of density
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functionals, especially the Minnesota 2008 functionals M08-HX
and M08-SO, were found to perform well for calculating barrier
heights.10 Here, we test the performance of the Minnesota
functionals and other popular (and a few interesting but not so
popular) DFT functionals for calculating transition state geome-
tries for a variety of reactions. To accomplish this, we present a
database, called TSG48, of 48 data for transition state geometries.

2. TSG48 DATABASE

The 16 reactions in the TSG48 database are listed in Table 1.
The database consists of five subdatabases: HTG9 for three
hydrogen transfer reactions in DBH24, HATG9 for three heavy-
atom transfer reactions in DBH24, NSG9 for three nucleophilic
substitution reactions of anions in DBH24, UAG9 for three
unimolecular and association reactions in DBH24, and
MHTG12 for four H-transfer reactions in which an H atom is
abstracted by the methyl or hydroperoxyl radical from the two
different positions in methanol. For each reaction, we consider
three geometrical data for transition state structures, in particular,
three internuclear distances labeled R1, R2, and R3. For each
transition state, these are the three key distances involving the
breaking and forming of bonds. For atom transfer reactions, Aþ
X�Df A�XþD, where A is the acceptor, D is the donor, and
X is the transferred atom; R1, R2, andR3 are respectively the a�X,
X�d, and a�d distances, where a is the accepting atom in the
acceptor molecule or group A and d is the donating atom in the
donor molecule or group D. For three SN2 reactions, which are
all methyl cation transfers, the three distances are a�C, C�d,
and a�d, where C is the carbon of the methyl cation. For the R10
and R12 reactions, we consider all three distances with the order
being H�N, N�N0, and N0�H for R10 and C�H, N�H, and

C�N for R12. For reaction R11, namely, H þ C2H4 f
CH3CH2, R1, R2, and R3 are the three distances between the
attached H atom and/or the two carbon atoms, with the order
being H�C, C�C0, and C0�H.

Accurate transition state geometries2,28 are available for four of
the reactions (R2, R5, R7, and R12) in the TSG48 database. For
reaction R2, the accurate values28b are based on an internally
contracted multireference configuration interaction including all
single and double excitations (with the 1s core of oxygen frozen)
from a CASSCF reference space that was extended from the full-
valence reference space by adding orbitals that are nominally 3pπ
orbitals on O. The basis set was aug-cc-pVQZ. For reaction R5, the
accurate values28a are based on internally contracted multireference
configuration interaction including all single and double excitations
(with the 1s, 2s, and 2p core electrons of Cl frozen) from a full-
valence CASSCF reference space followed by scaling the external
correlation-energy (SEC28d). The basis set was aug-cc-pV5Z,
excluding h functions for Cl and aug-cc-pVQZ forH. They obtained
an H�Cl bond length in the transition state of 1.480 Å, which is
only 0.001 Å larger than an earlier28e calculation employing the SEC
methodwith a smaller basis set. For reactionR7, the accurate values2

are from CCSD(T)//cc-pVQZþ1 calculations. For reaction R12,
the accurate values28c are based on the CCSD(T) method and
exponential extrapolation to a complete basis set from optimizations
with the cc-pCVDZ to cc-pCVQZ basis sets.

The four accurate values discussed in the previous paragraph
were used to test the potential accuracy of nine wave function
methods that have a lower cost than the methods used for the
four accurate values. The nine wave functionmethods aremultilevel
BMC-CCSD,29 the bestN6method for barrier height calculations,10

multireference second-order Møller�Plesset theory MRMP230 in
combination with the MG3S31 and aug-cc-pVTZ32 basis sets,

Table 1. The TSG48 Database

reactions R1 R2 R3

HTG9: Hydrogen Transfer

R1 OH þ CH4 f CH3 þ H2O 1.341 1.192 2.530

R2 H þ OH f O þ H2 0.894 (0.892)a 1.215 (1.216)a 2.109 (2.107)a

R3 H þ H2S f H2 þ HS 1.160 1.426 2.578

HATG9: Heavy-Atom Transfer

R4 H þ N2O f OH þ N2 1.431 1.226 2.187

R5 H þ ClH f HCl þ H 1.480 (1.485)a 1.480 (1.485)a 2.960 (2.970)a

R6 CH3 þ FCl f CH3F þ Cl 2.047 1.767 3.814

NSG9: Nucleophilic Substitution of Anion

R7 Cl� 3 3 3CH3Cl f ClCH3 3 3 3Cl
� 2.305 (2.303)a 2.305 (2.303)a 4.610 (4.605)a

R8 F� 3 3 3CH3Cl f FCH3 3 3 3Cl
� 2.020 2.114 4.134

R9 OH� þ CH3F f HOCH3 þ F� 1.988 1.758 3.745

UAG9: Unimolecular and Association

R10 H þ N2 f HN2 1.439 1.127 2.201

R11 H þ C2H4 f CH3CH2 1.925 1.351 2.662

R12 HCN f HNC 1.183 (1.188)a 1.387 (1.378)a 1.187 (1.194)a

MHTG12: Methanol Hydrogen Transfer

R13 CH3OH þ HO2 f 3CH2OH þ HOOH 1.240 1.289 2.501

R14 CH3OH þ CH3 f 3CH2OH þ CH4 1.398 1.301 2.697

R15 CH3OH þ HO2 f CH3O 3 þ HOOH 1.103 1.246 2.337

R16 CH3OH þ CH3 f CH3O 3 þ CH4 1.248 1.248 2.490
a For the cases where we use accurate values from refs 2 and 28, the BMC-CCSD value is given in parentheses for comparison.
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quadratic configuration interaction with single and double
excitations33 (QCISD with the MG331a�e,34 basis set), and sec-
ond-order Møller�Plesset theory35 (MP2) with five different basis
sets: MG3S, ma-TZVP,36 def2-TZVP,37 maug-cc-pV(Tþd)Z,32,38

and 6-31þG(d,p).39 The tests are given in Table 2. The mean
unsigned deviation (MUD, where the deviation is the difference
from the accurate value) of the three key bond lengthsR1,R2, andR3
for each of the four reactions are given in the table, which also shows
the averageMUD (AMUD) in the three internuclear distances over
the four reactions for each wave function method. Table 2 shows
that the BMC-CCSD method gives the most accurate transition
state structures with an AMUD of only 0.005 Å, and it even
performs better than MRMP2 using nominal correlated participat-
ing orbitals (nom-CPO) as an active space in combination with the
MG3S basis set, as reported in a previous study.40 It also performs
better than the more expensive QCISD/MG3 method. The MP2
method is sensitive to the basis set, and its combination with
6-31þG(d,p) gives good results, which are comparable with those
obtained by the MRMP2/nom-CPO/aug-cc-pVTZ method.40

However, it is broadly appreciated that the tendency of MP2 to
give better results with small basis sets results from a cancellation of
errors.

As a result of its good performance in the test of Table 2, we
shall use BMC-CCSD geometries for the other 12 reactions. All
36 geometrical data for the 12 reactions obtained by BMC-
CCSD and 12 geometrical data from the literature for the four
reactions with accurate values are shown in Table 1, and the 48
geometrical data constitute the TSG48 database. For compar-
ison, the BMC-CCSD results for the four reactions with accurate
values are also shown in Table 1.

3. COMPUTATIONAL DETAILS

For both wave function and density functional methods, the
transition state geometries of the 16 reactions in TSG48 have
been located and confirmed by frequency calculations. The wave
function methods employed include MP2, QCISD, and BMC-
CCSD, and the DFT functionals include four generalized
gradient approximations (GGAs), MOHLYP,41 MOHLYP2,10

BLYP,18a,b and SOGGA;42 one meta-GGA, M06-L;12,26 12 hy-
brid GGAs, ωB97,43 ωB97X,43 ωB97X-D,44 MPW1K, PBE0,45

mPW1PW,22 B97-3,46 B97-D,47 B98,48 B1LYP,49 BHandHLYP,
and B3LYP; 14 hybrid meta-GGAs: M08-HX, M08-SO, M06-
2X, PWB6K, BB1K, MPWB1K,50 PW6B95,16 BMK,
TPSS25B95, M05-2X,51 M06-HF,52 M06,13 M05,53 and
τHCTHhyb;54 and three doubly hybrid functionals, MC3BB,
MC3MPW,25 and B2PLYP.55 Note that the hybrid GGAsmay be
further classified: MPW1K, PBE0, mPW1PW, B97-3, B98,
B1LYP, BHandHLYP, and B3LYP are global hybrid GGAs;
B97-D is a global hybrid GGA combined with molecular
mechanics;ωB97 andωB97X are range-separated hybrid GGAs;
and ωB97X-D is a range-separated hybrid GGA combined with
molecular mechanics. Note that hybrid and doubly hybrid
functionals include a nonzero percentage of Hartree�Fock
exchange, and other functionals do not; the latter functionals
are called local and are less expensive for geometry optimizations
of large systems.

The MG3S basis set has been used for all DFT and MP2
calculations except for BMC-CCSD,MC3BB, andMC3MPW, in
which particular basis sets are specified for the components in
these calculations by the definitions of the methods. For the
QCISD calculations, in which the transition state geometries of
the 12 reactions in DBH24 are taken from ref 8, the MG3 basis
set was used. Other basis sets, in particular, ma-TZVP, def2-
TZVP, maug-cc-pV(Tþd)Z, and 6-31þG(d,p), have also been
tested for several selected functionals to confirm that MG3S is a
good choice for the optimization of transition state geometries.

For some model chemistries, the exoergic direction of some
reactions, in particular R6, R8, and R15, appears to proceed
without a barrier. In such cases, the energetic transition state is
technically predicted to be located at the reactant asymptote by
that model chemistry, and the error in some of the internuclear
distances is therefore infinite. Thus, we could have listed the
mean error for such model chemistries as infinite, but we thought
it would be more informative to assign a large finite error in such
cases. Therefore, for such bond lengths, in order to compute the
MUD, the deviation was set not to infinity but rather to the
largest deviation for that bond length in any of the model
chemistries that have a finite error for that bond length.

All calculations were performed using Gaussian09.a02,56 Gauss-
ian03.d01,57 or a locally modified version of Gaussian03.e01.
MNGFM4.158 that contains additional Minnesota functionals.
For the multilevel BMC-CCSD and doubly hybrid MC3BB and
MC3MPW methods, the MLGauss2.059 program was used.

Note that all transition states discussed in this article are
conventional transition states, i.e., saddle points, not variational
transition states.

4. RESULTS AND DISCUSSION

Table 3 shows the average MUD in the three internuclear
distances of transition state geometries as compared to the ones
in the TSG48 database for each of the five subsets: HTG9,
HATG9, NSG9, UAG9, and MHTG12. All density functional
results in Table 3 were obtained with the MG3S basis set (except
for the MC3BB and MC3MPW results, as discussed above).
Table 3 also gives the AMUDs over all 48 geometrical data in
TSG48. For comparison, the AMUDs for the MP2/MG3S and
QCISD/MG3 methods are also included in Table 3.
4.1. The Performance over the 16 Reactions of TSG48.

Overall, the MC3BB doubly hybrid functional, the M08-HX
hybrid meta-GGA, and the MC3MPW doubly hybrid functional
perform best when all 16 reactions in TSG48 are considered.

Table 2. The Mean Unsigned Deviations MUD (in Å) of
Transition State Geometries Obtained by Wave Function
Methods for the Four Selected Reactions in TSG48 Database,
Compared to the Best Estimated Geometries from refs 2
and 28

method R2a R5b R7c R12d AMUDe

BMC-CCSD 0.002 0.007 0.003 0.007 0.005

MRMP2/nom-CPO/MG3S40 0.011 0.003 0.004 0.009 0.007

QCISD/MG3 0.017 0.008 0.023 0.003 0.013

MP2/6-31þG(d,p) 0.018 0.013 0.008 0.021 0.015

MRMP2/nom-CPO/aug-cc-pVTZ40 0.016 0.003 0.038 0.008 0.016

MP2/def2-TZVP 0.019 0.013 0.028 0.013 0.018

MP2/MG3S 0.024 0.016 0.023 0.013 0.019

MP2/ma-TZVP 0.020 0.017 0.027 0.013 0.019

MP2/maug-cc-pV(Tþd)Z 0.022 0.027 0.038 0.016 0.026
aAccurate values from ref 28b. bAccurate values from ref 28a. cAccurate
values from ref 2. dAccurate values from ref 28c. eAverage deviation
from 12 accurate transition state internuclear distances.
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First, we consider the two doubly hybrid DFTmethods. MC3BB
performs best of all; it does even better than the more expensive
QCISD/MG3 method. MC3BB includes kinetic energy density,
while MC3MPW does not. Thus, MC3MPW would be an
alternative choice for users of computer programs that do not
include functionals with kinetic energy density. The third doubly
hybrid DFT method we tested, B2PLYP, does not perform as
well as either MC3BB or MC3MPW. The MP2 components in
MC3BB and MC3MPW are obtained with the basis set 6-31þ
G(d,p), which has been found to yield better results than MG3S
in section 2. This could be one of the reasons that MC3-type
methods do better than B2PLYP/MG3S, although a more likely

reason is that MC3BB and MC3MPW are parametrized for use
with specific basis sets. Incidentally, we note that a timing analysis
in which the relative computational cost associated withMC3BB,
MC3MPW, and B2PLYP/MG3S was estimated by taking the
average of the total CPU times required for the single-point
energy calculation of each of the four transition states in reactions
13�16, and dividing this quantity by exactly the same quantity
obtained from HF/MG3S single-point calculations, using the
same computational software and the same computer, revealed
that these three model chemistries have comparable computa-
tional costs for single-point energies—each being on average
3�4 times more expensive than HF/MG3S. However, for

Table 3. The Average Mean Unsigned Deviations (AMUD, in Å) of Transition State Geometries Obtained Using 36 Model
Chemistries, Compared to the TSG48 Database

method typea HTG9 HATG9 NSG9 UAG9 MHTG12 TSG48 TSG39b

QCISD/MG3 WFT 0.020 0.013 0.015 0.014 0.014 0.015 0.014

MP2/MG3S WFT 0.038 0.067 0.017 0.041 0.025 0.037 0.034

MC3BB DHDFT 0.011 0.020 0.009 0.018 0.009 0.013 0.013

M08-HX/MG3S H-m 0.016 0.012 0.013 0.016 0.014 0.014 0.015

MC3MPW DHDFT 0.012 0.027 0.012 0.023 0.009 0.016 0.015

M06-2X/MG3S H-m 0.021 0.013 0.017 0.025 0.012 0.017 0.018

M08-SO/MG3S H-m 0.018 0.022 0.030 0.017 0.020 0.021 0.020

ωB97/MG3S H 0.030 0.025 0.013 0.034 0.011 0.022 0.023

PWB6K/MG3S H-m 0.028 0.022 0.015 0.031 0.021 0.023 0.024

B2PLYP/MG3S DHDFT 0.019 0.029 0.042 0.017 0.015 0.024 0.018

BB1K/MG3S H-m 0.030 0.024 0.014 0.038 0.018 0.025 0.025

ωB97X/MG3S H 0.034 0.026 0.014 0.040 0.013 0.025 0.025

MPWB1K/MG3S H-m 0.029 0.022 0.018 0.037 0.019 0.025 0.026

M05-2X/MG3S H-m 0.041 0.022 0.015 0.056 0.006 0.027 0.028

BMK/MG3S H-m 0.034 0.039 0.013 0.039 0.016 0.028 0.027

MPW1K/MG3S H 0.029 0.021 0.018 0.058 0.017 0.028 0.030

ωB97X-D/MG3S H 0.036 0.035 0.021 0.046 0.015 0.030 0.029

BHandHLYP/MG3S H 0.043 0.023 0.023 0.051 0.021 0.032 0.031

M06-HF/MG3S H-m 0.044 0.019 0.045 0.030 0.032 0.034 0.035

PW6B95/MG3S H-m 0.038 0.048 0.025 0.045 0.021 0.034 0.030

PBE0/MG3S H 0.037 0.041 0.016 0.068 0.023 0.036 0.033

M06/MG3S H-m 0.044 0.047 0.033 0.051 0.016 0.037 0.033

mPW1PW/MG3S H 0.036 0.042 0.021 0.068 0.022 0.037 0.033

TPSS25B95/MG3S H-m 0.048 0.050 0.032 0.043 0.024 0.038 0.031

B97-3/MG3S H 0.039 0.045 0.034 0.053 0.024 0.038 0.035

M05/MG3S H-m 0.042 0.048 0.041 0.078 0.021 0.044 0.040

B98/MG3S H 0.058 0.076 0.047 0.071 0.028 0.054 0.046

B1LYP/MG3S H 0.059 0.071 0.066 0.069 0.024 0.056 0.049

B3LYP/MG3S H 0.065 0.095 0.069 0.080 0.029 0.065 0.054

M06-L/MG3Sc m 0.070 0.100 0.069 0.081 0.039 0.070 0.057

τHCTHhyb/MG3Sc H-m 0.084 0.107 0.059 0.087 0.040 0.073 0.058

SOGGA/MG3Sd GGA 0.132 0.032 0.043 0.159 0.069 0.086 0.091

MOHLYP2/MG3S GGA 0.074 0.101 0.199 0.056 0.072 0.099 0.082

BLYP/MG3Sc,d,e GGA 0.163 0.125 0.148 0.133 0.065 0.123 0.108

MOHLYP/MG3Sc,d GGA 0.205 0.117 0.126 0.137 0.076 0.129 0.121

B97-D/MG3Sc,d,e H 0.285 0.117 0.149 0.168 0.054 0.148 0.140
aAbbreviations: WFT, wave function theory; DHDFT, doubly hybrid DFT; H-m, hybrid meta-GGA; H, hybrid GGA; m, meta-GGA; GGA, generalized
gradient approximation. bTSG39 is the same as TSG48 except that R6, R8, and R15 are omitted. cThe transition state of reaction R6 cannot be located.
The largest deviations of the three key bond lengths obtained using other model chemistries were used to calculate the MUD in such cases. dThe
transition state of reaction R15 cannot be located. The largest deviations of the three key bond lengths obtained using other model chemistries were used
to calculate theMUD in such cases. eThe transition state of reaction R8 cannot be located. The largest deviations of the three key bond lengths obtained
using other model chemistries were used to calculate the MUD in such cases.
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geometry optimization, the more relevant cost is that for a single-
point gradient, by which we mean a gradient at a single geometry
(this includes the computer time to calculate one energy and a
gradient at the same geometry as the energy), and a comparison
like that just described, but for single-point gradients, reveals that
MC3BB, MC3MPW, and B2PLYP/MG3S single-point gradi-
ents are respectively 4.6, 3.9, and 4.5 times more expensive
(averaged over the four transition states) than single-point HF/
MG3S gradients.
Most of the hybrid meta-GGAs predict better transition state

geometries than GGAs and hybrid GGAs. The two best hybrid
meta-GGAs are M08-HX and M06-2X, and their AMUDs are
0.014 Å and 0.017 Å, respectively, over the 16 reactions, which
is similar in quality to MC3BB and MC3MPW. The range-
separated ωB97 functional is the best hybrid GGA we tested.
Twelve hybridmeta-GGAs (M08-HX,M06-2X,M08-SO, PWB6K,
BB1K, MPWB1K, M05-2X, BMK, PW6B95, M06-HF, M06, and
TPSS25B95) and eight hybrid GGAs (ωB97, ωB97X, MPW1K,
ωB97X-D, BHandHLYP, PBE0, mPW1PW, and B97-3) have a
better or similar performance to that of MP2 with the MG3S basis
set, but with less cost. The hybrid B3LYP functional is very widely
used but is found to perform poorly here.
The τHCTHhyb and B97-D functionals are respectively the

worst hybrid-meta GGA and worst hybrid GGA for the 16
reactions explored here. These two functionals, along with the
GGA functionals we tested, are not good enough for reliable
optimizations of transition state geometries; some transition
states for reactions (R6, R8, and R15) with low reaction barriers
cannot even be located successfully because, when using the
functionals mentioned above, there is no barrier. The M06-L
meta-GGA performs better than any other tested functional that
has no Hartree�Fock exchange. MOHLYP2 is the only GGA
that can locate all transition state structures for the 16 reactions
explored here, although it has a large AMUD.
4.2. The Performance for the Subsets of TSG48. For the

hydrogen atom transfer reactions in HTG9, the superiority of the
doubly hybrid DFT methods is especially remarkable, and all
three doubly hybrid methods, namely, MC3BB, MC3MPW, and
B2PLYP, perform better than QCISD/MG3. The three best
hybrid meta-GGAs (M08-HX, M06-2X, and M08-SO) have
similar performance to the more expensive B2PLYP.
Due to the worse performance of the MP2 component, the

doubly hybrid DFTmethods give worse results thanmany hybrid
meta-GGAs for the heavy atom transfer reactions of HATG9. In
this case, M08-HX, QCISD/MG3, and M06-2X become the
three best methods. M06-HF and SOGGA are found to perform
better in HATG9 than in other subsets; M06-HF gives a better
result than doubly hybrid functionals for this subset.
Many of the model chemistries tested in the present work are

suitable for locating the transition states of the anionic nucleo-
philic substitution reactions in NSG9. Again, MC3BB and
MC3MPW perform better than QCISD/MG3, and MP2/
MG3S is almost as good. It is perhaps surprising to find that
B2PLYP has poor performance for this subset; the relatively poor
behavior of B2PLYP in predicting barrier heights for nucleophilic
substitution reactions10 could be the main reason.
None of the DFTmethods perform better thanQCISD/MG3 for

the UAG9 subset (unimolecular and association reactions). Most of
the density functionals tested have the worst performance for this
subset; this could result from the transition states of the reactions in
UAG9 all having significant multireference character.40 The four best
DFT methods over these three reactions are M08-HX, M08-SO,

B2PLYP, and MC3BB. M06-2X, which is usually among the top
performers for other reaction types, performs relatively worse but
still reasonably well. Other functionals with performances signifi-
cantly above average for this difficult set are MC3MPW, M06-HF,
and PWB6K.
All DFT-based electronic model chemistries performed rela-

tively well for the hydrogen transfer reactions from methanol to
the methyl or hydroperoxyl radicals in the MHTG12 subset,
except for the GGA methods. Hydrogen bonding plays an
important role in stabilizing the transition states for R13 and
R15. The best performance for the MHTG12 subset is for M05-
2X (which is reasonably accurate for systems characterized by
hydrogen bonding and other weak noncovalent interactions13),
which attains an AMUD of just 0.006 Å.
4.3. Dependence on Basis Set. In this section, we consider the

dependence of the results onbasis set. The goal is not a studyof basis
set convergence (where one might, for example, systematically look
at changes in going from double-ζ to triple-ζ to quadruple-ζ in a
convergent sequence of basis sets) but rather a study of how
accurate the results are when one uses the basis sets that have
become popular because of their favorable general performance/
cost ratio and their affordability for large systems. Such basis sets are
of special interest because they have stood the test of being widely
applied, which in practice is a form of broad testing. This is
necessarily unsystematic because these broadly tested basis sets
are not themselves systematic, but we chose basis sets for the present
study on the basis of our previous experiences in basis set selection
for transition state calculations, for example refs 10, 36, and 38b.
MG3S is aminimally augmented triple-ζ basis set that is highly

recommended for kinetics based on our previous studies. How-
ever the double-ζ 6-31þG(d,p) basis set was found to be a better
basis set for the MP2 method for four reactions discussed in
section 2 due to cancellation of errors. It is well-known that MP2
results often become worse as the basis set is increased, and
similar deterioration is often seen for density functional calcula-
tions using relatively inaccurate functionals, such as B3LYP.
Thinking along these lines, one might ask which double- or
triple-ζ basis set is most suitable for density functional studies of
transition state geometry and how much does the quality of the
result depend on the specific choice of basis. To answer this,
MG3S, 6-31þG(d,p), and three additional triple-ζ basis sets,
def2-TZVP, ma-TZVP, andmaug-cc-pV(Tþd)Z, were tested for
selected methods (MP2, B2PLYP, M08-HX, M06-2X, MPW1K,
B3LYP, and τHCTHhyb) over the 12 reactions in the DBH24
database. The 6-31þG(d,p) basis set is chosen for this study
because we and others have found for numerous applications that
it is a good general choice for DFT calculations at the double-ζ
level. The ma-TZVP and maug-cc-pV(Tþd)Z basis sets are
chosen because they are examples of minimally augmented basis
sets, which have been highly recommended for general applica-
tions of DFT.36,38b,60,61 The ma-TZVP basis set is a modification
of the def2-TZVP basis set37minimally augmented by one diffuse
s function and one diffuse p subshell on all non-hydrogenic
atoms. The maug-cc-pV(Tþd)Z basis set is the aug-cc-pV-
(Tþd)Z basis set with the set of diffuse basis functions truncated
to only the s and p functions on non-hydrogenic atoms. The
corresponding calculated average mean unsigned deviations
(AMUDs) for these basis sets for the TSG48 database are shown
in Table 4.
Table 4 provides yet another example where MP2’s performance

is not improved by using better basis sets, and the best results are
obtained with the smallest basis set examined. Since it is known that
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MP2 requires large basis sets for convergence of energies, this clearly
results from a cancellation of errors. However, density functional
theory does not benefit from such cancellation, and the double-ζ
basis set 6-31þG(d,p) is clearly not good enough for reliable density
functional calculations of transition state geometries. All four triple-ζ
basis sets studied inTable 4 have similar performances for the typical
density functionals when the R6 and R8 reactions are excluded.
B3LYP and τHCTHhyb failed to locate the transition state with the
less diffuse def2-TZVP basis set for reaction R8, and B3LYP/6-
31þG(d,p) also failed for R6. The functionals with relatively poor
performance for barrier heights need more diffuse and larger
basis sets.
Table 4 shows that MG3S, maug-cc-pV(Tþd)Z, and ma-

TZVP are equally well suited for DFT studies of transition state
geometries. This confirms the reasonableness of using theMG3S

basis set in the tests in Table 3 for evaluating the performance of
density functionals.
4.4. The Relationship between Good Performance for

Barrier Heights and That for Transition State Geometries.
On the basis of the present investigation, the hybrid functionals
that were recommended for the calculations of barrier heights,10

M08-HX, M08-SO, M06-2X, BB1K, BMK, PWB6K, MPW1K,
BHandHLYP, and TPSS25B95, can all obtain comparable or
more reliable transition state geometries than those obtained by
MP2. Figure 1 provides a more thorough test of the question: is
good performance for locating transition state geometries asso-
ciated with smaller errors for barrier heights? Figure 1 includes
all methods applied to the entire TSG48 database in this article
that were also evaluated for predicting barrier heights in the
DBH24/08 article,10 except that the methods that failed to

Table 4. The Average Mean Unsigned Deviations (AMUD, in Å) of Transition State Geometries Obtained Using MP2 and Six
DFT Methods in Combination with Five Basis Sets, for Subdatabases of the TSG48 Database

method HTG9 HATG9 NSG9 UAG9 TSG36a TSG30a

M06-2X/MG3S 0.021 0.013 0.017 0.025 0.019 0.020

M06-2X/ma-TZVP 0.024 0.011 0.014 0.025 0.019 0.020

M06-2X/def2-TZVP 0.025 0.013 0.020 0.024 0.021 0.021

M06-2X/maug-cc-pV(Tþd)Z 0.021 0.012 0.014 0.028 0.019 0.020

M06-2X/6-31þG(d,p) 0.030 0.036 0.022 0.035 0.031 0.029

M08-HX/MG3S 0.016 0.012 0.013 0.016 0.014 0.014

M08-HX/ma-TZVP 0.018 0.011 0.012 0.017 0.015 0.015

M08-HX/def2-TZVP 0.019 0.013 0.008 0.017 0.014 0.016

M08-HX/maug-cc-pV(Tþd)Z 0.018 0.010 0.013 0.019 0.015 0.015

M08-HX/6-31þG(d,p) 0.021 0.029 0.017 0.021 0.022 0.021

B3LYP/MG3S 0.065 0.095 0.069 0.080 0.077 0.061

B3LYP/ma-TZVP 0.072 0.082 0.068 0.081 0.076 0.063

B3LYP/def2-TZVPb 0.076 0.079 0.107 0.079 0.085 0.064

B3LYP/maug-cc-pV(Tþd)Z 0.069 0.083 0.064 0.084 0.075 0.063

B3LYP/6-31þG(d,p)c 0.081 0.119 0.087 0.106 0.098 0.080

MPW1K/MG3S 0.029 0.021 0.018 0.058 0.032 0.033

MPW1K/ma-TZVP 0.035 0.018 0.020 0.059 0.033 0.035

MPW1K/def2-TZVP 0.037 0.017 0.028 0.058 0.035 0.036

MPW1K/maug-cc-pV(Tþd)Z 0.030 0.019 0.020 0.062 0.033 0.035

MPW1K/6-31þG(d,p) 0.038 0.035 0.019 0.071 0.041 0.039

τHCTHhyb/MG3Sc 0.084 0.107 0.059 0.087 0.084 0.065

τHCTHhyb/ma-TZVPc 0.088 0.107 0.057 0.088 0.085 0.066

τHCTHhyb/def2-TZVPb,c 0.088 0.108 0.097 0.087 0.095 0.067

τHCTHhyb/maug-cc-pV(Tþd)Zb 0.086 0.106 0.053 0.089 0.084 0.066

τHCTHhyb/6-31þG(d,p)b 0.104 0.119 0.075 0.105 0.101 0.083

B2PLYP/MG3S 0.019 0.029 0.042 0.017 0.026 0.020

B2PLYP/ma-TZVP 0.019 0.025 0.039 0.016 0.025 0.019

B2PLYP/def2-TZVP 0.022 0.025 0.054 0.015 0.029 0.020

B2PLYP/maug-cc-pV(Tþd)Z 0.020 0.025 0.034 0.020 0.025 0.020

B2PLYP/6-31þG(d,p) 0.025 0.051 0.055 0.026 0.039 0.030

MP2/MG3S 0.038 0.067 0.017 0.041 0.041 0.036

MP2/ma-TZVP 0.037 0.069 0.018 0.041 0.042 0.036

MP2/def2-TZVP 0.037 0.066 0.026 0.042 0.043 0.036

MP2/maug-cc-pV(Tþd)Z 0.037 0.073 0.028 0.039 0.044 0.038

MP2/6-31þG(d,p) 0.033 0.051 0.012 0.032 0.032 0.028
aTSG36 is the same as TSG48 except that R13�R16 are omitted; TSG30 is the same as TSG36 except that R6 and R8 are omitted. bThe transition state
of reaction R8 cannot be located. The largest deviations of the three key bond lengths obtained using other model chemistries were used to calculate the
MUD in such cases. cThe transition state of reaction R6 cannot be located. The largest deviations of the three key bond lengths obtained using other
model chemistries were used to calculate the MUD in such cases.
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predict a finite-distance transition state for any of the low-barrier
reactions are excluded from the plot. The figure shows that there
is indeed a correlation of error in bond length with error in barrier
height if one compares density functional methods to one
another or if one compares wave function methods to one
another, but for a given accuracy in barrier heights, wave function
methods predict more accurate transition state geometries. This
is perhaps surprising since a strategy employed by many workers
(including us) since the early days of DFT applications in
chemistry has been to use DFT for geometries and WFT for
energies, but one should keep in mind that the reason for using
DFT for geometries is its lower cost. One can obtain more
accurate geometries for a given cost with DFT.
Although the methods that failed to predict a finite-distance

TS for any of the low-barrier reactions are left out of Figure 1,
they generally also follow the correlation of large errors in barrier
heights being associated with large errors in transition state
geometries in that they have high average errors for the reactions
where they do predict a transition state, and except for MOH-
LYP, they have highMUEs in barrier heights. For example, BLYP
and SOGGA have MUEs for DBH24/08 of 8�10 kcal/mol.
For the reactions with a low reaction barrier, functionals that

usually underestimate barrier heights are not well suited to
locating transition state geometries. As already mentioned,
reaction R15 is a good example of this, and it is interesting to
further examine this case. The reaction is endoergic, and the
barrier in the reverse direction is therefore the intrinsic barrier.

Given that the barrier height for the reverse of R15 is quite
small,62,63 it is no surprise that it has vanished completely in
calculations using density functionals like BLYP, B97-D, SOG-
GA, and MOHLYP that tend to significantly underestimate
barrier heights; i.e., the potential energy decreases monotonically
for the reverse reaction. To illustrate the shape of the energy
profile in these cases, potential energy curves V(ΔR), whereΔR is
a reaction coordinate defined below, were generated for reaction
R15 by single-point BLYP/MG3S, B97-D/MG3S, SOGGA/
MG3S, and MOHLYP/MG3S energy calculations along a fixed
reaction path. The fixed reaction path corresponds to the M08-
SO/MG3S minimum-energy path (MEP). The results are
plotted as functions of ΔR, which is defined as

ΔR � R1 � R1
0 before the saddle

R2
0 � R2 after the saddle

( )

where R10 and R20 respectively correspond to the values (in
angstroms) for the forming bond and the breaking bond for
nonstationary points along the M08-SO/MG3S MEP. We have
chosen M08-SO/MG3S to construct the MEP because this
electronic model chemistry has been shown to accurately char-
acterize the reaction energetics for hydrogen atom transfer
reactions involving similar oxygenated hydrocarbons.64 In each
case, the potential curve was normalized relative to its value for
the reactants. In addition, the reaction energy for R15 was also

Figure 1. Plot of MUE (in Å) for TSG48 vs MUE (in kcal/mol) for
DBH24/08 for various methods. The three results for wave function
methods are labeled, and the unlabeled points all correspond to density
functional theory. From left to right, the complete set of points
corresponds to BMC-CCSD, M06-2X/MG3S, M08-SO/MG3S, M08-
HX/MG3S, BB1K/MG3S, BMK/MG3S, MPWB1K/MG3S, PWB6K/
MG3S, MC3BB, MPW1K/MG3S, MC3MPW, M05-2X/MG3S,
B97-3/MG3S, B2PLYP/MG3S, BHandHLYP/MG3S, M06/MG3S,
QCISD/MG3, M05/MG3S, M06-HF/MG3S, PW6B95/MG3S, TPS-
S25B95/MG3S, mPW1PW/MG3S, B98/MG3S, PBE0/MG3S, B3LYP
/MG3S, and MP2/MG3S. Since the BMC-CCSD data are used as
reference data for part of TSG48, the value plotted is based on only the
reactions where a more accurate value is available; that is, it is based on
Table 2 or 5, whereas the other values in the plot are based on Table 3.

Figure 2. Potential energy curves V(ΔR) for reaction R15 generated by
single-point energy calculations along a fixed reaction path. For all five
curves, the reaction path is the M08-SO/MG3S minimum-energy path
in isoinertial coordinates, and ΔR is a measure of the reaction progress
defined in the text. The curves correspond to five different density
functional methods: BLYP/MG3S (green stars), B97-D/MG3S (red
circles), SOGGA/MG3S (blue diamonds),MOHLYP/MG3S (magenta
triangles), and M08-SO/MG3S (black squares). In each case, the
potential curve is normalized relative to its value for the reactants at
the M08-SO/MG3S geometry. The value of the reaction energy (to
which each curve would tend if extended to the right) are also shown for
each of the five density functional methods, in corresponding colors;
these values are calculated, for the purposes of this figure, by using the
M08-SO/MG3S geometries for the reactants and products in all cases
and have values of 18.57, 20.00, 21.20, 19.76, and 19.81 kcal/mol for
BLYP/MG3S, B97-D/MG3S, SOGGA/MG3S, MOHLYP/MG3S, and
M08-SO/MG3S, respectively (therefore, the magenta and black hor-
izontal lines are hard to distinguish visually because they are almost on
top of one another).
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calculated with each of the five density functional methods. The
results of this analysis are depicted in Figure 2.
Figure 2 shows that while the TS forM08-SO/MG3S is higher

in energy than that for the products (as expected), the reaction-
path potential energies computed by the BLYP/MG3S, B97-D/
MG3S, and SOGGA/MG3S electronic model chemistries are all
significantly lower than that of the products. In the case of
MOHLYP/MG3S, there are a few points along the potential energy
curve that are slightly (up to 0.14 kcal/mol) higher in energy than the
products. Interestingly, the potential curves obtained with BLYP/
MG3S, B97-D/MG3S, MOHLYP/MG3S, and SOGGA/MG3S
show mildly oscillatory behavior. In each of these cases, attempts
weremade to locate saddle points for R15using the geometries of the
higher-energy points as initial guesses as well as other initial geometry
guesses, but no saddle points were found—we concluded that there
is no saddle point in these cases. This illustrates how, for reactions
with low intrinsic barriers, density functionals that tend to appreciably
underestimate barrier heights not only are unsuitable for quantitative
calculations of saddle point geometries, but, in some cases, fail to even
predict the existence of a saddle point.
4.5. Comparison to MRMP2. The methods tested so far are

single-reference methods, which are more convenient than multi-
reference methods. One additional issue that is worth discussing,
therefore, is whether it is advantageous to usemultireferencemethods
for even greater accuracy. It is well-known that complete-active-space
self-consistent-field (CASSCF) theory65,66 does not provide a reliable
scheme for calculating transition state geometries because it neglects
dynamical correlation energy. The next multireference level in terms
of higher cost and higher accuracy is multireference second-order
perturbation theory based on a CASSCF reference state. There is
more than one version of this approach (e.g., MRMP267 and
CASPT268), and they are expected to give similar results if a similar
selection is made for the active space. In recent work,40 a well-defined
choice of active space for atom transfer reactions, called the nominal
correlated participating orbitals scheme (nom-CPO), was presented
and used to optimize four of the transition states considered here for
which we have more accurate results than BMC-CCSD. The mean
unsigned deviations from the benchmark results and the average
mean unsigned deviations from the benchmark results are presented
in Table 5, where they are compared with the seven most accurate
methods tested in earlier sections of this paper.

Table 5 shows that BMC-CCSD and MRMP2/nom-CPO
have AMUDs in the 0.005�0.007 Å range, whereas the best of
the other methods tested have AMUDs no smaller than 0.012 Å
for these four reactions. Thus, we recommend both BMC-CCSD
and MRMP2/nom-CPO when one wants higher accuracy than is
afforded by MC3BB and M08-HX.

5. CONCLUDING REMARKS

In the present work, a database called TSG48 containing 48
transition state geometrical data for 16 reactions is introduced to
assess the performance of density functionals for locating transition
state geometries. The MC3BB and MC3MPW doubly hybrid
functionals and the M08-HX and M06-2X hybrid meta-GGAs are
found to have the best performance. M08-HX is the most highly
recommended functional due to the excellent performance for all
five subsets of TSG48, as well as having a lower cost when
compared to doubly hybrid functionals. Functionals with good
performance for barrier heights usually predict accurate transi-
tion state geometries, and similarly, bad performance for barrier
heights is associated with less reliable prediction of transition
state structures. Therefore, all local functionals tested in the
present work, in particular, GGAs and meta-GGAs, and some
hybrid density functionals, such as B97-D, τHCTHhyb, B3LYP,
B1LYP, B98, and M05, are not recommended for locating
transition states due to errors in geometry associated in part
with the underestimation of the barrier height.

Due to a cancellation of errors, the 6-31þG(d,p) basis set
gives better results than large basis sets for MP2, but 6-31þG(d,p)
is not good enough for the best performance attainable with DFT
methods. A minimally augmented triple-ζ basis set, such as
MG3S, ma-TZVP, or maug-cc-pV(Tþd)Z, is recommended.
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’GLOSSARY

Density Functionals
See the last 34 rows of Table 2 for a list of density functionals
included in the present study; references for these density func-
tionals are cited at their first mention in the text in sections 1 and 3

Types of Density Functionals
GGA generalized gradient approximation to the den-

sity functional, which is a type of density func-
tional in which the exchange-correlation energy
density at a point in space depends on the local
values of the up-spin and down-spin electron
densities and their reduced gradients

m meta generalized gradient approximation to the
density functional, which is like a GGA but the

Table 5. The Mean Unsigned Deviations (MUD, in Å) of
Transition State Geometries for the Four Selected Reactions
in TSG48 Database, Compared to the Best Estimated Geo-
metries from refs 2 and 28 for the Three Wave Function
Methods and Five Best DFT Methods over 16 Reactions in
Table 3

method R2a R5b R7c R12d AMUDe

BMC-CCSD 0.002 0.007 0.003 0.007 0.005

MRMP2/nom-CPO/MG3S40 0.011 0.003 0.004 0.009 0.007

QCISD/MG3 0.017 0.008 0.023 0.003 0.013

MC3BB 0.012 0.012 0.009 0.016 0.012

MC3MPW 0.016 0.014 0.013 0.015 0.014

M06�2X/MG3S 0.024 0.009 0.006 0.025 0.016

M08-HX/MG3S 0.040 0.011 0.000 0.025 0.019

M08-SO/MG3S 0.024 0.011 0.030 0.022 0.022
aAccurate values from ref 28b. bAccurate values from refs 28a. cAccurate
values from ref 2. dAccurate values from ref 28c. eAverage deviation
from 12 accurate transition state internuclear distances.
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exchange-correlation energy density at a point in
space also depends on the local values of the up-
spin and down-spin electron kinetic energy
densities

H hybridGGA inwhich the exchange energy also has
a nonlocal component, which is Hartree�Fock
exchange in the cases considered in this article

H�m hybrid meta-GGA in which the exchange energy
also has a nonlocal component, which is Hartree�
Fock exchange in the cases considered in this article

DHDFT doubly hybrid density functional, which is like a
hybrid functional with the addition of a nonlocal
component to the correlation energy as well as the
exchange energy. In the cases considered in this
article, this is an orbital-dependent term with the
form of the MP2 correlation energy, computed
using either the Hartree�Fock orbitals or the
Kohn�Sham orbitals, which are both functionals
of the electron density

Basis Sets
References explaining basis sets are given in section 2

Databases
DBH24 original database of 24 diverse barrier heights,

with subdatabases explained in Table 1
DBH24/08 database of 24 diverse barrier heights, with the

same reactions and subdatabases as DBH24 but
with the majority of the barrier heights updated
in 2008

MHTG12 database of 12 transition state geometrical data
for methanol hydrogen transfer data, in particu-
lar, internuclear distances involving atoms in
breaking and making bonds at transition state
structures of four reactions involving abstraction
of H from methanol

TSG48 database of 48 transition state geometrical data,
in particular, internuclear distances involving
atoms in breaking and making bonds at transition
state structures of 16 reactions, with MHTG12
and four other subdatabases explained in section 2

Wave Function Methods
BMC-CCSD balanced multicoefficient method based on

coupled cluster theory with single and double
excitations and a basis set especially balanced for
extrapolation; the coefficients are used to extra-
polate toward the complete configuration inter-
action limit

CASPT2 MRMP2 based on a CASSCF reference state
CASSCF complete-active-space self-consistent-field
MP2 Møller�Plesset second-order perturbation the-

ory based on a single-configuration wave func-
tion as the zero-order reference state

MRMP2 multireference MP2, that is, second-order per-
turbation theory based on a multiple-configura-
tion wave function as the zero-order reference
state

nom-CPO nominal correlated participating orbitals, which
is a way to specify the active space for MRMP2

QCISD quadratic configuration interaction with single
and double excitations

Mean Errors
MUD mean unsigned deviation (i.e., mean absolute

value of the deviation) from most accurate
available reference data

AMUD average MUD, that is, average over all of the
reactions in a database of the MUD for the three
key internuclear distances of each reaction
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ABSTRACT: We present a thorough locality analysis of the divide�expand�consolidate amplitude equations for second-order
Møller�Plesset perturbation theory and the coupled cluster singles doubles (CCSD)model, which demonstrates that the amplitude
equations are local when expressed in terms of a set of local occupied and local unoccupied Hartree�Fock orbitals, such as the least-
change molecular basis. The locality analysis thus shows that a CC calculation on a large molecular system may be carried out in
terms of CC calculations on small orbital fragments of the total molecular system, where the sizes of the orbital fragment spaces are
determined in a black box manner to ensure that the CC correlation energy is calculated to a preset energy threshold. A practical
implementation of the locality analysis is described, and numerical results are presented, which demonstrate that both the orbital
fragment sizes and the relative energy error compared to a full CC calculation are independent of the molecular system size.

1. INTRODUCTION

A coupled cluster (CC) calculation1 starts out with a mean
field Hartree�Fock (HF) calculation,2,3 which gives the total HF
energy and a set of occupied and unoccupied HF molecular
orbitals. The CC wave function is expanded in the HF orbital
basis, and the CC amplitudes are determined by solving sets of
nonlinear amplitude equations. From the CC amplitudes the
correlation energy is determined. The total CC energy is the sum
of the HF energy and the correlation energy.

The mean field HF calculation gives a good description of the
long-range interaction between the electrons, while the interaction
for shorter distances is described with less accuracy. The major task
of a CC calculation is therefore to describe these short-ranged
electron�electron interactions. Using a simplistic physical picture,
this interaction may be expressed in terms of the very short-ranged
interaction leading to coulomb holes in the wave function and the
longer ranged interaction leading to dispersion effects. Both these
effects describe local phenomena.

Standard CC calculations are expressed in the canonical HF
basis which is a nonlocal basis, where the individual HF orbitals
extend over the whole molecular system. The description of local
phenomena using a nonlocal basis will inherently lead to a scaling
wall for the standard CC calculations. To circumvent this scaling
wall, it has been attempted to express the CC wave function in a
basis of local HF orbitals.4

Local occupied HF orbitals have been obtained by localizing
the canonical HF orbitals using various standard techniques.5�7

However, none of these techniques have been able to yield a set
of local unoccupied HF orbitals.8 Projected atomic orbitals
(PAOs), where the occupied HF orbital space is projected out
of the atomic basis, have been used to span the unoccupied HF
orbital space. The PAOs constitute a redundant set, but a more
severe drawback in a local wave function context is that the
locality of the PAOs is much less pronounced than the locality of
the localized occupied HF orbitals.

The local correlation wave function method development was
pioneered by Pulay4 and Saebø and Pulay,9 and the local CC

method of Hampel and Werner10 and Sch€utz and Werner11�13

constitutes a prominent early contribution. Many other local CC
methods have been proposed,14�25 including atomic orbital-based
CC,14�16 the natural linear scaling approach,18 the cluster-in-
molecule approach,19�21 the the divide-and-conquer approach,22

the fragment molecular orbital approach,23 and the incremental
scheme.24,25 For the simplest correlation method, second-order
Møller�Plesset perturbation theory (MP2), other approaches
have also been proposed where linear scaling have been obtained26

with Laplace transformations of the energy denominator and
applying state-of-the-art integral screening techniques.27�29

We have recently described how a local HF orbital basis—the
least-change molecular (LCM) basis30—can be obtained for
both the occupied and the unoccupied HF orbital spaces. In
particular, we have found that the locality of the unoccupied HF
orbitals is not very different from the locality of the occupied HF
orbitals for standard basis sets, such as cc-pVDZ and cc-pVTZ. By
applying this local HF basis and restructuring the CC equations, we
have developed the linear-scaling and embarrassingly parallel divi-
de�expand�consolidate (DEC) CCmethod.31 The DECmethod
is on parwith the standardCCmethod in the sense that the precision
of the correlation energy is defined by a preset threshold. Specifically,
in a standard CC calculation the precision is specified by a preset
threshold for the residual norm for the CC amplitude equations, and
in a DEC calculation the precision is specified by a preset
threshold for the atomic fragment energies, which directly
reflects the accuracy in the total correlation energy (provided
that a tight residual threshold is used in the amplitude equations
for the fragment calculations). In short, the accuracy in standard
CC and DEC CC is defined prior to the calculation.

In the Laplace integral screening AO-MP2 approach the error
compared to a full MP2 calculation can also be controlled in a
precise manner,27�29 while in existing local CC methods the
standard CC correlation energy is an asymptotic limit, which is

Received: February 17, 2011
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obtained when all thresholds are removed. However, in practice,
ad hoc approximations to the standard CC method are intro-
duced in the local CC methods, where the effects of these
approximations on the correlation energy and the molecular
properties are not known. The approximations include a priori
assignments of local orbital spaces, which introduce local correla-
tion errors, e.g., when the completeness criterion of Boughton
and Pulay32 is used to assign a priori fixed orbital excitation
spaces to localized occupied HF orbitals. Some approximations
also include nonphysical bond cuts of the molecular system. At
the end of a local CC calculation, where ad hoc approximations
have been introduced, the precision of the calculation compared
to a full CC calculation is in general unknown.

One could argue that compared to the large errors in CC
calculations due to the basis set incompleteness and the approximate
CCwave functionmodel, the approximations that are introduced in
the local CCmethods are acceptable. However, in chemistry we are
typically interested in the energy differences for molecular con-
formers, for example, reaction enthalpies, interaction energies of van
der Waals complexes, excitation energies, and geometrical energy
derivatives. These energy differences are small compared to total
energies, and to obtain a reliable and accurate description of these
small differences, it is necessary to know the errors introduced by the
local approximations.

Comparing the DEC approach to existing local CCmethods, we
conclude that using theDEC approach, the accuracy in the energy is
defined prior to the calculation, and the sizes of the orbital spaces are
adjusted during the calculation according to this accuracy. In this
way the DEC scheme ensures that the standard CC energy is
reproduced to the requested accuracy using as small orbital spaces as
possible. Existing local CC approaches in general lack the flexibility
to allow the sizes of the orbital spaces to adjust to an energy
threshold, and therefore the error compared to the standard CC
energy is in general unknown.

The DEC energy equations have previously been presented.31 In
this paperweperforma thorough locality analysis of theMP2 andCC
singles doubles (CCSD) amplitude equations, which demonstrate
that the amplitude equations are indeed local when expressed in the
LCM basis,30 where both the occupied and the virtual orbitals are
local. The locality analysis shows that aCC calculation on amolecular
systemmaybe carried out in terms ofCCcalculations on small orbital
fragments of the total molecular system, when the fragmentation of
the orbital spaces is carried out as in the DEC CC method. We also
present a practical implementation of the DECmethod. In particular,
we discuss the removal of orbital tail coefficients to obtain more local
molecular orbitals (and thus smaller atomic orbital spaces for
evaluating two-electron integrals), how orbital spaces are determined
according to a predefined energy accuracy, and how to avoid wave
function superposition errors when pair interaction energies are
calculated. Numerical results are given, which demonstrate that the
sizes of the fragment orbital spaces are independent of the molecular
system size—in agreement with the theoretical locality analysis—and
that the standard CC correlation energy can be recovered to a
predefined accuracy using relatively small orbital fragment spaces.

In the next section we derive the basic equations of the DEC
model. In Sections 3 and 4 we perform a locality analysis for the
MP2 and CCSD amplitude equations. In Section 5 the computa-
tional scaling in DEC calculations is discussed, and Section 6
contains implementation details for the DECmethod. In Section
7 we present some illustrative DEC calculations. Finally, in
Section 8 we give a short summary of the DEC model and some
concluding remarks.

2. DEC MODEL

2.1. CC Energy. For a closed shell molecule the total energy
ECC for a CC wave function model may be expressed as33

ECC ¼ EHF þ Ecorr ð1Þ
where EHF is theHF total energy, and the correlation energy Ecorr
is obtained as

Ecorr ¼ ∑
ijab
ðtabij þ tai t

b
j Þð2giajb � gibjaÞ ð2Þ

where ti
a and tij

ab are the cluster singles and doubles amplitudes,
respectively. Indices i, j, ... refer to occupiedHF orbitals and a, b, ... to
unoccupiedHF orbitals, and giajb is a two-electron integral in theHF
orbital basis using the Mulliken notation. The correlation energy
expression in eq 2 applies to all standard CC models. The singles
contribution vanishes for MP2.
In a conventional CC calculation theCCwave function is expanded

in the nonlocal canonical HF orbital basis, and therefore all integrals
and cluster amplitudes inEcorr are nonvanishing.The evaluationofEcorr
therefore has a fourth power scaling in system size. When a local HF
orbital basis is used the correlation energy can be expressed in terms of
orbital spaces which reference only local parts of the molecular system.
We describe in the following sections how this may be accomplished.
2.2. CC Energy for Local HF Orbitals. For each local HF orbital

the Mulliken charge is determined, and the HF orbital is assigned to
the atomic site with the largest Mulliken charge. In this way each
atomic site gets assigned a set of local occupied and local unoccupied
HForbitals. The set of occupiedHForbitals assigned to atomic site P
is denoted P, and the set of unoccupied HF orbitals assigned to
atomic site P is denoted P. A cartoon illustrating how a model one-
dimensional molecular system is divided into atomic sites and
assigned a set of occupied and unoccupied HF orbitals is given in
Figure 1A. As a specific example we present the orbital assignment
for the C14H2 molecule (LCM molecular orbitals using a cc-pVDZ
basis set) in Figure 1B. (In Section 7.1.1 we elaborate on the
assignment of orbitals in Figure 1B.) In Table 1 we give an overview
of the notation for orbital spaces and energies used for describing the
DEC model.
Having assigned the local HF orbitals to atomic sites,

the correlation energy in eq 2 can be expressed in terms of
atomic fragment energies EP and atomic pair fragment energies
EPQ:

EP ¼ ∑
ij ∈ P

ab

ðtabij þ tai t
b
j Þð2giajb � gibjaÞ ð3Þ

EPQ ¼ ∑
ij ∈ P ∪ Q

ab

ðtabij þ tai t
b
j Þð2giajb � gibjaÞ ð4Þ

giving

Ecorr ¼ ∑
P
EP þ ∑

P > Q
ΔEPQ ð5Þ

where the sum runs over all atomic sites, and the pair interaction
energy ΔEPQ is given as

ΔEPQ ¼ EPQ � EP � EQ ð6Þ
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No approximations have been made in eq 5, where the sum over
the two occupied orbital indices in eq 2 has been replaced by
sums over the occupied orbitals of the atomic fragments and
atomic pair fragments. The first term in eq 5 describes the
coulomb holes in the wave function, while the second term for
larger PQ distances mainly describes dispersion effects.
In the local HF orbital basis the integral giajb is nonvanishing

only if the orbital pair indices ia refer to the same atomic site or to
neighboring atomic sites and similarly for jb. Therefore the
integral giajb is nonvanishing only if i ∈ P and a ∈ [P], where
[P] refers to the unoccupied HF orbital space local to P
(including P) and similarly for jb. The requirements for a
nonvanishing integral may thus be summarized as

giajb : i ∈ P, a ∈ ½P�, j ∈ Q , b ∈ ½Q � ð7Þ

When the atomic fragment energy EP in eq 3 is calculated, both
occupied indices belong to atomic site P [P = Q in eq 7]. Since
the integral (2giajb� gibja) in EP is nonvanishing only if a,b ∈ [P],
we may restrict the virtual index summation in eq 3 and evaluate

EP as

EP ¼ ∑
ij ∈ P

ab ∈ ½P�

ðtabij þ tai t
b
j Þð2giajb � gibjaÞ ð8Þ

where the summation over the unoccupied indices has been
restricted to atomic sites, which are local to P. Similarly, the
locality of the integral (2giajb � gibja) in eq 4 implies that the
atomic pair fragment energy EPQ may be evaluated as

EPQ ¼ ∑
ij ∈ P ∪ Q

ab ∈ ½P� ∪ ½Q �

ðtabij þ tai t
b
j Þð2giajb � gibjaÞ ð9Þ

where the unoccupied index summation has been restricted to
the union of unoccupied spaces which are local to P andQ using
eq 7. The total orbital space required for evaluating EPQ is thus
the union of orbital spaces for evaluating EP and EQ.
Disregarding singles the atomic fragment energy EP depends

on the doubles amplitudes:

tabij : i, j ∈ P, a, b ∈ ½P� ð10Þ

The orbital space defined by eq 10 will be denoted the atomic
fragment energy orbital space (EOS) EP. The atomic pair
fragment energy EPQ depends on the doubles amplitudes

tabij : i, j ∈ P ∪ Q , a, b ∈ ½P� ∪ ½Q � ð11Þ

and the orbital space defined by eq 11 is denoted the atomic
pair fragment EOS EPQ = EP ∪ EQ .
A CC calculation carried out in terms of atomic fragment and

pair fragment calculations will be denoted a DEC calculation
because it follows the following procedure:
• Divide the orbital space among the atomic sites.
• Expand the orbital space of the individual atomic fragments

to obtain converged fragment energies.

Figure 1. (A) Molecular system divided into atomic sites I, J, ..., P, ..., where each site has been assigned a set of occupied (blue) and unoccupied (red)
HF orbitals. (B) Example of orbital assignments for the C14H2 molecule (LCM molecular orbitals using a cc-pVDZ basis set). The values above each
atom denote the number of occupied and virtual orbitals assigned to that atom.

Table 1. Overview of Notation for Atomic Sites, Energies,
And Orbitals Spaces

symbol short description

P, Q, R, ... labels for atomic sites
EP atomic fragment energy
EPQ atomic pair fragment energy
ΔEPQ pair interaction energy
EP energy orbital space (EOS) for evaluating EP
A P amplitude orbital space (AOS) for calculating CC amplitudes
{A P} atomic fragment extent where MO coefficients are expanded
P set of occupied orbitals assigned to site P (occupied orbitals in EP)
P set of unoccupied orbitals assigned to site P
[P] set of occupied orbitals local to P
[P] set of unoccupied orbitals local to P (unoccupied orbitals in EP)
[P]2 set of occupied orbitals local to [P] (including [P])
[P]2 set of unoccupied orbitals local to [P] (including [P])
B occupied buffer orbital space
BP unoccupied buffer orbital space
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• Consolidate the fragment energies according to eq 5 to get
the correlation energy for the full molecular system.

3. DEC-MP2 AMPLITUDE EQUATIONS

In this section the MP2 amplitude equations are analyzed in
the local HF basis to understand how the atomic fragment and
the atomic pair fragment energies can be determined from
calculations referencing only small fragments of the full molec-
ular orbital space. In the next section a similar analysis will be
performed for the CCSD amplitude equations.

The locality analysis of the amplitude equations demonstrates
that a full MP2 calculation can be carried out in terms of small
independent fragment calculations. The actual fragment sizes are
determined during the DEC calculation in order to ensure that
the fragment energies are determined to a given threshold, as will
be discussed in Section 6.2.
3.1. MP2 Amplitude Equations. Using standard notation33

the MP2 amplitude equations may be expressed as

Ωaibj ¼
ab
ij

�����Ĥ
�����HF

* +
þ ab

ij

����� F̂, T̂2

h i�����HF
* +

¼ 0 ð12Þ

where Ĥ is the Hamiltonian:

Ĥ ¼ ∑
rs
hrsErs þ 1

2∑rstu
grstuðErsEtu � δstEruÞ ð13Þ

T̂2 is the cluster doubles operator:

T̂2 ¼ 1
2∑aibj

tabij EaiEbj ð14Þ

and Æ
ab
ij

����� is a doubles bra state in the biorthonormal basis. F̂ is

the Fock operator:

F̂ ¼ ∑
pq
FpqErs

where the Fock matrix elements are given as

Fpq ¼ hpq þ ∑
i
ð2gpqii � gpiiqÞ ð15Þ

The Fock matrix has vanishing matrix elements between occu-
pied and unoccupied HF orbitals and therefore has a block
diagonal structure:

F ¼ Foo 0
0 Fvv

 !
ð16Þ

where Foo and Fvv denote the occupied�occupied and unoccu-
pied�unoccupied blocks of the Fock matrix, respectively. The
MP2 amplitude equation in eq 12 may be evaluated as

ΩMP2
aibj ¼ gaibj þ ∑

c
tcbij Fac þ ∑

c
tacij Fbc � ∑

k
tabkj Fki � ∑

k
tabik Fkj ¼ 0

ð17Þ
and becomes a set of linear equations which determine the cluster
amplitudes.
In the canonical HF basis where Foo and Fvv are diagonal

matrices with orbital energies on the diagonal (Fij
oo = δijεj, Fab

vv =
δabεa), the amplitude equations in eq 17 decouple, and the
solution to eq 17 becomes trivial:

tabij ¼ � gaibjðεa þ εb � εi � εjÞ�1 ð18Þ

However, in the canonical basis, where the HF orbitals are
nonlocal, all integrals gaibj and therefore also all amplitudes tij

ab

are, in general, nonvanishing. The canonical basis is therefore not
suited for a DEC calculation.
3.2. Orbital Spaces for Evaluating EP and EPQ for MP2. For a

local HF basis the correlation energy is obtained as a sum of
the atomic fragment and the pair fragment energies in eqs 8
and 9, which are determined from the amplitudes of the EOSs
defined by eqs 10 and 11. We describe below how the
amplitudes of the EOS can be determined from MP2 calcula-
tions, which reference only a small fragment of the full
molecular orbital space. The selection of the orbital spaces
for the small orbital fragment calculations is performed based
on a locality analysis of the MP2 amplitude equations in a local
HF basis. Since we are interested in determining the EOS
amplitudes in eqs 10 and 11, we consider the propagation of
the amplitude equations in eq 17 for i ∈ P and j ∈ Q .
The amplitude equations in eq 17 constitute a set of linear

equations, which can be ordered to give a positive definite
coefficient matrix:

∑
c
tcbij Fac þ ∑

c
tacij Fbc � ∑

k
tabkj Fki � ∑

k
tabik Fkj ¼ � gaibj ð19Þ

Equation 19 may be solved using standard iterative algorithms,
such as the conjugate gradient or conjugate residual methods.
When solving eq 19 using one of these methods, a new direction
for the (n þ 1)’th iteration is determined from the residual
containing the amplitudes of the n’th iteration tij

n,ab:

tn þ 1, ab
ij ¼ tn, abij þ Rn,MP2

aibj ðtnÞ ð20Þ
where Raibj

n,MP2(tn) is the residual of eq 19 for iteration n:

Rn, MP2
aibj ðtnÞ ¼ �Ωn,MP2

aibj ðtnÞ
¼ � gaibj � ∑

c
tn, cbij Fac � ∑

c
tn, acij Fbc þ ∑

k
tn, abkj Fki

þ ∑
k
tn, abik Fkj ð21Þ

In the conjugate gradient or the conjugate residual methods, a line
search is performed along the residual direction. Furthermore, the
convergence may be improved by preconditioning the linear
equations. Both line search and preconditioning will affect the
convergence rate of the algorithm, but they will have no effect on
how new orbital spaces are introduced in each iteration, starting
from i ∈ P and j ∈ Q . Since the focus in this analysis is on the
propagation of orbital spaces, we choose to carry out the analysis
using the simplified algorithm outlined above without line search
and preconditioning. We note that in practice we use the conjugate
residual algorithm and precondition the equation using the diagonal
elements of the Fock matrix.
Before carrying out the locality analysis it is instructive to

demonstrate that for a diagonal Fock matrix the simple algorithm
outlined above converges to the trivial solution in eq 18.
Schematically, eq 19 may then be written as

εt ¼ � g ð22Þ
where ε = εaþ εb� εi� εj is positive. The residual in eq 21 now
becomes

Rn ¼ � g � εtn ð23Þ
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In each iteration the t amplitudes are updated as described in
eq 20:

tn þ 1 ¼ tn þ Rn ¼ � g þ ð1� εÞtn ð24Þ
wherewe have inserted eq 23. Starting out with t1 = 0we thus obtain

t2 ¼ � g ð25Þ

t3 ¼ � g½1þ ð1� εÞ� ð26Þ

t4 ¼ � g½1þ ð1� εÞ þ ð1� εÞ2� ð27Þ

... ð28Þ

tn þ 1 ¼ � g½1þ ð1� εÞ þ ð1� εÞ2 þ ... þ ð1� εÞn � 1� ð29Þ
Noting that for 0 > ε > 1, we may expand 1/ε as

1
ε
¼ 1þ ð1� εÞ þ ð1� εÞ2 þ ... ð0 < ε < 1Þ ð30Þ

it is seen that the amplitude update in eq 20 indeed converges to
solution of eq 22:

t¥ ¼ � g½1þ ð1� εÞ þ ð1� εÞ2 þ ... � ¼ � g
ε

ð31Þ
Let us now return to analyzing the propagation of the

amplitude equations in eq 19 in a local HF basis. We start out
by considering i ∈ P and j ∈ Q in the first iteration to investigate
how the EOS amplitudes in eqs 10 and 11 couple to other
amplitudes at different stages of the iteration sequence. In
particular, we will investigate the local orbital spaces entering
iterations two, three, and four, i.e., we consider the local
amplitude analogues of the diagonal expressions in eqs 25�27.
First we note that the coupling of amplitudes in eq 19 occurs via
the off-diagonal elements in Foo and Fvv, in contrast to the simple
diagonal case above, where the amplitudes are uncoupled. The
Fock matrix in the local basis in eq 14 is, however, diagonally
dominant in the sense that the largest elements of Foo and Fvv

occur for pair indices ij or ab, where the orbital indices refer to the
same atomic site. Furthermore, the magnitudes of the off-
diagonal Fock matrix elements decrease with an increasing
distance between the atomic sites. Non-negligible off-diagonal
Fock matrix elements are therefore encountered only if

Fookl ; k ∈ P , l ∈ ½ P� or k ∈ ½ P�, l ∈ P ð32Þ

Fvvab; a ∈ P, b ∈ ½P� or a ∈ ½P�, b ∈ P ð33Þ
The iterative algorithm is started by setting the amplitudes

t1 = 0, which, using eq 21, gives the residual

R1,MP2
aibj ðt1Þ ¼ � gaibj ð34Þ

For i∈ P and j ∈Q the integrals gaibj are nonvanishing only if a ∈
[P] and b ∈ [Q ], see eq 7. In the first iteration we therefore
consider only the residuals for the orbital space:

R1,MP2
aibj ðt1Þ : i ∈ P , a ∈ ½P�, j ∈ Q , b ∈ ½Q � ð35Þ

which is identical to the EOS orbital space EPQ in eq 11. The
amplitudes of the second iteration therefore become

t2, abij ¼ t1, abij þ R1,MP2
aibj ðt1Þ ¼ R1,MP2

aibj ðt1Þ ð36Þ

and are nonvanishing only for the EOS:

t2, abij : i ∈ P , a ∈ ½P�, j ∈ Q , b ∈ ½Q � ð37Þ

When the residual in the EOS vanishes, the amplitudes that
determine EPQ are converged. Carrying out an iterative procedure
the convergence of the residual in the EOS is fast due to the diagonal
dominance of the Fock matrix. New orbital spaces are introduced
during the iterative procedure, however the most important effect
for the convergence of the residual for the EOS is the relaxation of
the amplitudes for the orbital spaces already considered.
In the second iteration the orbital space which interacts

directly with the EOS is determined. The residual in the second
iteration becomes

R2,MP2
aibj ðt2Þ ¼ � gaibj � ∑

c ∈ ½P �
t2, cbij Fac � ∑

c ∈ ½Q �
t2, acij Fbc

þ ∑
k ∈ P

t2, abkj Fki þ ∑
k ∈ Q

t2, abik Fkj ð38Þ

For the second term in eq 38, the summation index is restricted
to c ∈ [P] due to the restrictions on the amplitudes in eq 37. The
second term thus gives a nonvanishing residual for i∈ P, a∈ [P]2,
j ∈ Q , b ∈ [Q ], where we have used eq 33 to restrict the a index
such that [P]2 refers to unoccupied orbitals assigned to atoms
that are local to [P] (including [P] itself). (Similarly, [P]3 is the
unoccupied space local to [P]2 and so on.) The integral
contribution (�gaibj) to the residual is vanishing for the extended
orbital space i ∈ P, a ∈ [P]2� [P], j ∈ Q , b ∈ [Q ], see eq 7, and
therefore the residual in this extended orbital space is small. The
third term may be treated similarly as the second term. For the
fourth term in eq 38 the summation is restricted to k ∈ P due to
the restrictions on the amplitudes in eq 37. The fourth term
therefore gives a nonvanishing residual contribution for the
orbital space i ∈ P, a ∈ [P], j ∈ Q , b ∈ [Q ], where we have
also used eq 32 to restrict the i index. In this case the extended
orbital space i ∈ [P] � P, a ∈ [P], j ∈ Q , b ∈ [Q ] has a
nonvanishing integral contribution to the residual, and the
residual may therefore be of the same magnitude as the residual
in the first iteration. The last term in eq 38 may be treated
similarly as the fourth term. In conclusion, nonvanishing resi-
duals are obtained in the second iteration for the orbital spaces:

R2,MP2
aibj : i ∈ ½ P�, a ∈ ½P�2, j ∈ ½Q �, b ∈ ½Q �2 ð39Þ

where residuals for the extended spaces i∈ [P]� P, a∈ [P], j∈ [Q ]
�Q ,b∈ [Q ] haveboth an integral anda coupling termcontribution,
while the residual for the extended spaces i ∈ P, a ∈ [P]2� [P], j ∈
Q , b ∈ [Q ]2 � [Q ] only has a coupling term contribution.
The amplitudes of the third iteration becomes

t3, abij ¼ t2, abij þ R2,MP2
aibj ðt2Þ ð40Þ

where nonvanishing amplitudes tij
3,ab are obtained for the non-

vanishing residuals in eq 39:

t3, abij : i ∈ ½ P�, a ∈ ½P�2, j ∈ ½Q �, b ∈ ½Q �2 ð41Þ
Iteration 2 thus introduces a first-order interaction (FOI)

space to the EOS containing the amplitudes:

t3, abij : i ∈ ½ P� � P , a ∈ ½P�2 � ½P�, j ∈ ½Q � � Q ,

b ∈ ½Q �2 � ½Q � ð42Þ
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The FOI space in eq 42 is the difference between the space for the
third iteration amplitudes in eq 41 and the second iteration
amplitudes in eq 37. The t3 amplitudes referencing only the indices
a ∈ [P]2 � [P] and b ∈ [Q ]2 � [Q ] of the FOI space are small
because the residuals in eq 38 have no integral contribution, while
the amplitudes referencing the indices i∈ [P]� P and j∈ [Q ]�Q
of the FOI space may be of the same size as the amplitudes of the
first iteration because the residual had an integral contribution.
Using a similar analysis for the fourth iteration, nonvanishing

amplitudes may be obtained for the orbital space:

t4, abij : i ∈ ½ P�2, a ∈ ½P�3, j ∈ ½Q �2, b ∈ ½Q �3 ð43Þ

Iteration three thus introduces a second-order interaction (SOI)
space relative to the EOS containing the amplitudes:

t4, abij : i ∈ ½ P�2 � ½ P�, a ∈ ½P�3 � ½P�2, j ∈ ½Q �2 � ½Q �,
b ∈ ½Q �3 � ½Q �2 ð44Þ

The SOI space is the difference between the spaces in eqs 43
(iteration four) and 41 (iteration three). The SOI space does not
interact directly with the amplitudes of the EOS, and its effect on
the residual of the EOS is therefore small, in particular for the
interaction, which goes through the virtual FOI space, where the
amplitudes are small. The effect of the SOI space on the
amplitudes of the EOS can therefore in most cases be neglected.
Continuing the iteration procedure leads to fast convergence of
the amplitudes for the EOS, and the effect of new orbital spaces
on the amplitudes of the EOS becomes insignificant.
The above development can be used to set up orbital spaces for

the calculations which determine the amplitudes that are used for
evaluating EP andEPQ. ForEP (corresponding to P =Q in the above
analysis) the amplitudes of eq 10 are required, and the orbital space
therefore has to include the atomic fragment EOS EP: i,j ∈ P and
a,b ∈ [P]. Iteration two shows that the EOS interacts directly with
theFOI space in eq 42.This interaction can be taken into account by
introducing buffer spaces for the occupied (BP = [P]� P) and for
the unoccupied (BP = [P]2 � [P]) orbital spaces. The orbital
space A P which is used for solving the amplitude equations
required to determine EP therefore becomes

A P ¼ P þ ½P� þB P þBP ð45Þ

where the two first terms denote the spaces involved directly in the
calculation of EP (i.e., the atomic fragment EOSEP, see eq 8). The
last two terms contain the amplitudes outside this space, which are
necessary for determining the EOS amplitudes with high precision
due to coupling of the amplitudes. The orbital space defined by
eq 45 will be denoted the amplitude orbital space (AOS) of an
atomic fragment calculation. In general, the indirect interactions on
the residual of the EOS introduced in the third and higher iterations
may be considered by having flexible buffer spaces, where the buffer
spaces are extended until the atomic fragment energy is unaffected
by further extensions. The determination of the sizes of the fragment
spaces will be detailed in Section 6.2. An illustration of the orbital
spaces that are in use when the atomic fragment energy EP is
evaluated is displayed in Figure 2 for a one-dimensional system. The
{A P} space will be discussed in Section 6.1.
For EPQ we need the amplitudes of eq 11. The orbital space

therefore has to include the atomic pair fragment EOSEPQ : i,j ∈
P ∪ Q and a,b ∈ [P] ∪ [Q ]. The FOI space introduces the
occupied buffer

B PQ ¼ ½ P ∪ Q � � P ∪ Q

and the unoccupied buffer

BPQ ¼ ½P�2 ∪ ½Q �2 � ½P� ∪ ½Q �
orbital spaces, and the indirect interaction to the SOI and the
higher order spaces is considered using the union of buffer orbital
spaces for evaluating EP and EQ. The atomic pair fragment AOS
used for evaluating EPQ therefore becomes

A PQ ¼ A P ∪ AQ

¼ P ∪ Q þ ½P� ∪ ½Q � þB PQ þBPQ ð46Þ

where the two first terms denote the spaces required for
determining the atomic pair fragment energy, see eq 9, and the
last two terms are the occupied and virtual buffer spaces. The
orbital spaces used for the atomic pair fragment PQ calculation
are thus formed as unions of orbital spaces for atomic fragments P
and Q. The locality of a DEC pair fragment calculation is
therefore determined by the orbital spaces that are obtained in
the atomic fragment calculations.

Figure 2. Atomic fragment P. The correlated wave function calculation is carried out using the amplitude orbital spaceA P (dark-blue, light-blue, red, and pink
markings), while the atomic fragment energyEP is evaluated using the energyorbital spaceEP (dark-blue and redmarkings).Theorbitals in themolecular fragment
P are confined to the atoms in the atomic fragment extent {A P}. Thus, two-electron integrals in the AObasis need to be calculated for atoms in the {A P} space.
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3.3. Summary of MP2 Locality Analysis. Using an iterative
algorithm analysis we have shown that the equations for the EOS
amplitudes required to determine EP and EPQ in eqs 8 and 9 may
be solved in small fragment orbital spaces (see eqs 45 and 46).
The analysis thus demonstrates that locality may be exploited to
divide a full MP2 calculation into small orbital fragment
calculations, which may be carried out independently.
The locality of an MP2 calculation is determined by the locality
of the atomic fragment calculations, while the atomic pair
fragment energies are obtained from calculations involving
the union of spaces for the corresponding atomic fragment
calculations. The optimal sizes of the fragment orbital spaces,
i.e., [P], B P , and BP , are of course not known a priori. In
Section 6.2 we discuss how these spaces are determined in a
DEC calculation.

4. DEC-CCSD AMPLITUDE EQUATIONS

4.1. CCSD Amplitude Equations. We now consider the
amplitude equations for the CCSD model for a closed-shell
molecule. Following the notation of ref 33, the cluster amplitudes
are obtained by solving the cluster amplitude equations:

Ωai ¼
a
i

�����expð� T̂2Þ ~̂H expðT̂2Þ
�����HF

* +
¼ 0 ð47Þ

and

Ωaibj ¼
ab
ij

�����expð� T̂2Þ ~̂H expðT̂2Þ
�����HF

* +
¼ 0 ð48Þ

where Æ ai j and Æ abij j are single and double bra states in the
biorthonormal basis. The cluster doubles operator T̂2 is given in
eq 14, and the singles operator T̂1 is given as

T̂1 ¼ ∑
ai
tai Eai ð49Þ

~̂H refers to the T̂1 transformed Hamiltonian:

~̂H ¼ expð � T̂1ÞĤ expðT̂1Þ

¼ ~̂H1 þ ~̂H2 ¼ ∑
rs

~hrsErs þ 1
2∑rstu

~grstuðErsEtu � δstEruÞ ð50Þ

Above we have introduced the T̂1 transformed integrals:

~hrs ¼ ∑
μν
XμrYνshμν, ð51Þ

~gpqrs ¼ ∑
μνσω

XμpXσrYνqYωsgμνσω, ð52Þ

where the transformation matrices X and Y are defined as

X ¼ Cð1� tT1 Þ ð53Þ
and

Y ¼ Cð1þ t1Þ ð54Þ
where C is the transformation matrix from the AO basis to the
local HF basis.

The CCSD amplitude equations in eqs 47 and 48 may be
expressed in terms of the T̂1 transformed integrals as

ΩCCSD
ai ¼ ΩA1

ai þΩB1
ai þΩC1

ai þΩD1
ai ¼ 0 ð55Þ

and

ΩCCSD
aibj ¼ ΩA2

aibj þΩB2
aibj þ Pabij ðΩC2

aibj þΩD2
aibj þΩE2

aibjÞ ¼ 0

ð56Þ
where the explicit expressions for the individual terms in eqs 55
and 56 are given in Table 2, and where the Pij

ab operator carries
out the following permutation of pair indices:

Pabij A
ab
ij ¼ Aab

ij þ Aba
ji ð57Þ

The amplitude equations in eqs 55 and 56 constitute a set of
nonlinear equations.
4.2. CCSD Amplitude Equations for Local HF Orbitals.Wewill

now examine the locality of the CCSD amplitude equations in eqs 55
and 56. TheCCSD amplitude equations are expressed in terms of T̂1

transformed integrals, which are defined in terms of the transforma-
tion matrices in eqs 53 and 54 involving the singles amplitudes. The
singles amplitudes are small, and initially we ignore these amplitudes
in the locality analysis. TheCCSD amplitude equations in eqs 55 and
56 will thus be viewed as referencing conventional integrals in the
local HF basis. Of course, when atomic fragment and atomic pair
fragment energies are determined the T̂1 transformed integrals have
to be considered. We elaborate on this point in Section 4.2.3 below.
A Møller�Plesset perturbation analysis shows that through first

order in the fluctuation potential the singles equation vanishes and
the doubles equation reduces to the MP2 amplitude equation in
eq 17 (the first term in ΩA2 and the terms containing the Fock

Table 2. Explicit Form of the CCSD Singles and Doubles
Equations

contributions to singles residual

ΩA1
ai ¼ ∑ckdu

cd
ki~gadkc

ΩB1
ai ¼ �∑cklu

ac
kl~gkilc

ΩC1
ai ¼ ∑ck

I~Fkcu
ac
ik

ΩD1
ai ¼ I~Fai

contribution to doubles residual

ΩA2
aibj ¼ ~gaibj þ∑cdt

cd
ij ~gacbd

ΩB2
aibj ¼ ∑klt

ab
kl ð~gkilj þ∑cdt

cd
ij ~gkcldÞ

ΩC2
aibj ¼ � 1

2∑ckt
bc
kj ~gkiac � 1

2∑dlt
ad
li ~gkdlc

� �
�∑ckt

bc
ki ~gkjac � 1

2∑dlt
ad
lj ~gkdlc

� �

ΩD2
aibj ¼

1
2∑cku

bc
jk

~Laikc þ 1
2∑dlu

ad
il
~Lldkc

� �

ΩE2
aibj ¼ ∑ct

ac
ij ðI~Fbc �∑dklu

bd
kl ~gldkcÞ �∑kt

ab
ik ðI~Fkj þ∑cdlu

cd
lj ~gkdlcÞ

defined intermediates

uabij ¼ 2tabij � tabji

~Lpqrs ¼ 2~gpqrs � ~gpsrq

I~Frs ¼ ~hrs þ∑ið2~grsii � ~griisÞ
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matrix inΩE2, see Table 2). Neglecting the second and higher order
CCSD terms in the amplitude equations in eqs 55 and 56, the
CCSDamplitude equations become identical to theMP2 amplitude
equations, and these terms will therefore have the locality of the
MP2 equations. In the following we examine how the second and
higher order CCSD terms affect the locality of the MP2 amplitude
equations, which was discussed in Section 3.
The first MP2 iteration determines the cluster amplitudes of the

EOS: i ∈ P, a ∈ [P], j ∈Q , b ∈ [Q ]. These amplitudes are used in
the second iteration to determine the residual Raibj

2,MP2(t2) in eq 38
and to identify the FOI space. We now discuss the extensions of the
FOI space that are requiredwhen the second andhigher order terms
in the CCSD amplitude equations are added to the MP2 residual
Raibj
2,MP2(t2) in eq 38. In short, we examine the nonvanishing

contributions to the residual, which originate from the second and
higher order terms inΩai

CCSD(t2) andΩaibj
CCSD(t2).

Using the locality restrictions for tij
2,ab in eq 37 as a starting point, we

may carry out a locality analysis for the CCSD equations in a similar
manner as was done for the MP2 equations in Section 3. The results
are summarized in Table 3, where for simplicity the iteration number
for t2 has been omitted from the amplitudes. From a locality
perspective the residual terms in Table 3 can be divided into three
types:
• Type 1: Terms where the locality is straightforwardly

accounted for through the locality of the MP2 equations.
These terms involve only P and possiblyQ sites in Table 3.

• Type 2: Terms where the locality is accounted for through
the locality in the MP2 equation but where the terms

contain summation indices referencing contributions that
are long ranged. These are terms involving other sites than
P andQ in Table 3, i.e., sites R and possibly also S. The long-
ranged decay, however, does not follow the behavior of a
Coulombic potential, which decays with inverse distance
between the atomic sites P and R and between atomic sites
Q and R. Rather it follows an inverse cubed distance
behavior as we discuss in more detail below.

• Type 3: Terms involving the T̂1 transformed Fock matrix ~F.
4.2.1. Type 1 Terms. These terms include most of the second

and higher order terms in eqs 55 and 56. An example is the
second term in ΩA2 (∑cdtij

cd~gacbd) which may be expressed as

Iabij ¼ ∑
c ∈ ½P �, d ∈ ½Q �

tcdij ~gacbd; i ∈ P , j ∈ Q , a ∈ ½P�2, b ∈ ½Q �2

ð58Þ

To obtain eq 58 the summation indices have been restricted to c ∈
[P], d ∈ [Q ] using eq 37 and a nonvanishing integral ~gacbd then
implies that a ∈ [P]2 and b ∈ [Q ]2. The locality analysis for the
MP2 amplitude equations ensures that this term is properly treated.
For some terms of type 1 the coupling to neighboring sites is

more extensive than for MP2, e.g., for the second term in B2
where a ∈ [P]3 and b ∈ [Q ]3. However for this term the more
extensive coupling is due to a term that is of third order in
Møller�Plesset perturbation theory and therefore has a very
small effect on the solution of the amplitude equations in the

Table 3. Locality Restrictions on the Summation Indices in the CCSD Equationsa

contributions to singles residual

Ωai
A1 = 2∑ckdtki

cd~gadkc � ∑ckdtik
cd~gadkc a∈[P]2, c ∈ [R], d ∈ [P], k ∈ R; a∈[P]4, c ∈ [P], d ∈ [P]3, k ∈ [P]2

Ωai
B1 = �2∑ckltkl

ac~gkilc þ ∑ckltlk
ac~gkilc a ∈ [P]2, c ∈ [R], l ∈ R, k ∈ [P]; a ∈ [P]4, c ∈ [P]2, k ∈ [P], l ∈ [P]3

Ωai
C1 = 2∑ck

I~Fkctik
ac � ∑ck

I~Fkctki
ac a ∈ [P], c ∈ [R], k ∈ R; a ∈ [P]3, c ∈ [P], k ∈ [P]2

Ωai
D1 = I~Fai a ∈ [P]

contributions to doubles residual

Ωaibj
A2 = ~gaibj þ ∑cdtij

cd~gacbd a ∈ [P], b ∈ [Q ]; a ∈ [P]2, b ∈ [Q ]2, c ∈ [P], d ∈ [Q ]

Ωaibj
B2 = ∑kltkl

ab~gkilj þ ∑kltkl
ab∑cdtij

cd~gkcld a ∈ [P]2, b ∈ [Q ]2, k ∈ [P], l ∈ [Q ]; a ∈ [P]3, b ∈ [Q ]3, c ∈ [P], d ∈ [Q ],

k ∈ [P]2, l ∈ [Q ]2
Ωaibj

C2 = �(1/2)∑cktkj
bc~gkiac

þ 1/4∑cktkj
bc∑dltli

ad~gkdlc � ∑cktki
bc~gkjac þ 1/2∑cktki

bc∑dltlj
ad~gkdlc

a ∈ [Q ]2, b ∈ [P]2, c ∈ [Q ], k ∈ [P]; a ∈ [Q ]3, b ∈ [P]3, c ∈ [Q ],

d ∈ [P], k ∈ [P]2, l ∈ [Q ]2; a ∈ [P]2, b ∈ [Q ]2, c ∈ [P], k ∈ [Q ]; a ∈ [P]3,

b ∈ [Q ]3, c ∈ [P], d ∈ [Q ], k ∈ [Q ]2, l ∈ [P]2
Ωaibj

D2 = 2∑cktjk
bc~gaikc � ∑cktjk

bc~gacki � ∑cktkj
bc~gaikc þ 1/2∑cktkj

bc~gacki þ 2∑cktjk
bc∑dltil

ad~gldkc
� ∑cktjk

bc∑dltil
ad~glckd � ∑cktjk

bc∑dltli
ad~gldkc þ 1/2∑cktjk

bc∑dltli
ad~glckd � ∑cktkj

bc∑dltil
ad~gldkc

þ 1/2∑cktkj
bc∑dltil

adglckd þ 1/2∑cktkj
bc∑dltli

ad~gldkc � 1/4∑cktkj
bc∑dltli

ad~glckd

a ∈ [P], b ∈ [Q ], c ∈ [R], k ∈ R; a ∈ [P]3, b ∈ [Q ], c ∈ [P]2, k ∈ [P]; a ∈ [P],

b ∈ [Q ]3, c ∈ [Q ], k ∈ [Q ]2; a ∈ [Q ]2, b ∈ [P]2, c ∈ [Q ], k ∈ [P]; a ∈ [P],

b ∈ [Q ], c ∈ [R], d ∈ [S], k ∈ R, l ∈ S; a ∈ [P], b ∈ [Q ], c ∈ [R], k ∈ R, l ∈ [R]2,

d ∈ [R]; a ∈ [P]3, b ∈ [Q ], c ∈ [R], d ∈ [P], k ∈ R, l ∈ [P]2; a ∈ [P]5, b ∈ [Q ],

c ∈ [P]3, d ∈ [P], k ∈ [P]2, l ∈ [P]4; a ∈ [P], b ∈ [Q ]3, c ∈ [Q ], d ∈ [R],

k ∈ [Q ]2, l ∈ R; a ∈ [P], b ∈ [Q ]5, c ∈ [Q ], d ∈ [Q ]3, k ∈ [Q ]4, l ∈ [Q ]2;

a ∈ [P]3, b ∈ [Q ]3, c ∈ [Q ],d ∈ [P],k ∈ [Q ]2,l ∈ [P]2; a ∈ [Q ]3, b ∈ [P]3,

c ∈ [Q ], d ∈ [P], k ∈ [P]2, l ∈ [Q ]2
Ωaibj

E2 = þ∑ctij
acI~Fbc� ∑ktik

ab I~Fkj � 2∑cktij
ac∑dltkl

bd~gldkc þ ∑cktij
ac∑dltlk

bd~gldkc
� 2∑cltik

ab∑dktlj
cd~gkdlc þ ∑cltik

ab∑dktjl
cd~gkdlc

a ∈ [P], b ∈ [Q ]2, c ∈ [Q ]; a ∈ [P], b ∈ [Q ]2, k ∈ [Q ]; a ∈ [P], b ∈ [Q ]3,

c ∈ [Q ], d ∈ [R], k ∈ [Q ]2, l ∈ R; a ∈ [P], b ∈ [Q ]5, c ∈ [Q ], d ∈ [Q ]3,

k ∈ [Q ]2, l ∈ [Q ]4; a ∈ [P], b ∈ [Q ]3, c ∈ [R], d ∈ [Q ], k ∈ [Q ]2, l ∈ R;

a ∈ [P], b ∈ [Q ]5, c ∈ [Q ], d ∈ [Q ]3, k ∈ [Q ]4, l ∈ [Q ]2
aMore precisely, the locality restrictions refer to the second CCSD iteration, but for clarity, the iteration number has been omitted from the amplitudes. In all
terms it is assumed that i∈P and j∈Q and the remaining index restrictions have been derived based on this assumption. In some terms the k and l indices belong
to general atomic sitesR and S. However,R and Smay also be restricted to indices local toP andQwithout introducing significant errors, see the discussion in the
text. In this way all terms may be evaluated in a local fragment orbital space. The locality constraints referencing different terms are separated by semicolons.
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EOS. If it does have a nonvanishing effect, then it is taken into
account through our way of determining orbital buffer spaces.
4.2.2. Type 2 Terms. An example of these terms is the first term

in ΩD2 (1/2∑ckujk
bc ~Laikc) which has a contribution:

Jabij ¼ ∑
R

∑
c ∈ ½R�, k ∈ R

tbcjk~gaikc; i ∈ P , j ∈ Q , a ∈ ½P� , b ∈ ½Q �

ð59Þ
where the c summation has been restricted because ~gaikc has to be
nonvanishing. In principle, the R summation runs over all atomic
sites, however, the integrals ~gaikc and the amplitudes tjk

bc both have
a cubic decay with respect to the distance between the atomic
sites P and R and between the atomic sites Q and R, respectively.
The cubic decay of integrals and amplitudes is due to the fact that
when a multipole expansion of the integral ~gaikc is carried out, the
monopole integral contribution vanishes.34 This happens be-
cause the charge distributions carry no charge as the occupied,
and virtual orbitals are orthogonal. Furthermore, we recall that
this term is second order in the fluctuation potential and there-
fore not one of the main contributors to the total residual. For
these reasons it is well-justified to restrict the R summation in
eq 59 to include only atoms local to P and Q.
For other doubles amplitude terms in Table 3 (e.g., 2∑cktjk

bc∑dltil
ad

~gldkc inΩ
D2

), the summations occur over two atomic sites R and S.
The cubic decay of amplitudes and integrals and the fact that these
terms are only third-order in the fluctuation potential justify that
they can be evaluated within a local fragment orbital space.
For the singles amplitude contributions (e.g., 2∑ckdtki

cd ~gadkc in
ΩA1) the integral only has a quadratic inverse decay because the
φaφd distribution does carry a charge. The tki

cd amplitudes,
however, have cubic decay with respect to the distance between
the charge distributions φkφc and φiφd due to orthogonality.
4.2.3. Type 3 Terms. When carrying out the fragment calcula-

tions the T̂1-transformed Fock matrix I~F:

I~Frs ¼ ~hrs þ ∑
i
ð2~grsii � ~griisÞ ð60Þ

has long-range contributions as a result of the T̂1 transformation,
see eqs 51 and 52.
When evaluating atomic fragment and atomic pair fragment

energies we may introduce the following approximation to the
T̂1-transformed Fock matrix:

I~Fpq f
I~FA

pq � IFA
pq þ IFpq ð61Þ

where IFA
pq is a nontransformed Fock matrix element referencing

only the orbitals of the fragment orbital space, and IFA
pq is defined

in the same way but with T̂1-transformed integrals. Within this
approximation we have thus only included the effect of the T̂1

transformation inside the fragment, whereas the polarization from
orbitals outside the fragment orbital space has been neglected.
The solution to this problem is to save all singles amplitudeswhen

carrying out the atomic fragment and the atomic pair fragment
calculations for all fragments in the molecule. In this first calculation
we use the Fock matrix in eq 61. After all fragment calculations have
been carried out we may use the stored singles amplitudes to
construct the fully T̂1-transformedFockmatrix

I~F, which include the
polarization of all orbitals. A new calculationmay then be carried out
using the fully transformed Fock matrix instead of eq 61. In this
second calculation the long-ranged polarization effects described by
the singles amplitudes are treated to a high precision. An even more
elaborate treatment of the singles polarization effect is to use eq 61,

where IFpq and IFA
pq are replaced by the one-index transformed

Fock matrix with t-amplitudes from the first calculation.
4.3. Summary of CCSD Locality Analysis. Even though the

CCSD locality analysis is much more cumbersome than the
corresponding analysis for MP2, our analysis shows that it is indeed
possible to carry out a full CCSD calculation in terms of small
independent fragment calculations. In other words, the analysis
substantiates from a theoretical point of view that the CCSD
fragment calculations may be carried out in orbital spaces of limited
size. More precisely, all terms in the CCSD residual are local in the
sense that the effects on the tij

ab amplitudes required for pair fragment
PQ (i.e., i∈ P and j∈Q ) rapidly decrease as the summation indices
in the individual residual contributionsmove away from atomic sites
P and Q. One should also keep in mind that the first-order residual
terms (MP2) are the dominating ones, and the main effect of the
second andhigher orderCCSD terms is to relax the amplitudes. The
sizes of the EOSs will be similar for MP2 and CCSD, because they
are basically obtained by requiring nonzero overlap distributions for
the integrals entering the fragment energies, see eqs 8 and 9.
However, the CCSD fragments will in general require larger buffer
orbital spaces thanMP2 fragments due to amore extensive coupling
of amplitudes in CCSD.
The analysis above is carried out for an atomic pair fragment (i∈ P

and j∈Q ). It follows that for an atomic fragment (corresponding to
P =Q) the effects of the CCSD residual contributions diminish with
increasing distance between the atomic site P and the orbital
summation indices in the CCSD residual. In an atomic fragment
calculation, we gradually extend the orbital fragment sizes to include
orbitals located still further away from atomic site P (to be detailed in
Section 6.2). Since all contributions fall of rapidly with increasing
distance to the P center, each step of the fragment expansion
procedure will include orbitals with still smaller effects on the
fragment energy. This orbital expansion procedure can therefore be
repeated until the atomic fragment energy has been converged to a
predefined threshold. Of course we do not know, for a given orbital
space expansion, which of the individual CCSD residual terms have
the largest effect on the atomic fragment energy, but the fragment
expansion procedure ensures that the orbital spaces are large enough
that only the truly small terms are neglected. If the optimal orbital
spaces for atomic fragments P and Q have been determined, the
analysis above then substantiates that the correspondingpair fragment
PQ can be formed from the union of orbital spaces for P and Q.

5. COMPUTATIONALSCALING INDECCCCALCULATIONS

Within the DECmodel a CC calculation is carried out in terms
of atomic fragment and atomic pair fragment calculations. The
locality of the CC calculation is determined by the atomic
fragment calculations. The sizes of the amplitude orbital spaces
are determined in a black box manner in a way that ensures that
the atomic fragment energies are calculated to a preset threshold.
The orbital spaces employed for evaluating atomic pair fragment
energies are determined as unions of the orbital spaces for the
two atomic fragments involved.

Since the major task of a CC calculation is to describe short-
ranged phenomena associated with Coulomb holes in the wave
function and the dispersion effects, the fragment sizes are to a large
extent system independent.Thenumber of atomic fragments scales as
the number of atoms in themolecular system, and the calculation of
atomic fragment energies is therefore linearly scaling. The number
of atomic pair fragment energies in eq 5 has a quadratic scaling with
system size, but this scaling is reduced to linear for large systems
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because the pair fragment calculations only need to be carried out for
pair atomic distances, where the dispersion forces are non-negligible.

TheDEC scheme is embarrassingly parallelizable. The evaluation
of the atomic fragment energies may first be done independently;
second the atomic pair fragment energies that are needed may also
be calculated independently. Provided that a sufficient number of
processors are available, the wall time for a parallelized correlated
wave function calculation is therefore the sum of a single atomic
fragment calculation and a single atomic pair fragment energy
calculation, not considering the time for the initial HF calculation,
whose efficient evaluation has been discussed previously, and may
be done using a linear-scaling algorithm.35�38

6. DETAILS ABOUT THE DEC MODEL

In Section 6.1 we discuss how to improve the locality of the
molecular orbitals (MOs) used in a DEC fragment calculation. In
Section 6.2 we discuss how the sizes of the EOS and AOS are
determined. The fragment calculations are carried out as stan-
dard MP2 and CCSD calculations, as we detail in Section 6.3. In
Section 6.4 we discuss how errors similar to basis set super-
position errors (BSSE) may be avoided when calculating pair
interaction energies ΔEPQ. Finally, in Section 6.5 we summarize
the various spaces employed in a DEC fragment calculation.
6.1. Defining Locality of MOs and Atomic Fragment

Extents. Even though the LCM HF orbitals30 are local, the
orthonormal character of this basis causes small but nonvanishing
coefficients on atoms located some distance away from the atomic
site where the HF orbital was assigned. In this section we discuss
how this tail regionmay be treatedwithout considering explicitly the
atomic sites at which the small expansion coefficients are situated.
This development will be used to reduce the number of atomic sites
where the atomic orbital integrals have to be evaluated.
A normalized HF orbital associated with atomic site P:

jP
r ¼ ∑

μ
χμc

P
μr ð62Þ

may be approximated in the following way:

~jP
r ¼ ∑

~μ

χ~μ~c
P
~μr

ð63Þ

where the μ~-summation is restricted to atomic sites, which in some
sense are neighboring the atomic site P (to be detailed below). For
example, the tail region of φr

P may be excluded. The expansion
coefficients of φ~r

P may be determined from a least-squares fit of

f ð~cPÞ ¼ jj ~jP
r � jP

r jj ð64Þ
giving the expansion coefficients

~cP~μr ¼ ∑
~νη

~S�1
~μ~νS~νηc

P
ηr ð65Þ

where the dimensions of the overlap matrices are defined by the
restrictions that are imposed on the AO indices:

~S~μ~ν¼ Æχ~μ jχ~ν æ ð66Þ
S~νη ¼ Æχ~ν jχηæ ð67Þ

Wenote that an equation similar to eq 65was also used byUsvyat
and Sch€utz39 for obtaining localized Wannier functions. We now
discuss how the μ~-summation in eq 63 may be restricted to exclude
the tail region of atomic fragments. AnHForbitalφr

Pwas assigned to
atomic site P because its largest Mulliken charge was situated on

atomic site P. For φr
P all nonvanishing Mulliken charges may be

determined and arranged in order of decreasing size to prioritize the
importance of the atomic sites.Wemay then restrictμ~ to the atomic
sites which have aMulliken charge larger than a given threshold and
determine the expansion coefficients ~cμ~r

P from eq 65. Using (1 �
Æφ~rP|φ~rPæ) as a measure of the quality of the least-squares fit, we
identify the largest Mulliken charge threshold for which

1� Æ~jP
r j~jP

r æ ¼ 1� ∑
~μ~ν

~cP~μr~S~μ~ν~c
P
~νr < δ ð68Þ

where δ is a small prefixed number. The atomic sites defined by the
Mulliken charge threshold determine the orbital extent of φ~r

P. The
union of extents for all HF orbitals assigned to atomic site P is
denoted the atomic extent {P}. We note that a screening of atomic
centers in accordance with eq 68was used by Boughton and Pulay32

as a completeness criteria for the assignment of excitation spaces for
the occupied HF orbitals.
When solving the amplitude equations for the atomic frag-

ment P calculation we use theMOs in the AOSA P in eq 45. The
MOs have expansion coefficients on atomic sites outside theA P
space. The atomic sites, where atomic integrals have to be
evaluated to ensure that the MO integrals in A P are properly
evaluated, consist of the union of atomic extents for all atoms in
A P. We denote this space the atomic fragment extent {A P}. If
for example we consider the case whereA P contains the atomic
sites L, M, N, P, Q, and R, then

fA Pg ¼ fLg ∪ fMg ∪ fNg ∪ fPg ∪ fQ g ∪ fRg ð69Þ
We have now defined the amplitude orbital spaceA P, where

the amplitude calculation is carried out, and the atomic centers in
terms of which the MOs are expanded {A P}. The MOs that are
used in an atomic fragment calculation are then obtained from an
expansion of the form

~jX
r ¼ ∑

~μ ∈ fA Pg
χ~μ~c

X
~μr
; ðX ∈ A PÞ ð70Þ

where the summation is restricted to {A P}. The expansion
coefficients in eq 70 may be determined from eq 65, giving the
best uniform description of the MOs inA P confined to the space
{A P}. The quality of the least-squares fit, which determine the
MOs, depends on the parameter δ in eq 68. Reducing the size of δ
will lead to an extension of {A P} and thus a better least-squares fit.
We may also require that the approximated orbitals in eq 70

are normalized

Æ~jX
r j~jX

r æ ¼ ∑
~μ~ν

~cX~μr~S~μ~ν~c
X
~νr ¼ 1 ð71Þ

by multiplying φ~r
X by an appropriate constant such that eq 71 is

satisfied.
We have now established the locality of an atomic fragment

calculation in terms of the spaces A P and {A P} and identified
the MOs that should be used in the amplitude calculations. For
clarity let us summarize the main steps for constructing the
approximate MOs φ~:
• Choose a δ value which is a measure of how much the

approximated orbitals φ~ deviate from the original orbitals φ.
• For each approximated orbital add atoms based on their

Mulliken charge until eq 68 is satisfied. This newly generated
list of atoms constitutes the orbital extent for each orbital.

• For each atom P construct the atomic extent as the union of
orbital extents for all orbitals assigned to that atom.
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• Construct the atomic fragment extent {A P} as the union of
atomic extents for the atomic sites in A P.

• Determine the local MOs using eq 70, where the MO
coefficients are determined from eq 65. Subsequently the
MOs may be normalized by enforcing eq 71.

The above development may be viewed as an effective integral
screening technique which allows atomic sites that reference
small molecular orbital expansion coefficients to be removed
from the atomic integral evaluation. The screening depends on
the single parameter δ in eq 68.
6.2. Optimization of Fragment Orbital Spaces. An atomic

fragment calculation for fragment P is carried out using the
atomic fragment AOSA P in Figure 2, and the atomic fragment
energy is calculated from the amplitudes referencing the atomic
fragment EOS EP, i.e., P and [P] for the occupied and unoccu-
pied spaces, respectively. The orbital spaces [P],B P, andBP are
determined from a sequence of calculations, where the sizes of
these spaces are gradually increased until the atomic fragment
energy EP in eq 8 is converged to a preset energy threshold.
In Figure 3A�D we have illustrated how the unoccupied EOS
[P] (red) and the buffer spacesB P (light blue) andBP (pink)
may gradually be increased to ensure that EP is determined
to a preset energy tolerance, the fragment optimization
threshold (FOT). When the change in the atomic fragment
energy is larger than the FOT, the step is accepted, otherwise
it is rejected. Continuing in this manner the cycle in

Figure 3B�D is repeated until we have carried through one full
optimization round where the sizes of the unoccupied EOS,
occupied buffer, and unoccupied buffer spaces all remain
unchanged.
In practice the sizes of the unoccupied EOS, occupied buffer,

and unoccupied buffer spaces are defined by three orbital space
radii. For example, if the distance between atomic site P and an
atomic site R is smaller than the unoccupied EOS radius for P,
then the unoccupied orbitals assigned to R are included in the
unoccupied EOS [P]. The increment of orbital spaces may thus
be controlled by adding a fixed orbital space step size parameter
to the existing orbital space radii.
The atomic pair fragment orbital space for evaluating EPQ is

formed as the union of the atomic fragment orbital spaces for
evaluating EP and EQ. The locality analysis in Sections 3.2 and 4.2
substantiates that it is not necessary to carry out additional
fragment size optimizations for the combined PQ space, as the
locality is defined by the atomic fragment calculations on P and
Q. The numerical results presented in Section 7 also support this.
The fragment optimization procedure discussed above applies

both to MP2 and CCSD fragment calculations. In a CCSD
calculation we may take advantage of the fact that the locality of
the CCSD amplitude equations is similar to the one for MP2
equations, except for a more extensive coupling among the
amplitudes. Therefore the optimized MP2 fragment spaces serve
as good starting guesses for the optimal CCSD fragment orbital
spaces.
6.3. CC Calculations on Atomic Fragments and Atomic Pair

Fragments.TheMP2 andCCSD atomic fragment and atomic pair
fragment calculations are carried out as standard MP2 and CCSD
calculations using the local HF orbitals and the atomic fragment or
atomic pair fragment orbital spaces. The MP2 amplitude equations
constitute a set of linear equations with a symmetric matrix and are
solved using the conjugate residual with optimal trial vectors
(CROP) algorithm, where only the last three trial vectors need to
be stored to maintain the information content of all previous trial
vectors (see ref 40). For CCSD we solve nonlinear amplitude
equations using the CROP algorithm. The nonlinearity of the
CCSD amplitude equations generally requires more than three trial
vectors to be stored.40

6.4. Avoiding Wave Function Superposition Problems in
Pair Energy Calculations. The calculation of pair interaction
energies requires special attention because the equations pre-
sented in Section 2.2 may be subject to errors which are similar to
BSSE. We now demonstrate how this problem may easily be
circumvented.
The nontruncated expression for the pair interaction energy is

given in eq 6:

ΔEPQ ¼ EPQ � EP � EQ

¼ ∑
ij ∈ P ∪ Q

ab

ðtabij þ tai t
b
j Þð2giajb � gibjaÞ

� ∑
ij ∈ P

ab

ðtabij þ tai t
b
j Þð2giajb � gibjaÞ

� ∑
ij ∈ Q

ab

ðtabij þ tai t
b
j Þð2giajb � gibjaÞ ð72Þ

Figure 3. Main steps in the fragment optimization procedure. (A) Initially
a starting guess is made for the size of the molecular fragment for evaluating
EP. The unoccupied energy orbital space (red) is then determined (B)
followed by an optimization of the occupied (light blue) and unoccupied
(pink) buffer spaces (C and D). It is then checked that the spaces are still
optimal going through the steps in B�D again until the sizes of all spaces
remain unchanged to yield the optimized fragment (E).
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where we have inserted the expressions for the atomic fragment
and the atomic pair fragment energies in eqs 3 and 4. No
approximations have been introduced in eq 72 since the virtual
summation indices run over the full molecular system.
In DEC fragment calculations we may evaluate ΔEPQ in two

different ways: (i) the simple approach or (ii) the counterpoise-
corrected approach.
For case (i) we simply insert the approximate expressions for

EP, EQ, and EPQ in eqs 8 and 9 into eq 6:

ΔEPQ ¼ EPQ � EP � EQ

¼ ∑
ij ∈ P ∪ Q

ab ∈ ½P � ∪ ½Q �

ðtabPQ , ij þ taPQ , it
b
PQ , jÞð2giajb � gibjaÞ

� ∑
ij ∈ P

ab ∈ ½P �

ðtabP, ij þ taP, it
b
P, jÞð2giajb � gibjaÞ

� ∑
ij ∈ Q

ab ∈ ½Q �

ðtabQ , ij þ taQ , it
b
Q , jÞð2giajb � gibjaÞ ð73Þ

where we have added P,Q, and PQ subscripts to emphasize which
fragment space is used for determining the amplitudes. The
problem with eq 73 is that the amplitudes used for determining
EP, EQ, and EPQ are obtained from fragment calculations in
different AOSs , i.e., A P, AQ and A PQ = A P ∪ AQ . The
orbital space employed for the atomic pair fragment PQ calcula-
tion is thus larger than the orbital spaces used for the P and Q
atomic fragment calculations. This means that the amplitudes
used to determine EPQ are determined slightly more accurately
than the amplitudes used to determine EP and EQ, and therefore
BSSE-like errors will be introduced when the pair interaction
energy is calculated according to eq 73.
For case (ii), to avoid BSSE-like errors, we may calculate a

counterpoise-corrected pair interaction energy by using only
amplitudes from the pair fragment calculation and letting all
virtual summations run over the unoccupied EOS in the pair
fragment:

ΔEPQ ¼ ∑
ij ∈ P ∪ Q

ab ∈ ½P � ∪ ½Q �

ðtabPQ , ij þ taPQ , it
b
PQ , jÞð2giajb � gibjaÞ

� ∑
ij ∈ P

ab ∈ ½P � ∪ ½Q �

ðtabPQ , ij þ taPQ , it
b
PQ , jÞð2giajb � gibjaÞ

� ∑
ij ∈ Q

ab ∈ ½P � ∪ ½Q �

ðtabPQ , ij þ taPQ , it
b
PQ , jÞð2giajb � gibjaÞ ð74Þ

We thereby determine ΔEPQ in line with a counterpoise-cor-
rected interaction energy.

6.5. Overview of the Spaces Employed in a DEC Calcula-
tion. It is now in place to summarize the various spaces employed
in the atomic fragment and atomic pair fragment calculations.
In Table 1 we summarize the notation used for the various

energies and orbital spaces used in a DEC calculation, while
Figure 2 gives an illustrative overview of the orbital spaces used in
an atomic fragment calculation. The amplitude equation for
atomic fragment P is solved for MOs assigned to atoms in the
AOSA P in eq 45, and the fragment energy EP is calculated using
only the EOS orbitals, see eq 8.EP andA P are optimized during
the calculation as discussed in Section 6.2. The MOs in atomic
fragment P have nonvanishing expansion coefficients only for the
atomic sites in the {A P} space. Thus, when solving the
amplitude equations in the A P space, we need two-electron
integrals in the AO basis for atomic sites in the {A P} space to
properly describe the necessary MO integrals.
For the atomic pair fragment calculations we employ the union

of spaces from the atomic fragment calculations as discussed in
Section 3.2. The amplitude equations are solved using theA P ∪
AQ AOS space, and the pair interaction energy ΔEPQ is
calculated in the EP ∪ EQ EOS space as described in Section
6.4. The MOs are expanded in terms of atoms in the {A P} ∪
{AQ } space, and two-electron integrals in the AO basis are
therefore calculated in that space.

7. ILLUSTRATIVE RESULTS

In Section 7.1 we present calculations demonstrating that the
total MP2 and CCSD correlation energies may be determined
from DEC fragment calculations with control of the errors
introduced compared to a full molecular calculation. In Section
7.2 we show that the fragment sizes and the relative energy errors
in DEC-MP2 calculations are independent of the size of the
molecular system.
7.1. DEC-MP2 and DEC-CCSD Calculations on C14H2.Using

the C14H2 molecule as a test system we now compare DEC-MP2
and DEC-CCSD calculations to full molecular MP2 and CCSD
calculations.We first discuss the assignment of orbitals in Section
7.1.1. In Section 7.1.2 we discuss the energy errors compared to a
full molecular calculation as a function of the FOT. We demon-
strate the importance of using counterpoise-corrected pair
interaction energies in Section 7.1.3, and in Section 7.1.4 we
discuss the sizes of the orbital spaces employed. Finally, in
Section 7.1.5 we show that the total correlation energy is very
insensitive to the choice of δ parameter. For the calculations in
Sections 7.1.2�7.1.4 we have used δ = 0.01 and imposed the
normalization condition in eq 71. Furthermore, we have used
orbital space step size parameters of 3.0 au for all orbital spaces
(see Section 6.2),
7.1.1. Assignment of Orbitals. The number of occupied and

virtual orbitals assigned to each atomic site in the C14H2

molecule are given in Figure 1B. The virtual orbitals are evenly
distributed among the different atomic sites, while the distribu-
tion is less even for the occupied orbitals. The hydrogen atoms in
general have no occupied orbitals assigned, whereas the carbon
atoms have between two and four occupied orbitals assigned.
This orbital partitioning may seem counterintuitive as we are
considering a highly symmetric molecule. It is, however, not
surprising, because the LCM orbitals do not reflect the molecular
point group symmetry and are simply assigned to atoms based on
the largest Mulliken charge. Therefore, if for a given molecular
orbital two atoms have roughly the same Mulliken charge, then
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the assignment of that orbital is quite arbitrary. However, the
precise assignment does not affect the total correlation energy.
The DEC algorithm automatically adjusts the size of the virtual
orbital space for an uneven assignment of occupied orbitals
through the way orbital spaces are selected (see Figure 3). For
example, in Figure 1B, a carbon atom with four occupied orbitals
assigned will, in general, require a larger virtual orbital space than
a carbon atom with only two occupied orbitals assigned.
7.1.2. Energy Errors. In Table 4 we have listed the total energy

errors (fourth column) compared to a full molecular calculation for
various FOTs for MP2 and CCSD. It is seen that in general the
errors decrease by an order of magnitude when the FOT is lowered
by an order of magnitude, even though some deviance from this
general result is observed for CCSD (to be explained below).
The second and third columns in Table 4 contain the sums of

the single atomic fragment and the atomic pair interaction energy
errors compared to a full space calculation. We henceforth
denote ∑PEP as the total single energy and ∑P>QΔEPQ as the
total pair interaction energy. For both MP2 and CCSD, the total
single energy and the total pair interaction energy errors system-
atically decrease when tightening the FOT. Furthermore, total
single and total pair interaction energy errors are of similar

magnitude, substantiating that pair fragments may be determined
as unions of atomic fragments without carrying out additional
fragment optimizations.
In general, all MP2 errors are positive, i.e., the fragment

energies calculated using the DEC scheme are larger than
fragment energies calculated in the total orbital space. Therefore
the total energy error ΔEcorr compared to a full molecular
calculation also decreases systematically when the FOT is
lowered. In contrast, for CCSD the total single energy errors
are negative, whereas the total pair interaction energy errors are
positive. This leads to cancellation of errors for CCSD, and
therefore the total energy errors for CCSD are smaller than those
for MP2. This cancellation of errors is also the reason why the
error (accidentally) is smaller when the FOT is 10�5 than 10�6

for the CCSD case, although the total single and total pair
interaction energy errors both decrease when lowering the
threshold. A closer look at the individual atomic fragment energy
errors reveals that these are always positive for MP2, whereas
their signs vary for CCSD. This will in general lead to cancella-
tion of errors for DEC-CCSD compared to DEC-MP2. Thus,
DEC-MP2 shows the “worst case scenario”, where all individual
fragment errors are added, whereas DEC-CCSD in general give
smaller errors due to cancellation of errors. However, if the
amplitudes are used to evaluate for example molecular gradients,
errors of similar size will be obtained for MP2 and CCSD, as the
cluster amplitudes are of similar quality.
In summary, it is a crucial feature of the DEC model that the

full molecular correlation energy may be determined to any
desired accuracy simply by choosing the appropriate FOT. It
should be noted though that for CCSD, the error may be smaller
than expected due to fortuitous cancellation of fragment energy
errors.
7.1.3. Counterpoise Corrections. In the calculations presented

so far we have calculated the pair interaction energies using the
counterpoise-corrected expression in eq 74. In Figure 4 we have
plotted the total pair interaction energy error against the FOT
using the counterpoise-corrected expression (red solid curve)
and using the simple expression in eq 73 (green dashed curve),
which is prone to BSSE-like errors. The counterpoise-corrected
strategy is clearly superior to the simple approach, and we
therefore use counterpoise-corrected pair interaction energies
in the calculations presented in this paper.

Table 4. Energy Errors [au] Compared to a Full Molecular
Calculation for Single, Pair, And Total Correlation Energies
as a Function of Fragment Optimization Thresholdsa

threshold Δ(∑PEP) Δ(∑P>QΔEPQ) ΔEcorr % of Ecorr

MP2
10�3 0.013063 0.016875 0.029938 98.278

10�4 0.001601 0.001775 0.003377 99.806

10�5 0.000121 0.000139 0.000260 99.985

10�6 0.000023 0.000014 0.000037 99.998

CCSD
10�3 �0.000811 0.000369 �0.000442 100.025

10�4 �0.000255 0.000067 �0.000189 100.011

10�5 �0.000059 0.000046 �0.000013 100.001

10�6 �0.000021 0.000006 �0.000015 100.001
aThe calculations were carried out on the C14H2 molecule at the MP2
and CCSD levels of theory using the cc-pVDZ basis.

Figure 4. Errors of the total pair interaction energy ∑P>QΔEPQ compared to a full molecular calculation as a function of the FOT forMP2/cc-pVDZ (A)
and CCSD/cc-pVDZ (B) calculations on the C14H2 molecule. Red solid curve: counterpoise-corrected (CP) pair interaction energies, see eq 74. Green
dashed curve: pair interaction energies obtained by simple subtraction of atomic fragment energies from pair energies, see eq 73.
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7.1.4. Sizes of Orbital Spaces. In Figure 5 we have plotted the
average orbital space radii for various FOTs. Recall that the
orbital space radii define the number of MOs in the atomic
fragments, see the discussion in Section 6.2. To avoid confusion
we note that the unoccupied buffer space radius refers only to the
buffer space, i.e., the total unoccupied space radius is the sum of
the unoccupied EOS radius and the unoccupied buffer radius. As
expected the orbital space radii in Figure 5 increases when the
FOT is lowered, i.e., the lower the FOT, the more orbitals are
included in the atomic fragment. In other words, the fragment
sizes are systematically increased (Figure 5) to yield increasingly
accurate energies (Table 4). We also note that the sizes of the
unoccupied spaces are very similar for the MP2 and CCSD
calculations, whereas a larger occupied buffer is required for the
CCSD case due to a more extensive coupling of amplitudes, in
accordance with the locality analysis in Section 4.2.
7.1.5. The δ Parameter. Let us finally comment on the value of

the δ parameter, which has been set to 0.01 in all calculations
presented above. In Figure 6 we have plotted the error in the total
MP2 correlation energy compared to a full molecular MP2
calculation for various FOTs and δ parameters. The error in
the total energy decreases by roughly an order of magnitude
when decreasing the FOT by an order of magnitude, as discussed
in Section 7.1.2, whereas the errors are practically independent of
the choice of δ parameter in eq 68 (the lines in Figure 6 are
almost horizontal). In general we may therefore control the error
in the total correlation energy by tightening the FOT for a fixed
value of δ. Even though δ = 0.01 was used in the calculations
presented above, even δ = 0.1 seems to be sufficient for a proper
description of the orbitals. To understand why a value of δ = 0.1
is sufficient, recall that the atomic fragment orbital space {A P} is
the union of atomic extents for all atoms in the AOSA P (see the
discussion in Section 6.1). Since the EOS orbitals used for
evaluating the atomic fragment energy are assigned to atoms in
the central part of the fragment (see Figure 2) and are expanded
on all atoms in the atomic fragment extent (including buffer
regions), a very accurate description of the EOS orbitals is
obtained, even for δ = 0.1. The MOs in the buffer space are
described less accurately for δ = 0.1, but this has a very small
indirect effect on the atomic fragment energy.
7.2. DEC-MP2 Calculations on Polyalanine Strings. In the

previous section we demonstrated that for a given molecule
the correlation energy error in a DEC calculation may be

controlled by varying the FOT. In this section we investigate
how the correlation energy error and the fragment sizes are
affected when we systematically increase the molecular size using
a fixed FOT.
The molecules under investigation are extended peptide

chains containing 2, 4, 6, 8, or 10 alanine residues, see Figure 7.
The geometries were obtained using extended peptide chains in
the Maestro program41 without carrying out any additional
optimizations. We thus have a set of molecular structures where
the size is systematically increased. All DEC calculations pre-
sented in this section were carried out at theMP2/cc-pVDZ level
of theory using a FOT of 10�4, δ = 0.1, orbital step size
parameters of 2.0 au, and normalization of the orbitals. The
validity of using δ = 0.1 was discussed in Section 7.1.5. We shall
not go into any detail about the choice of step size parameter, as
we are currently developing a more sophisticated fragment
optimization algorithm which does not involve any orbital step
size radii.
7.2.1. Energy Errors. In Table 5 we present the correlation

energy errors obtained in DEC-MP2 calculations compared to

Figure 5. Average orbital space radii for DEC-MP2/cc-pVDZ (A) andDEC-CCSD/cc-pVDZ (B) calculations on the C14H2molecule. Red solid curve:
unoccupied energy orbital space. Green dashed curve: occupied buffer space. Blue dotted cuve: buffer unoccupied space.

Figure 6. Total energy errors for various fragment optimization thresh-
olds (FOTs) and δ values. In general, the energy error is proportional to
the FOT, whereas it is very insensitive to the value of δ. The calculations
have been carried out on the C14H2molecule at theMP2/cc-pVDZ level
of theory.
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full molecular MP2 calculations. As expected the total correla-
tion energy (Ecorr) increases linearly with molecular size. The
absolute energy errors (third column of Table 5) also roughly
increase linearly with system size, although slight deviation
from this behavior is observed, in particular for the alanine
string with eight residues. The fact that the absolute error
increases with molecular size can be understood by recalling
that the total correlation energy is calculated as a sum of atomic
fragment and atomic pair fragment interaction energies, see
eq 5. For MP2 calculations we have observed that the fragment
energy errors are all positive (see also the discussion in Section
7.1.2), and the errors therefore accumulate instead of canceling
each other, such that the total absolute energy error increases
with system size. In other words, the absolute MP2 energy
errors are positive and size extensive. However, the percentage
of Ecorr that is recovered (fourth column of Table 5) remains
roughly constant at approximately 99.93% as we increase the
molecular size. The relative energy error is thus independent of
the size of the molecule under investigation, i.e., regardless of
the system size, the DEC scheme ensures control of the relative
energy error. Cluster amplitudes, and therefore also molecular
properties (e.g., molecular gradients), are thus determined with
about equal accuracy independently of the system size.
7.2.2. Locality of Orbitals and Orbital Spaces. We now

consider the sizes of the spaces employed in the DEC-MP2
calculations on the molecules in Figure 7. Let us first consider
the locality of the LCM basis30 which ultimately defines the
locality of the DEC calculations. In the fifth column in Table 5
we have plotted the maximum orbital spread for the LCM
orbitals employed in the calculation. The orbital spread is a
measure of the locality of the orbitals (see ref 30 for a more
thorough discussion of orbitals spreads). It is clear that the
maximum orbital spread is independent of the molecular size.
The locality of the LCM orbitals is manifested in the sizes of the
DEC orbital fragments as may be seen from Figure 8, where we

have plotted the average (A) and maximum (B) sizes of the
orbital space radii in the DEC atomic fragment calculations as a
function of the number of alanine residues. As we increase the
size of the molecular system, the average and maximum orbital
space radii become independent of the system size, in accor-
dance with the locality analysis in Section 3.2. This is crucial for
the applicability of the DEC scheme to calculate correlation
energies for large molecular systems: regardless of the total
molecular size the individual (independent) fragment calcula-
tions are small enough that they may be carried out using
standard quantum chemical techniques (see Section 6.3). Thus,
provided that a sufficient number of processors is available, the
total wall time for carrying out an MP2 calculation for a large
molecule system is defined by the largest fragment involved in
the calculation.
7.2.3. Sizes of Atomic Fragment Extents. In a DEC fragment

calculation the molecular integrals are calculated only for atoms
in the atomic fragment extent (see Section 6.1 and Figure 2). In
Figure 9 we have plotted the average (green dashed line) and the
maximum (blue dotted line) number of atoms in the atomic

Figure 7. Extended polyalanine structures, and n is the number of alanine residues.

Table 5. Absolute (ΔEcorr) and Relative (% Ecorr) Energy
Errors of DEC-MP2/cc-pVDZ Calculations on Polyalanine
Strings of Increasing Lengths Compared to Full Molecular
Calculationsa

no. alanines Ecorr (au) ΔEcorr (au) % of Ecorr orb. spread (Å)

2 �1.737622 0.0015 99.92 1.91

4 �3.278702 0.0020 99.94 1.92

6 �4.819890 0.0034 99.93 1.90

8 �6.361143 0.0035 99.95 1.89

10 �7.902389 0.0056 99.93 1.95
aAlso shown is the maximum orbital spread (orb. spread) which is a
measure of the locality of the least-change molecular (LCM) basis.
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fragment extent {A P} in DEC atomic fragment calculations as a
function of the number of alanine residues. For comparison, we
have also plotted the total number of atoms in the polyalanine
molecules (red solid line). For the smallest polyalanines all atoms
in the molecule are included in some of the atomic fragment
extents. However, as themolecular size increases, the average and
maximum sizes of the atomic fragment extents approach a

constant value of roughly 35 and 50 atoms, respectively. This
is in line with that we observed in Figure 8: for “large”molecules
the fragment sizes are independent of the molecular size.
7.2.4. Pair Interaction Energies for Polyalanines. Let us also

comment on the pair distance dependence of the pair interaction
energies ΔEPQ for the polyalanine strings. In Figure 10 we have
plotted the maximum pair interaction energies (absolute values)
against the pair distance for polyalanine strings with 2, 4, 6, 8, and 10
alanine residues. The fact that the different polyalanine plots almost
coincide show that the pair interaction energies, which represent
dispersion interactions for larger pair distances, are of similar sizes in
all molecules. This is hardly surprising as the molecules are of similar
structure, see Figure 7.Themagnitude of the pair interaction energies
rapidly decreases with pair distance, since dispersion forces ideally
depend on the inverse pair distance RPQ to the sixth power.42 In fact,
the (almost) straight line in the double logarithmic plot in Figure 10B
does indicate a power dependence, i.e., ΔEPQ � RPQ

�n. A regression
plot for the polyalanine string containing 10 alanine residues yields n
≈ 7.1. The idealized case where n= 6 occurs for two relatively distant
atoms and assumes that higher order interactions (i.e., terms
proportional to RPQ

�n with n > 6) can be neglected. What we observe
in Figure 10 is a mixture of pair interactions referencing localized
orbitals centered on different atom types in different environments
and also includes higher order interactions. It is therefore not
surprising that our power exponent differs slightly from six.
From a practical point of view the rapid decrease of pair

interaction energies with pair distance implies that pairs sepa-
rated by more than some pair distance cutoff may be omitted
from the DEC calculation without affecting the total correlation

Figure 8. Average (A) and maximum (B) unoccupied energy (red solid curve), occupied buffer (green dashed curve), and unoccupied buffer (blue
dotted curve) orbital space radii in DEC atomic fragment calculations as a function of the number of alanine residues.

Figure 9. Average (green dashed) andmaximum (blue dotted) number
of atoms in the atomic fragment extent {A P} in DEC atomic fragment
calculations as a function of the number of alanine residues. For
comparison the number of atoms in the corresponding full molecular
calculations (red solid) is also plotted.

Figure 10. Maximum pair interaction energies (absolute values) against
pair distance for polyalanine strings with 2, 4, 6, 8, and 10 alanine
residues as indicated in the figure.

Table 6. Total Pair Interaction Energy (∑P>QΔEPQ) for
Different Pair Distance Cutoffsa

distance thr. (Å) ∑P>QΔEPQ (au)

all pairs �2.53084

30.0 �2.53084

25.0 �2.53084

20.0 �2.53084

15.0 �2.53084

10.0 �2.53077

5.0 �2.52383
aThe calculations were carried out on a polyalanine string with 10
alanine residues at the DEC-MP2/cc-pVDZ level of theory.
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energy. To quantify the contributions of distant atomic pairs to
the correlation energy, we have in Table 6 given the total pair
interaction energy (∑P>QΔEPQ) for different values of the pair
distance cutoff for a polyalanine string containing 10 alanine
residues. It is seen that atomic pairs separated bymore than, say, 10Å
do not contribute significantly to the total pair energy consider-
ing that the atomic fragment energies were only calculated to a
threshold of 10�4 au. Pairs separated by more than 10 Å may
therefore be omitted from the DEC calculation. Thus, for a large
molecule the number of pair interaction energies that needs to be
calculated does indeed scale linearly with the size of themolecule.
In a practical calculation, where the total pair energy with all

pairs included is not known, a pair distance cutoff of 10 Å seems
reasonable for a general nonmetallic molecular system, whereas
15 Å is a more conservative value.
The short version of this discussion is that pair interaction

energies describe dispersion effects, which is the same physical
effect for all molecules. The threshold for neglecting pair inter-
actions can thus be set based on the distance dependence of this
interaction.

8. SUMMARY

We have presented a locality analysis of the MP2 and CCSD
amplitude equations which demonstrate that—assuming that a
set of local HF orbitals is available, such as the LCM basis,30—a
full CC calculation can be divided into a set of small independent
atomic fragment and atomic pair fragment calculations, where
the fragment orbital spaces constitute small subsets of the total
orbital space. This is possible because, using a local HF basis, the
contributions to the MP2 and CCSD amplitude equations
rapidly decrease with increasing spatial distance between the
central atom(s) in the atomic (pair) fragment and the orbitals
referencing the summation indices in the residual expression.

In a practical calculation, the optimal sizes of the atomic fragment
orbital spaces are not known a priori. Rather, they have to be
determined during the calculation to ensure that the atomic
fragment energies are determined to a preset threshold. Subse-
quently the atomic pair fragments are formed from unions of atomic
fragments to determine the pair interaction energies. A CC calcula-
tion on a large molecular systemmay thus be carried out in terms of
CC calculations on small orbital fragments of the total molecular
system, where the sizes of the orbital fragments are determined in a
black box manner during the calculation to ensure that the total CC
correlation energy is calculated to a preset energy threshold.

In summary, a DEC calculation consists of a series of
independent atomic fragment calculations followed by a series
of independent atomic pair fragment calculations. Pairs which are
widely separated in space may be neglected, as their correspond-
ing pair interaction energies (representing dispersion inter-
actions) are exceedingly small. Thus, for large molecules the
number of pair fragments with nonvanishing contributions to the
correlation energy scales linearly with the number of atoms in the
system. The DEC scheme is therefore linearly scaling and
embarrassingly parallelizable with roughly the same wall time
for small and large molecular systems provided that a sufficient
number of processors are available.

Numerical results demonstrate that the energy errors in a
DEC-MP2 or DEC-CCSD calculation compared to a full mo-
lecular calculation may be defined by the FOT parameter prior to
the calculation. We have also demonstrated that the absolute
energy errors in a DEC-MP2 calculation compared to a full

calculation are size extensive, whereas the relative energy errors
are independent of the system size. Thus, in a relative sense, small
and large molecules are treated with equal precision in DEC-
MP2 calculations. Furthermore, it has been shown that the
fragment sizes are independent of the molecular system size
and that the fragments are small enough to be treated using
standard quantum chemical implementations. Therefore, a DEC
correlation energy calculation for a general molecule can be
carried out provided that the HF calculation can be carried out
and that a local HF basis can be determined.
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ABSTRACT: Quantum mechanics/molecular mechanics (QM/MM) models are an appealing method for performing zeolite
simulations. In QM/MM, a small cluster chosen to encompass the active center is described by QM, while the rest of the zeolite is
described byMM. In the present study, we demonstrate that the charges and Lennard-Jones parameters on Si and Omust be chosen
properly for QM/MM calculations of adsorption energies and activation energies to agree closely with full QM calculations. The
selection of parameters for Si and O is based on using the ωB97X-D functional for DFT calculations of the QM region, which is
effective in capturing the effects of van derWaals interactions. A comparison of the heats of adsorption for a variety of adsorbates and
activation energies for the cracking of propane and butane reveals that energies derived from QM/MM calculation carried out with
appropriately selected MM parameters agree to within an rms error of ∼1.5 kcal/mol with QM calculations. To avoid
reparametrization for new substrates, Lennard-Jones zeolite parameters are chosen to be compatible with existing CHARMM
parameters. Transferability of these parameters is demonstrated by tests utilizing the B3LYP density functional and simulations of
MFI and FAU zeolites. Moreover, the computational time for QM/MM calculations is considerably lower than that for QM
calculations, and the ratio of computational times decreases rapidly with increasing size of the cluster used to represent the zeolite.

’ INTRODUCTION

Zeolites are crystalline microporous solids composed of
corner-sharing, tetrahedrally coordinated silicate (SiO4) units.
Isomorphic substitution of Si atoms by Al atoms and a charge-
compensating proton (HAlO4) introduces Brønsted acidic
bridge-bonded hydroxyl groups. Zeolites in this form are solid
acids widely used to catalyze a variety of reactions, e.g., cracking,
isomerization, and alkylation, involved in the conversion of
petroleum to transportation fuels and the production of com-
modity and specialty chemicals.1�4 Substitution of the
Brønsted-acid protons by metal cations enables zeolites to serve
as catalysts for other reactions, such as the selective reduction of
NO, the decomposition of N2O, oxidation of olefins, the
carbonylation of alcohols, etc.5 In these reactions, the metal
cation acts as either a Lewis acid or a redox center. Experimental
studies have shown that the activity and selectivity of both
Brønsted-acid and metal-containing zeolites are strong func-
tions of their architecture and Si/Al ratio.4 Since the number of
possible zeolite structures exceeds those used commercially by
several orders of magnitude,6�10 it would be highly desirable to
predict how zeolite structure and composition affect the activity
and selectivity of zeolite catalysts. An attractive approach to this
end is the use of quantum chemical calculations to describe the
electronic and catalytic properties of catalytically active sites
located within the pores and channels of zeolites. Molecular-
scale information that is often difficult, and sometimes not
possible, to obtain otherwise can be obtained by this means.11,12

Examples include the geometry, energy, and vibrational spec-
trum of ground and transition states, and the dynamics of
elementary processes involved in the transformation of reactants
to products. Such calculations are also useful for confirming
interpretations of adsorbate structure and reaction mechanisms

deduced from experimental evidence and for assessing the
impact of zeolite architecture and composition on catalyst
activity and selectivity.

The application of quantum mechanics to chemical reactions
occurring in zeolites is particularly challenging because of the
large number of atoms required to capture the long-range
Coulombic and van der Waals interactions. Ab initio wave
function theories (MP2, CCSD(T), etc.) cannot be carried out
for such systems because they scale with the fifth power or more
of the number of atoms in the system. Consequently, most
investigations of reactions occurring in zeolites are based on
density functional theory13 (DFT), which scales with no worse
than the third order of the number of atoms. While the
computational cost of DFT calculations is acceptable for many
applications, the accuracy of the method depends on the
exchange-correlation functional. Recent work has demonstrated
that the popular B3LYP functional14 does not capture the effects
of dispersive interactions adequately, leading to significantly
inaccurate heats of adsorption and activation energies.15,16 Of
the various functionals developed over the last several years, the
two that have been demonstrated to be most effective in
capturing van der Waals interactions in zeolites are MO6-2X17

and ωB97X-D.18

Recent studies utilizing density functional theory (DFT) have
shown that in order to achieve results consistent with experimental
results, it is necessary to use large cluster representations of the
active center and surrounding portion of the zeolite framework as
well as a functional that properly accounts for dispersion. Although
DFT is much more efficient computationally relative to other

Received: March 9, 2011
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electronic structure theories, its∼N3 scaling means that computa-
tions with the large clusters required to capture the effects of
dispersive and electrostatic interactions are prohibitively slow. For
this reason, it is very difficult to achieve convergence of calculated
thermochemical properties to values observed experimentally with
increasing cluster size.19 To overcome the electrostatic issue, some
researchers have utilized periodic boundary conditions to repre-
sent the extended framework.20,21 However, these simulations
remain computationally intractable for large zeolite unit cells.
Periodic simulations of the active site and associated molecules
can result in the experience of dipole�dipole interactions with
periodic images, which may influence the quality of the results. An
additional limitation of periodic boundary simulations is that the
algorithms used for such calculations cannot readily utilize ad-
vanced functionals, such as ωB97X-D, due to difficulties in
computing exact exchange.

Several authors have explored the option of carrying out
hybrid quantum mechanical/molecular mechanical (QM/MM)
simulations as a means for balancing accuracy and computa-
tional time for very large systems.22�27 In this formalism,
reactive atoms (the active site and reagents) are represented
by DFT (or other ab initiomethod), and nonreacting atoms are
represented by a molecular mechanics (MM) force field. This
division is natural in zeolites and allows for bond-breaking to be
described in the QM region and other important, but more
distant, interactions to be captured by interactions with the MM
region. QM/MM is vastly more computationally efficient than
QM and therefore well suited for investigating large zeolite
frameworks.24�30 However, it must be recognized that the
accuracy of QM/MM simulations depends critically on the
functional used for the DFT calculations and also the choice
of charges and Lennard-Jones parameters used for the MM
calculations. Surprisingly, this issue has not been investigated in
a systematic manner. As may be seen from Table 1, a wide range
of charge parameters have been used by different authors. In
some cases, formal charges have been used, while in other cases
charges were adjusted to replicate the results of Hartree�Fock
calculations. It should also be noted that, in some simulations,
MM�QM electrostatics have been neglected, even though this
mechanical embedding poorly represents the polarized Si�O
bonding.

In this paper, we describe the selection and validation of MM
parameters tailored for zeolite QM/MM simulations. Using the
parameters determined in this study, QM/MM is shown to
reproduce accurately QM geometries and QM energetics to
within ∼2 kcal/mol. Furthermore, these parameters work well
with both ωB97X-D and B3LYP functionals. In our QM/MM
implementation, we employ static point charges in an electro-
statically embedded model with Lennard-Jones potentials to

account for dispersion interactions. The Lennard-Jones para-
meters are chosen such that the adsorbate Lennard-Jones para-
meters can be taken directly from the existing CHARMM
parameters. Because this is a simple electrostatic embedding
model with a standard form of empirical dispersion, we anticipate
that the parameter set will be highly useful for existing QM/MM
implementations.

’COMPUTATIONAL METHODS

Zeolite Geometries.The crystallographic structures of MFI31

and FAU32 were used to determine the positions of all atoms in
the zeolites. Although Al can be located in 12 symmetrically
distinct positions in MFI, different in energy by only a small
amount, there is evidence that the T12 position is favored.33,34

Therefore, the T12 site was chosen for the calculations reported
here. Zeolite clusters with 23 and 44 tetrahedral atoms (T23 and
T44) were generated for MFI. Calculations were done for FAU
using a T52 cluster. Since all T sites have the same symmetry in
FAU, the placement of the Al atom is not critical for FAU. Each of
the clusters was terminated with hydrogen atoms positioned on
the vector between the terminal Si atoms and the replaced
O atoms, located 1.47 Å away from the terminal Si atoms.
During geometry optimizations, the lattice atoms away from
the T5 region were kept frozen at their crystallographic positions.
QM Computations. Calculations were performed with DFT/

ωB97X-D in order to provide benchmarks for verifying the
results of QM/MM. Geometries were optimized using the
ωB97X-D functional and the double-ζ, polarized 6-31G* basis
set, and single point DFT energies were then determined with
the augmented, polarized 6-31þG** basis set. Geometries were
reoptimized with B3LYP and 6-31G* for the B3LYP test set. All
QM computations were performed using Q-Chem.35

QM/MM Setup. Multiple strategies exist for implementing
QM/MM simulations,22�27 all of which begin by dividing the
atoms of the system into QM and MM regions. Notable for
zeolite simulations are Sauer’s QM/shell model28,29 and Mor-
okuma’s ONIOM method.30 These two approaches involve
mechanical embedding of the QM region and can include
empirical dispersion interactions between the regions. Since
MM�QM electrostatic interactions are not considered, polar-
ization of the active site by the lattice is, therefore, excluded. Our
QM/MM implementation follows the method of ref 36, where
both dispersion and electrostatics are treated between the QM
and MM regions (i.e., electrostatic embedding22).
The division between QM and MM regions is described in

Figure 1. To divide the QM and MM regions smoothly, a single
hydrogen link atom is used to replace a Si�O bond at the
terminus of the QM cluster.37 The terminating H atoms were
placed along each of the terminal Si�O bonds at a distance of
0.92 R(Si�O) from the terminal Si atom. Typical Si�H link
atom bond lengths were approximately 1.47 Å. To achieve charge
neutrality of the MM subsystem, a fraction of the link atom
charge was added to its covalently bonded neighbor, and the
charge on the link atom was set to zero. Failure to neutralize the
MM region caused significant errors in the absorption energies of
polar species; therefore, neutrality of the MM region was
maintained for all simulations. Except where noted, the QM
region was a T5 cluster centered on the zeolite acid site. While
other strategies have been used for QM/MM simulations,38,39

these approaches are more complicated and require additional
parametrization.

Table 1. Sampling of Charges Used for Si in QM/MM
Simulations of Zeolites in the Literature

Si charge (au) explanation reference

0.0 mechanical embedding 48

1.0 Mulliken from DFT 39

1.2 potential derived charge from DFT 49

1.2 taken from MM parameter set 50

1.84 fit to Hartree�Fock 51

2.0 one-half of formal charge 26, 52

4.0 formal charge 53
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The MM region was described by a standard force field of the
CHARMM type.40 The most important terms in the force field
are the electrostatic energy,

EES ¼ ∑
ij

qiqj
4πε0rij

ð1Þ

and the Lennard-Jones potential energy

ELJ ¼ ∑
ij
εij

Rij

rij

 !12

� 2
Rij

rij

 !6
2
4

3
5 ð2Þ

where εij = (εiεj)
1/2 and Rij = (Ri þ Rj)/2. These expressions

require three parameters for each atom type: qi, the atomic partial
charge; Ri, the van der Waal’s radius; and εi, the characteristic
energy for the Lennard-Jones potential. A point charge model
was used instead of more sophisticated polarizable models to
allow compatibility with existing electrostatically embedded
QM/MM implementations. While simple, this approach yielded
results of sufficiently high accuracy. To avoid modifying para-
meters of nonzeolite molecules, CHARMM parameters were
utilized for the atoms of the molecules interacting with the
zeolite. QM/MM simulations were performed utilizing a devel-
opment version of the Q-Chem software package.35

’PARAMETER SELECTION

Because most of the atoms in the zeolite lattice were kept
frozen at their crystallographic positions, we focused on deter-
mining reliable atomic charges and Lennard-Jones parameters for
Si and O, while the MM bonding parameters remain unchanged.
Since our approach selects MM parameters specifically for QM/
MM use, we used the CHARMM parameters for silica41 as a
reasonable starting point. This set of parameters (referred to
below as parameter set P1) was developed using the standard
CHARMM procedure that ensures consistency with existing
CHARMM parameter sets.40 While the parameters for Si and O
determined by this means are suitable for CHARMM MM
simulations, they are not necessarily reliable for use in QM/
MM simulations.

Selection of a satisfactory set of charge and Lennard-Jones
parameters for Si and O was done by reducing the error between
QM/MM andQM calculations carried out for three test sets. For
each one, the van der Waals radii, Ri, for Si and O in CHARMM
were maintained, and only the energy parameters, εi, were
adjusted along with the charge parameters. The first test set
examines the adsorption of methane, ethane, propane, and
butane in purely siliceous MFI (silicalite), represented by a
T23 cluster. For this set of molecules, adsorbate�zeolite inter-
actions are dominated by dispersive forces. The second test set
examines the interactions of propane, CO, acetonitrile, NH3, and

Figure 1. Schematic of the division between QM and MM regions.
Spherical atoms are QM, and transparent atoms are link atoms. The QM
region is polarized by atomic partial charges in the MM region. The
immediate Si neighbors to the link atoms are assigned a smaller charge to
create an overall neutral MM region. Lennard-Jones potentials are
applied to pairs of atoms that include at least one MM atom to account
for dispersion.

Table 2. Quantum Mechanical Absorption Energies and Apparent Activation Energies from ωB97X-D and Experiments
(kcal/mol)

B3LYP ωB97X-D ωB97X-D

6-31G* 6-31G* 6-31þG** exp. ΔHabs ref.

T23 MFI (all silica) methane 1.3 �4.2 �3.8 �4.8 54

ethane �0.7 �7.7 �7.8 �7.9 54

propane �0.4 �10.9 �9.3 �9.6 54

butane �2.6 �14.7 �13.9 �11.7 54

T44 H-MFI propane �0.4 �12.2 �13.7 �11.0 55

CO �7.4 �10.8 �10.2 �6.3, �8.0 56, 57

acetonitrile �16.8 �25.8 �24.7 �26.3 58

NH3 �28.3 �33.6 �30.0 �34.7 59

pyridine �27.2 �42.9 �46.8 �47.6 59

6-31G* 6-31G* 6-31þG** exp. apparent ΔH‡

T23 H-MFI propane cracking 45.2 32.0 30.7 37.0, 35.1 60, 61

propane H-exchange 28.3 22.8 20.3 n/a

butane cracking 1 42.2 26.8 26.2 32.3 60

butane cracking 2 42.1 26.2 25.3 32.3 60
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pyridine with a Brønsted acid site in H-MFI, represented by a
T44 cluster. This group contains larger molecules that are more
sensitive to long-range charge interactions with the lattice and
molecules such as NH3 and pyridine that can interact strongly
with the Brønsted acid proton of the zeolite. The third test set
examines the activation barriers for hydrogen exchange and
cracking of propane, and for n-butane cracking at the C1 and
C2 positions. A T23 H-MFI cluster was used for these
calculations.

The accuracy of the QM calculations was established by
comparison with experimental values. As seen in Table 2, the
QM calculations carried out at the ωB97X-D/6-31G* and
ωB97X-D/6-31þG** levels for the first test set agree closely
with the experimental values of the heats of adsorption for
methane, ethane, propane, and butane. However, similar calcu-
lations carried out with B3LYP/6-31G* yield heats of adsorption
that are consistently lower than those calculated withωB97X-D/
6-31G* and those observed experimentally, confirming the
superior performance of the ωB97X-D functional for describing
dispersive interactions. Similar conclusions can be drawn by
examining the results for a second test set. It is also noted that the
strong interactions of pyridine, acetonitrile, and ammonia with
the Brønsted acid site are well described using the ωB97X-D
functional. For the third test set, QM calculations carried out at
the ωB97X-D/6-31G* and ωB97X-D/6-31þG** levels under-
predict the experimentally observed apparent activation barriers
by about 5�6 kcal/mol (i.e., the energy difference between the
transition state and the molecule in the gas phase), but are
consistently better than calculations done at the B3LYP/6-31G*
level, which tend to overpredict activation barriers by about
10 kcal/mol.

Because the ωB97X-D functional produced results in good
agreement with experimental ones, QM/MM parameters were
selected to reproduce these QM results. Figure 2 outlines a
general methodology for generating reliable charge and L-J
parameters for zeolites. After comparing the results from QM
to QM/MM with the CHARMM parameter set (P1), the L-J
parameters are modified. QM/MM computations are repeated
holding the charge constant until a small value of rms error is

achieved. This procedure produces the P2 parameter set. Having
determined the L-J parameters, these are fixed and a similar
iterative procedure evaluates the charge parameters. The lowest
rms errors resulted from parameter sets P3 and P4. Finally, a
mechanically embedded parameter set, P5, is constructed by
setting the charge to zero.

These sets, presented in Table 3, are P1, the CHARMM set of
charges and Lennard-Jones parameters for Si and O determined
for silica (QSi = 1.08, QO = �0.54, εSi = 0.6 kcal/mol, and εO =
0.1521 kcal/mol); P2, theCHARMMcharges for Si andO and the
new set of Lennard-Jones parameters found in this work (QSi =
1.08, QO = �0.54, εSi = 0.2 kcal/mol, and εO = 0.075 kcal/mol);
P3, the first set of reduced charges on Si and O and the new set
of Lennard-Jones parameters (QSi = 0.80, QO = �0.40, εSi =
0.2 kcal/mol, and εO = 0.075 kcal/mol); P4, the second set of
reduced charges on Si and O and the new set of Lennard-Jones
parameters (QSi = 0.70, QO = �0.35, εSi = 0.2 kcal/mol, and
εO = 0.075 kcal/mol); and P5, no charges on Si and O and the
new set of Lennard-Jones parameters (QSi = 0.0, QO = 0.0, εSi =
0.2 kcal/mol, and εO = 0.075 kcal/mol), which corresponds to
mechanical embedding of the QM region. Reference to Table 1
shows that the charges on Si and O used here are significantly
smaller than those previously reported.

’QM/MM VALIDATION

Figures 3�5 show the difference between the energy
(adsorption energy or activation energy) determined by QM/
MM and full QM for each member of the three test sets. The
difference between the adsorption or activation energies deter-
mined from QM/MM and full QM calculations is sensitive in
general to the choice of charges placed on Si and O and to the
parameters of the Lennard-Jones potential. However, the sensi-
tivity to the choices of charges and Lennard-Jones parameters
depends on the test set examined. Figure 3 reveals that the heats
of adsorption of C1�C4 alkanes are insensitive to the choice of
the charges placed on Si and O but quite sensitive to the choice
of Lennard-Jones parameters. When the values of these para-
meters found in the present study are used, the rms error
between QM/MM and full QM is 0.3 kcal/mol for parameter
set P5 (i.e., mechanical embedding) and is 0.4 kcal/mol for
parameter set P3 (QSi = 0.8 and QO = �0.4).

By contrast for the second test set (shown in Figure 4), in
which electrostatic adsorbate�zeolite interactions are significant,
the difference in the adsorption energies determined from QM/
MM and full QM calculation is sensitive to both the charges
placed on the Si and O atoms of the zeolite lattice and the
corresponding Lennard-Jones parameters. The smallest dif-
ference is obtained using parameter set P4; however, using para-
meter set P3 yields only slightly larger errors. It is also apparent
that exclusion of electrostatic interactions (P5) leads to largeFigure 2. Schematic for generating Lennard-Jones and charge parameters.

Table 3. Charge and Lennard-Jones Parameters for O and Si Used in This Worka

parameter set QSi QO εSi (kcal/mol) RSi (Å) εO (kcal/mol) RO (Å) ΔErms/6-31þG** (kcal/mol)

P1 1.08 �0.54 0.6 2.2 0.1521 1.77 6.2

P2 1.08 �0.54 0.2 2.2 0.075 1.77 3.7

P3 0.8 �0.4 0.2 2.2 0.075 1.77 1.4

P4 0.7 �0.35 0.2 2.2 0.075 1.77 1.5

P5 0.0 0.0 0.2 2.2 0.075 1.77 8.1
aAdsorbate Lennard-Jones parameters are from the CHARMM force field.40
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differences in the energies calculated fromQM/MMand fullQM.An
even stronger effect of the charges placed on Si and O is evident for
the calculation of activation energies for reactions involving propane
and butane. In this case, the best agreement between QM/MM and
full QM calculations is obtained using parameter set P3. When all
three test sets are examined together, Figure 6 demonstrates that the

smallest rms difference in energies between the two computational
strategies is obtained using parameter set P4.

QM/MM calculations carried out with the new charge and
Lennard-Jones parameters also reproduced geometries obtained
from full QM calculations. When single-point full QM energies
were determined using fully converged QM/MM geometries,

Figure 3. Energy differences between QM/MM and QM results (6-31þG** basis) for alkanes adsorbed in all-silica T23 MFI. Alkane absorption is
sensitive to Lennard-Jones parameters but insensitive to MM charges.

Figure 4. Energetic differences betweenQM/MMandQM results (6-31þG** basis) for molecules adsorbed in T44H-MFI. These adsorbedmolecules
are sensitive to both Lennard-Jones parameters and MM charges.

Figure 5. Energetic differences between QM/MM and QM results (6-31þG** basis) for alkane activation in T23 H-MFI. Transition states are most
sensitive to MM charge parameters, and mechanical embedding (P5) fails to reproduce QM results.
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the rms difference between QM energies at the full converged
QM geometry and QM at the QM/MM geometry was less than
1 kcal/mol (see Table 4).
Parameter Transferability. To determine the transferability

of the selected parameters, two additional tests were done. First,
the entire test set was repeated with B3LYP and the 6-31G* basis
(see Table 2). To ensure a reasonable comparison, Lennard-
Jones energies were removed from the QM/MM results because,
as discussed earlier, the B3LYP functional does not account for
dispersive interactions. Across the entire test set, QM/MM
reproduces B3LYP energies with an rms difference of 1.8 kcal/
mol with parameter set P4 and an rms difference of 2.2 kcal/mol
with parameter set P3. In comparison, QM/MMwithωB97X-D
reproduces the QM energies with a 1.5 kcal/mol rms error,
indicating that these parameters are likely transferable to other
density functionals.
To test the transferability of the charges and Lennard-Jones

parameters found to be best-suited for MFI, calculations were

carried out for the adsorption of CO, pyridine, and NH3 at
Brønsted acid sites in FAU. For these calculations, the framework
of FAU was represented by a T52 cluster. For DFT calculations
carried out at the ωB97X-D/6-31G* level, the rms errors in absorp-
tion energies obtained fromQMandQM/MMwere 2.0 kcal/mol for
parameter set P4 and 3.7 kcal/mol for parameter set P3. Therefore,
the charge and Lennard-Jones parameters that give accurate results
for MFI are transferable to FAU and, by extension, to other zeolites.
As demonstrated by the current study, QM/MM calculations

of adsorption and reaction occurring in cluster representations
of zeolites can achieve accuracies rivaling those obtained from
full QM calculations for clusters of the same size as that used for
the QM/MM calculations. The significant difference, though, is
that QM calculations in the QM/MM approach are done for
only a T5 cluster electrostatically embedded in the remainder of
the model cluster. This difference enables substantially faster
computational times than can be achieved using a full QM
approach. To demonstrate this point, Table 5 lists the times
required for single point calculations of the energy for propane
adsorption in MFI determined by QM and QM/MM as a
function of the cluster size. It is evident that for a T23 cluster,
QM/MM is over 50 times faster than QM, and for a T44 cluster,
QM/MM is over 600 times faster than QM. This means that the
QM/MM approach can be used to carry out calculations of
adsorption and reaction processes using a very large overall
cluster, which may contain multiple active sites.

’ALKANE ACTIVATION IN LARGE ZEOLITE LATTICE

To demonstrate the lattice size approachable by QM/MM,
parameter set P4 was used to investigate the cracking inMFI of n-
alkanes42�47 containing up to 18 carbon atoms. A cluster of
about 1000 atoms (T356) was required to represent the straight
channel of MFI so as to capture the effects of dispersive
interactions for alkanes containing up to 18 carbon atoms (see
Figure 7). The MFI zeolite includes a single acid site at the T12
position. The reactingmolecules and a T5 active site are placed in
the QM region of QM/MM. If a smaller cluster had been used, a
part of the largest alkanes in the series would have spilled out of
the cluster, and a similar problem would have arisen if we had
tried to use a small repeated cell for periodic boundary calcula-
tions. Therefore, neither QM cluster simulations nor periodic
simulations can handle the size of the cluster required to study linear
alkanes with 18 carbon atoms. With ∼N3 scaling for DFT, such a
large cluster would require approximately 5000 times the computa-
tional time required for aT23 cluster andhencewould be prohibitive.

This setup is designed to demonstrate the ability of QM/MM
to describe chemistries that require a large model zeolite, but we
do not suggest that the absorption and cracking of C12 and C18
alkanes in the zeolite straight channel specifically represent the
physical process in MFI. Instead, if C12H26 or C18H38 were to

Figure 6. Energetic differences between QM/MM and QM results
(6-31þG** basis) averaged over the entire test set. The largest errors
occur when mechanical embedding (zero charge in MM region, P5) is
used and when charge and Lennard-Jones parameters are taken directly
from an MM force field (P1).

Table 4. Difference in Energy from QM Single Points at
QM/MM Optimized Geometries Compared to QM
Optimized Geometries

P3 P3 P4 P4

6-31G* 6-31þG** 6-31G* 6-31þG**

T23 MFI

(all silica)

methane 0.0 0.0 0.0 0.0

ethane �0.5 �0.5 �0.5 �0.5

propane �0.3 �0.3 �0.3 �0.3

butane �0.2 �0.2 �0.1 �0.1

T44

H-MFI

propane 0.0 1.1 0.0 1.1

CO 0.0 0.4 0.0 0.2

acetonitrile 1.7 0.6 1.7 0.6

NH3 �0.7 0.3 �0.7 0.2

pyridine 0.0 0.5 0.0 0.5

T23

H-MFI

propane cracking �1.9 �0.6 �2.0 �0.7

propane H exchange �2.5 �1.0 �2.4 �1.0

butane cracking 1 1.3 0.5 1.2 0.4

butane cracking 2 0.9 0.3 0.9 0.3

overall average �0.2 0.1 �0.2 0.1

rms 1.0 0.6 1.1 0.6

Table 5. Single Point Energy Times from QM and QM/MM
for Propane Absorption

time/SCF cycle

QM QM/MM QM/MM speedup

T5 9.2 N/A 1�
T23 769.2 14.6 53�
T44 9212.0 13.4 687�

in seconds
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diffuse into MFI, cracking may begin prior to complete absorp-
tion. For this reason, we emphasize that the following results are
specifically based on the assumption that the long chain alkanes
diffuse to an absorption site in a zeolite straight channel without
being cracked prior to absorption.

Table 6 lists the intrinsic activation enthalpy for C3 through
C18 for terminalC�Cbondcracking determined at theωB97X-D/
6-31G* level of theory. The intrinsic activation enthalpy for
propane cracking (i.e., the energy difference between the
transition state and propane absorbed at the acid site) is
40.4 kcal/mol. This value is 4.8 kcal/mol lower than that
determined at the same level of theory using a T23 cluster.
The lower barrier height determined for the larger cluster is
due to the additional electrostatic stabilization of the separated
charges in cracking TSs and indicates the significance of long-
range interactions that are missed by small cluster models.
For cracking at an acid site positioned at T12, QM/MM
with ωB97X-D/6-31G* underestimates the experimentally
determined intrinsic barrier heights for cracking of terminal
C�C bonds in propane and hexane by 7�10 kcal/mol. To
determine how sensitive the cracking barrier was to the acid
site position, the cracking barriers for propane and hexane
were determined with the acid site positioned at T3. With this
acid site, the intrinsic activation barriers rose by 3.2 and
5.8 kcal/mol, for propane and hexane, respectively, indicating
significant variance due to acid site position. These barriers
therefore come within about 4 kcal/mol of the experimental

values. This is by no means a complete sampling of the variety
of acid sites in MFI, so a complete theoretical study of alkane
activation will require systematic investigation of the effect of
the acid site to provide a quantitative comparison to experi-
mental results.

The geometries for cracking reactions are somewhat depen-
dent on the size of the zeolite cluster model and the alkane
length. Figure 8 shows a comparison of cracking geometries from
T23 and the large zeolite for reactions with the T12 acid site.
These geometries are compared via examination of the distances
between the acid active site oxygen, the proton, and the two
carbon atoms undergoing cracking.While the smaller T23 zeolite
qualitatively reproduces the larger zeolite’s cracking geometries
for propane, the O�H distance at the TS is longer by about
0.16 Å. This indicates that the missing long-range electrostatics
cause an approximate description of the TS geometry. This
suggests that previous simulations with smaller clusters (i.e., T23,
T44) can yield useful information about zeolite reactivity but are
still incomplete descriptions of chemistries like alkane cracking.
Furthermore, smaller model clusters will inevitably leave out the

Figure 7. T356MFI zeolite used for investigating the cracking of long alkanes. C18 is shown in the straight channel. The T5QM region centered on the
Al site is highlighted (view down straight channel on left, side view on right).

Table 6. Intrinsic Activation Barriers (ΔH773K
‡ ) for Terminal

Carbon Cracking of C3�C8 Alkanes Determined via QM/
MM ωB97X-D/6-31G* Using a T356 Representation of the
Straight Channel in MFI with the Acid Site Located at the
T12 Position

Intrinsic Cracking Barrier, ΔH773K
‡ (kcal/mol)

T356 exp.

C3H8 40.4 46.1,61 47.360

C6H14 36.3 47.160

C12H22 35.1 N/A

C18H38 37.3 N/A

Figure 8. Geometric distances for cracking reactions in T23 MFI
cluster compared to the large (T356) MFI cluster. Both zeolites contain
the acid site at the T12 position. Only the T5 QM region is shown, and
geometries are qualitatively similar for cracking of the longer alkanes.
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shape selectivity inherent to the zeolite structure and cannot
model any reactivity that depends on extended zeolite structure.

There is a small but significant difference in the alkane
cracking geometries when comparing the shorter alkanes to the
longer alkanes. Specifically, the O�H distance for the shorter
alkanes is about 0.15 Å shorter than in the longer alkanes. This
difference can be attributed to the steric constraints of adsorbing
and cracking C12 and C18 in the straight channel. The longer
alkanes do not have the same degree of steric flexibility as C3 and
C6, forcing the proton to be slightly further away from the acid
site at the cracking geometry. Because the potential energy
surface in zeolites is relatively flat due to the long-range electro-
statics and dispersion of the lattice, multiple minima correspond-
ing to the same TS may be present. To determine whether this
was true, we reoptimized the TSs for C12 and C18 starting from
geometries with quantitatively similar bond lengths as C3.
However, the TS searches resulted in the same geometries as
determined previously, indicating that the shorter and longer
alkanes can be differentiated on the basis of the steric properties
of their absorption in the large zeolite lattice.

’CONCLUSIONS

Hybrid QM/MM simulations that provide similar accuracy to
full QM simulations have been achieved over a diverse test set of
zeolite interactions and reactions. Although QM/MM has been
known to be a computationally efficientmethod (about 50� faster
than QM for a T23 zeolite compared to QM/MM with a T5 QM
region, 700� faster for T44), its accuracy is shown to be highly
dependent on the quality of the MM parameters. As Table 1
shows, there is no agreement in the literature on the appropriate
atomic partial charges, and up to this point, no systematic testing
has been done to validate charge parameters for QM/MM. In
QM/MM simulations, utilizing charge parameters designed for
MM is inappropriate without careful validation.

Parameters specifically selected for QM/MM in zeolites are
provided herein (see Table 5) and are useful for electrostatically
embedded QM/MM implementations. The Lennard-Jones para-
meters are chosen for compatibility with CHARMM adsorbate
parameters. The selected parameters provide an accuracy of about
1.5 kcal/mol and reproduce QM structures to within 1.0 kcal/mol
when a T5 cluster is used for theQM region. These errors are quite
low and demonstrate the applicability of static point charges and
single hydrogen link atoms for QM/MM simulations. This accu-
racy, however, could still be improved by accounting for polariza-
tion in the MM region or improved link atom representations.
Because the parameters are applicable to ωB97X-D and B3LYP
functionals as well asMFI and FAU zeolites, we anticipate that they
will be generally useful for QM/MM zeolite simulations.

The accuracy of zeolite simulations depends strongly on the
quality of the density functional as well as theMMparameters. The
results of this study suggest that density functionals that capture
dispersion interactions should be used whenever possible, and
dispersion corrections should also be applied between MM�QM
atom pairs. This is exemplified in Table 2, where B3LYP poorly
reproduces experimental heats of absorption and apparent activa-
tion energies. Furthermore, examination of Table 3 and Figure 6
shows that neglect of electrostatics (i.e., QSi = QO = 0 mechanical
embedding) outside of the T5 cluster produces results that are far
from convergence.QM/MMsimulations that reproduce the results
of density functionals such asωB97X-Dprovide an efficient avenue
for examining complex shape-selective reactivity in zeolites.
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ABSTRACT:We analyze the behavior of the profiles of delocalization indices (DIs) between relevant pairs of atoms along reaction
coordinates for a set of model chemical processes. A relationship between the topology of the DI and the nature of the underlying
chemical change is reported. As shown, exponential shapes correspond to the traditional category of repulsive/nonbonded
interactions, while sigmoidal profiles signal the formation/breaking of chemical links.

1. INTRODUCTION

The concept of the chemical bond, central to the science of
chemistry, is still a matter of lively debate among scholars almost
95 years after Lewis’s insights1 and 50 years after Pauling2 laid the
modern foundations of the field. At the very heart of the problem
lies the fact that establishing both when two atoms are bonded or
not and when their interaction stabilizes the energy of a molecule
are not easy tasks for polyatomics. In fact, they require either
techniques to describe atoms in molecules or ways to partition
molecular energies into atomic or pair contributions.

In the past few decades, real space theories of the chemical
bond have provided an alternative to the molecular orbital
(MO)3 paradigm that has dominated the field. The best known
approaches are based on partitioning the real space through the
gradient operating on some scalar field endowed with chem-
ical content and are collectively known as Quantum Chemical
Topology (QCT).4,5 Among them, the Quantum Theory of
Atoms in Molecules (QTAIM) developed by Bader6 stands out.
In its basic mode of operation, a set of indicators based on
reduced densitymatrices (like the density itself, F, the laplacian of
the density, r2F, the energy density, H, and many others) are
obtained at the finite set of distinguished points in space where
rF = 0. These are the critical points (CPs) of the F field, and
their set of indicators is used to build correlations to chemically
important concepts, ranging from bond order and bond type to
basicity or reactivity indices.

Recently, one of the best known results of the QTAIM, the
identification between bond critical points (BPCs) at stationary
molecular configurations7 and pairs of bonded atoms, has been
put into question. In short, BCPs are found where chemists will
not place them and vice versa.8�11 The situation has led to a
particularly intense debate regarding the meaning of BCPs
in situations that are usually understood as nonbonding (steric,
repulsive).11�16 Examples of this discussion may be found in
the recent work of Grimme et al. about the nonexistence of a
bonded interaction between the bay moiety hydrogens in
phenanthrene17 and in the study of Henn et al. on the absence
of BCPs in HS(CH)(CH2) and F(CH2)4F.

18 The debate is in

our opinion far from over, and radically opposite interpretations
are offered by the supporters of both positions.

Some of us have previously contributed to this discussion by
noticing that alternative interpretations to the meaning of BCPs
exist.19 According to our proposal, on the basis of the interacting
quantum atoms approach (IQA),20�23 bond paths signal privi-
leged exchange-correlation (xc) channels between pairs of atoms,
thus always providing a locally stabilizing Vxc term to the total
energy. Since Vxc is just one of the terms in the IQA energetic
decomposition, this view makes the presence of BCPs fully
compatible with global destabilizations. The close relationship
of BCPs to the energetic properties of a system connects two
paradigmatic views of the chemical bond, the molecular structure
due to the topology of F(r) and the energetic behavior associated
with a bonded system. Such a connection between the struc-
ture and the energetics gives an important contribution to the
physical meaning of the BCPs and to the partitioning of space
provided by the QTAIM.

It is becoming increasingly clear that a common source of this
and other criticisms made to QCT resides in its local operating
mode. By restricting QCT analyses to examining properties at
CPs, we unfortunately subject our description to the lability of
these positions in space, which appear and disappear catastro-
phically upon geometrical rearrangements of the nuclei. Such a
sensitivity is absent if QCT focuses on global (i.e., domain-
integrated) properties. Global descriptors may involve not only
one basin but two, as in the calculation of Vxc, or even many,
being perfectly suited to identifying relations among atoms. We
firmly believe that by using global descriptors, useful insights
about the nature of chemical interactions will be found.

In this work, we examine the behavior of one of the simplest
two-basin indices, the shared electron delocalization index
(SEDI), or delocalization index (DI) for short, and uncover an
interesting link between the topology of the DI profile along a
reaction coordinate and the nature of the chemical change
associated with it. The close algebraic proximity between SEDIs
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(see eq 1 below) andVxc’s
20 pushes us to do so, the latter being an

energetic signature of the former. Thus, as the competition of
different exchange-correlation energetic contributions between a
given atom and its neighbors determines the existence or not of
BCPs, DIs may hold interesting information that may be masked
in Vxc due to the intrinsic dependence on interelectron distances
of the latter. As it will show up in the following, the new insights
cannot be obtained directly from either Vxc or the local values of
scalars fields, i.e., densities, laplacians, etc., at BCPs.

Although QCT DI profiles are not new,24 they have been
scarcely used in the literature up to now. For instance, their
evolution along reaction paths has been used to study the
reactivity and aromaticity in model chemical reactions.25�29

Similarly, Poater and co-workers25 have proposed that the
changes in the DI are evidence of the reorganization of the
electron pairing along the reaction path. Within this interpreta-
tion, a DI profile agrees with the predictions of the traditional
Lewis model. Another related study was presented byMatito and
co-workers,28 where the behavior of DI and localization index
profiles was used to visualize quantitatively the problems of the
restricted Hartree�Fock method in reproducing homolitic dis-
sociations. In addition, Ponec and Cooper26 reported the pre-
sence of inflection points in DI profiles for bonded systems,
finding no molecule-specific significance to the location of such
points. They did not compare bonded and nonbonded systems.

In summary, a literature survey shows that the different shapes
of the DI profiles are related to the bonding or nonbonding
nature of the interaction that is being followed but that this link
has not been explored explicitly up to now. Here, we examine a
number of simple, prototypical chemical changes modeled at
different levels of theory to substantiate our findings.

2. METHODS, SYSTEMS, AND COMPUTATIONAL
DETAILS

The delocalization index between two quantum groups A and
B, δAB, was introduced by Bader and Stephens30 as a measure of
the number of electron pairs delocalized between the groups.
Since then, it has been used as a real space measure of the
covalent bond order31 and has been shown to correspond to the
real space analogue of the commonly used Wiberg�Mayer bond
index.32,33 δAB is obtained by a two-electron, two-basin integra-
tion of the exchange-correlation density, Fxc(1,2) = F(1) F(2)�
F2(1,2), where F2 is the second order reduced density matrix:

DI ¼ δAB ¼ 2
Z
A
d1
Z
B
d2 Fxcð1, 2Þ ð1Þ

In the case of single determinant (SD)wave functions, Fxc may be
factorized in terms of the nondiagonal first order density matrix:

Fxcð1, 2Þ ¼ Fð1; 2Þ Fð2; 1Þ
¼ ∑

i, j
φið1Þ φjð1Þ φið2Þ φjð2Þ ð2Þ

where the sums run over all of the occupied spin orbitals φ. In
this way, the DI is written in terms of domain-restricted over-
lap integrals, or atomic overlap matrices (AOM), δAB = 2∑i,jSij

ASij
B.

This expression has many times been taken as the definition of
the DI but is rigorously valid only in the Hartree�Fock
approximation. If correlation is deemed important, as in many
of the cases we are going to present, then the full four-index
representation of the second order density has to be used, and
more cumbersome expressions appear. Nevertheless, the DI may

always be written as a linear combination of AOM elements, and
thus no true 6D integrations are actually needed for its evalua-
tion. With this 3D factorization, the computational complexity of
obtaining DIs is not larger than that in the usual 3D integrations
of the QTAIM. This is no longer true for other two-electron
indices like Vxc. As a consequence, DIs are among the only two-
electron properties that are commonly obtained in standard
QTAIM packages, at least for SD wave functions. We have
developed efficient methods to compute DIs in the case of
multideterminant expansions of Ψ,34 and expressions based on
density matrix functional theory approximations to Fxc have also
been developed.35,36

A connection between the DI and the fluctuation of the basin
populations exists.30,37�39 It may be shown that the covariance of
the joint probability distribution for the number of electrons in
the basins A and B is given by the DI:

δAB ¼ � 2covðnA, nBÞ ¼ � 2½ÆnAnBæ� ÆnAæÆnBæ� ð3Þ

where ÆnAnBæ=∑nA,nBnAnBp(nA,nB) and ÆnAæ = ∑nAnAp(nA). In these
expressions, p(nA) and p(nA,nB) are electron number distribution
functions (EDFs). The first provides the probabilities of obser-
ving an exactly integer number of electrons nA in basin A and the
second, the joint probability of finding nA electrons in basinA and
nB electrons in basin B. Since there are now efficient methods to
construct such EDFs,40�42 an interesting interpretation is emer-
ging in which chemical bonding is interpreted in terms of the
fluctuation in the number of electrons associated with quantum
atoms. In a diatomic, for instance, the constancy of the total
number of electrons N = nA þ nB forces any change in the
population of one basin to be accompanied by a symmetric (and
opposite in sign) change in the other. TheDI (minus covariance)
in such a case is a necessarily positive quantity, a property that
does not necessarily hold in general polyatomic systems. DIs are
(contrarily to other atomic expectation values, like the kinetic
energy) perfectly defined for any pair of nonoverlapping regions
of the 3D space. They will be positive-definite if the integrand is
positive-definite. This is not true, for Fxc may take negative values
whenever the Coulomb correlation contribution dominates over
the Fermi one. This means that we may in principle find two
regions of space with negative Fxc that will give a negative DI.
What is necessarily true is that the sum of all delocalization and
localization values, i.e., the integral over the full 6D space of Fxc,
must be positive and equal to N, the number of electrons in the
molecule. We think that it is very unlikely that a negative DI will
show up between two entire atomic regions. This would mean
that the Coulomb correlation overcomes the Fermi contribution
over large regions, something not very plausible, but not im-
possible. In any case, positive values will arise whenever the
populations of two basins are negatively correlated. In other
words, whenever there is a direct physical exchange of electrons
between the basins. Using this kind of insight, we have shown41

how the bond order may be interpreted in terms of the number of
electrons of one basin that may be exchanged with the other,
providing an intuitive view of well-known traditional concepts.

Following some reported observations based on the shape
of both Wiberg indices43,44 and QCT DIs,24,45 we have selected
a number of simple chemical processes and studied the behav-
ior of DIs along their intrinsic reaction coordinates (IRC). The
use of IRCs allows us to map the complex geometric rearrange-
ments following a reaction onto a unique scalar parameter. The
processes examined include dissociations, atomic exchanges,
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migrations, intramolecular rearrangements, and a few of the
controversial systems commented on before. Some of these
processes are well represented at the Hartree�Fock (HF) level,
and since our purpose here is not quantitative, we present such
low level calculations. Other dissociations, particularly open-shell
ones, cannot be adequately described if correlation is not taken
into account. In such cases, appropriate multideterminant calcu-
lations will be reported, either at the CAS or CISD level.

All electronic structure calculations, including optimizations,
transition state (TS) searches, and constrained optimizations,
have been performed with the GAMESS46 code using the
6-311þþG(d,p) basis set. DIs have been obtained with our
PROMOLDEN code.

3. RESULTS

We will begin our discussion by examining the dissociation of
simple bonded and nonbonded diatomics, starting with H2. We
have previously reported47 an EDF/IQA analysis in this system
to which the reader is referred for further insights, but no explicit
account of the behavior of DIs was given there.
3.1. The Dissociation of Diatomics. We have examined the

formation and breaking of several homo- and heteronuclear
diatomics. Here, we report on the dissociation of H2, N2, He2,
Ar2, and LiH.
The breaking of the first molecule is the paradigm of an open-

shell process, so we will use a CAS[2,2] description. It provides
the simplest wave function that fully describes the process.
Figure 1 shows the variation of DI(HH) with the internuclear
separation for both the X1Σg

þ and b3Σu
þ states. The optimization

of the former gives rise to the ground state of H2 at an
internuclear distance of about d = 1.4 bohr, while the latter is a
repulsive state. The effect of correlation in the singlet is essential,
since a SD description provides DI = 1 at any internuclear
distance. This may be interpreted as a result of the statistical
independence of R and β electrons at the HF level that leads,
through eq 3, to a binomial distribution of the electron popula-
tions in both basins. Thus, the probabilities of finding simulta-
neously nA and nB electrons in each basin becomes p(2,0) =
p(0,2) = 0.25 and p(1,1) = 0.5.47 Introduction of R,β correlation
partially localizes both electrons, and p(1,1) increases so that
DI = 2 � 2p(1,1) decreases. The two R electrons are always
correlated in the triplet state, even in a SD description.
TheDI profiles for the H2 dissociation of the singlet and triplet

states are shown in Figure 1, the singlet profile is similar to that
reported by Matito and co-workers.28 As we can observe, the
topology of the DI profiles is qualitatively different in both cases,

the singlet displaying a clearly developed inflection point that is
absent in the triplet. As we will illustrate throughout this work,
this property seems rather general. Another interesting aspect is
the position of the inflection point. A polynomial fit determines it
occurring at d ≈ 2.90 ( 0.1 bohr, where DI = 0.5 ( 0.1.
There are several possible interpretations for this DI = 1/2

value, and the simplest one relates it to a half-formed (or broken)
bond. In the independent electron approximation, a full covalent
(2c,2e) symmetric link with DI = 1 is the result of two completely
delocalized electrons, each of them displaying a probability 1/2
of being found in any of the atoms. Similarly, two isolated
electrons, one found exclusively in basin A and the other in basin
B, are the signature of a noninteracting system. A 50/50 statis-
tical mixture of both descriptions gives rise to the EDF p(2,0) =
p(0,2) = 0.125, p(1,1) = 0.75, which is that found at DI = 0.5.
Finally, the sigmoidal shape of the DI profile in the singlet curve
points toward a kind of cooperative transition in which the
internuclear distance plays the role of an order parameter. It is
the presence or absence of this transition that seems to distin-
guish the nature of the process.
The H2 example shows very clearly why the information

introduced by DI profiles is new, not contained in other
quantities explored up to now. First, it is not contained in the
variation of Vxc’s with interbasin distance. For both the singlet
and triplet states, Vxc

AB decreases exponentially in H2. It is also not
contained in local scalars computed at BCPs. Given that there is
no Vxc competition in this diatomic system, a BCP is present at
any internuclear separation. The density, for instance, decays
exponentially, in both states, although it is larger in the singlet.
Similarly, the laplacian becomes negative for both the singlet and
the triplet at distances smaller than a given (of course, different)
threshold value. The DI profiles are, nevertheless, qualitatively
different.
We have also studied the dissociation of the dinitrogen

molecule at the CAS[10,8] level, with re = 2.10 bohr, and our
results are shown in Figure 2. The sigmoidal shape is qualitatively
similar to the one displayed in Figure 1. The inflection point is
located at d ≈ 3.3 ( 0.1 bohr, where DI = 0.9 ( 0.1. Such a
behavior is thus related with the breaking of the covalent
interaction along the process, as was pointed out in the case of
H2 dissociation. Notice how the value of the DI at the inflection
point is again located at about half the DI value attained at the
equilibrium geometry.
Other simple dissociations have also been considered. In

bonded homodiatomics, the results are completely equivalent
to those found in H2 and N2 and do not deserve further

Figure 1. Delocalization index versus HH distance for the dissociation
of singlet (full line) and triplet (dotted line) H2.

Figure 2. Delocalization index versus NN distance for the dissociation
of N2. The inflection point has been highlighted.
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comment. More interesting is an examination of traditionally
nonbonded interactions. Figure 3 contains the DI profiles for the
dissociation of He2 and Ar2, calculated at the CISD. In both cases,
the results are qualitatively similar, and the DI grows more or less
exponentially as the internuclear distance decreases. Notice how
the nonbonded/repulsive character of the interactions is mapped
onto a monotonous profile both for an excited state of a bound
system (tripletH2) and for the ground states of unbounddiatomics.
Dissociation processes in heterodiatomics are more interest-

ing, particularly when avoided crossings occur. Figure 4 shows
the DI for the dissociation of LiH in a CAS[2,2] calculation.
Similar results have already been reported.26,29,45 An avoided
crossing between the ionic and neutral states is found at about d=
5.5 bohr, closely corresponding to the maximum in the DI profile
and to the region where DI = 0.5.
The basic characteristics of this shape may be easily modeled

as a unidirectional charge transfer (CT) of one electron from H
to Li. Actually, from d = 3 to d = 10 bohr, the EDF of the system is
reproduced to better than 1% by just two contributions, p(2,2)
and p(3,1), where the first figure corresponds to the number of
electrons in the Li basin. Were the process a linear transfer of the
electron from H to Li, going from p(2,2) = 1 (and p(3,1) = 0) to
p(2,2) = 0, the DI would show an inverted parabolic shape
starting and ending at DI = 0, and peaking at DI = 0.5 when half
an electron had been transferred. The results shown in the figure
display very good quadratic behavior, except in the vicinity of the
equilibrium geometry.
This tells us that the nonparabolic variation of the DI with

internuclear distance is due to the nonlinear character of charge

transfer, which is depicted on the right side of Figure 4. The
variation of CT with d is again sigmoidal,45 with an inflection point
at about the avoided crossing (or DI maximum). It is also worth
noticing that the equilibrium geometry, d≈ 3.0 bohr, is close to the
DI minimum shown in the figure. At smaller distances, another
delocalization channel appears: p(1,3) starts to increase, and so
does the DI in a nonbonding manner. DI profiles with a local
maximum thus indicate charge transfers or ionic interactions.
The sigmoidal variation of Q(Li) with distance reinforces the

idea that cooperative phenomena underlie bonding landscapes.
This may be worked out in slightly more detail by noticing that
general (2c,2e) symmetric delocalizations, as well as (2c,1e) CTs,
may be modeled with a single electron transfer coordinate
t∈[0,1] that measures the degree of delocalization or CT,
respectively. In a homodiatomic case like H2, the two electron
EDF may always be written as the direct product of two
symmetric one-electron distributions: for the first electron,
p(1,0) = t/2 and p(0,1) = 1 � t/2; for the second, p(1,0) =
1 � t/2 and p(0,1) = t/2. Notice that t values ∈[1,2] simply
correspond to a basin exchange and need not be considered.
With this model, δAB = t, and the transfer parameter behaves
sigmoidally. In the ionic case, the parameter is just the probability
that the transferred electron lies in the final basin, so t = p(1,0) =
Q(Li) is sigmoidal. In both cases, the inflection point of the t
curves is very close to t = 1/2. Further work related to the
possible universal behavior of the t versus distance curve clearly
needs to be done.
3.2. Other Dissociations. We have examined other bonded

and nonbonded dissociations. The first category is represented

Figure 3. Delocalization index versus internuclear distance for the dissociation of ground state He2 and Ar2 molecules.

Figure 4. DI profiles in the dissociation of LiH at the CAS[2,2] level. (Left) DI versus the LiH internuclear distance (full line). The same DI profile is
also shown versus the topological charge of Li (dotted line). Charge values less than 0.5 are related to the covalent regime, and values close to 1.0 are
located in the ionic regime. (Right) Sigmoidal shape of the variation of the topological charge of Li versus the internuclear separation.
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by the approach of X = O and S atoms in their 1D state to a
ground state H2 molecule to form a H2X molecule. These are
well studied processes that may also be described as H2 subtrac-
tions from H2X systems, which are recognized as emblematic
examples of the change in connectivity along a chemical reaction
in the QTAIM.6 The C2v symmetry has been maintained at all
points, such that the X atom evolves along a line perpendicular
to the H2 axis passing through its center. Let us call d the
perpendicular distance between X and the H�H axis.
The case of H2O was used in our previous study on the

reinterpretation of bond paths as privileged exchange channels.19

There, the behavior ofVxc was examined, while we focus here on the
relevant DIs. To follow this dissociation channel, a size-consistent
CAS[6,8] level has been selected. At the H2X equilibrium config-
urations, d = 1.138 and 1.710 bohr in water and H2S, respectively.
Figure 5 displays our computed DI profiles using d as a

reaction coordinate. A simple consideration of their shape allows
us to neatly classify the underlying chemistry. For instance, in the
H2O case, we distinguish a covalent one-parameter dissociation
for the H�H pair as d decreases coupled to a mixture of covalent
association and charge transfer processes for O�H. We identify
the presence of a mixture by the peak DI value, δOH≈ 0.65. Any
value of DI larger than 0.5 cannot be attained via a one-electron
transfer. It is possible to model the shapes of these DIs with two
parameters, and on doing so one may justify the deviation in the
position of the inflection point (or the DI maximum) with
respect to the one parameter ideal values shown in the last
subsection. However, since our purpose is to qualitatively show
the link between the DI shape and the nature of an interaction,
we will not pursue this here. The situation in H2S is similar,
although the HS covalency is considerably larger in this case, and
the charge transfer maximum is barely visible. The H2S dissocia-
tion was calculated at the CAS[6,8] level of theory.
At the beginning of the reaction the sulfur shares a bit more

than one electron pair with each hydrogen, and at the end the
hydrogens share a correlated value of about 0.8. A fitted polynomial
locates the inflection point at d≈ 2.85( 0.01 bohr with DI≈ 0.40
( 0.01 for the H�H interaction and at d≈ 2.89( 0.01 bohr with
DI ≈ 0.64 ( 0.01 for the H�S interaction. As in the H2O case,
these values are related to the mixing of covalent and ionic terms.
Finally, let us briefly show a repulsive/nonbonded polyatomic

case. Figure 6 displays the evolution of the DI between the
two clashing hydrogens in the head to head approach (or
dissociation) of two methane molecules H3C�H 3 3 3H�CH3

such that the C3v axis is preserved. This is a closed-shell

interaction that is qualitatively well described at the RHF level.
The distance between the approaching hydrogens at the equi-
librium geometry is about 7.92 bohr. As seen, there is no hint of
inflection point, and the delocalization index falls off exponen-
tially as the two hydrogens separate, being practically zero at the
equilibrium geometry.
3.3. Atomic (or Bond) Exchanges. Processes in which bonds

are broken at the expense of the formation of others are also
interesting and worth studying. The simplest one is the linear
exchange of H with a H2 (or D2) molecule, H1 þ H2�H3 f
H1�H2 þ H3, which is correctly described by even a single-
determinant high-spin wave function. This type of change has
been studied by Yamasaki and Goddard43,44 using the equivalent
to DIs in Fock space withMulliken and L€owdin charge operators.
Their correlation analysis for chemical bonds (CACB) technique
gave rise to fairly similar results to those found here. Figure 7a
shows the H2�H3 and H1�H2 DIs along the IRC. Since the
reaction is completely symmetric, we find a concerted mechan-
ism in which one bond is being formed while the other is being
broken. Correspondingly, the DIs of both pairs are sigmoidal and
symmetric, with their inflection points coinciding exactly with
the transition state at IRC = 0.
Since the hydrogen exchange may be understood as a bond

exchange process, it is also interesting to examine the behavior of
the sum of both DIs. Figure 7 shows how, apart from a small rise in
the transition state region, the sum turns out to be essentially
constant. This supports44 the use of the sum of the DIs involving a
given atom A, ∑Xδ

AX, as a measure of its free valence or bonding
capacity. The wave functions were obtained with the ROHF level
of theory.

Figure 5. DI profiles for theH2XhH2þX dissociations: H2O (a) andH2S (b). Both δ
HX (dotted lines) and δHH (full lines) are shown. The inflection

points of the curves are marked with filled circles, and d is the perpendicular distance from the X atom to the H2 axis.

Figure 6. DI profile for the H3C�H 3 3 3H�CH3 process examined in
this work. d is the distance between the head-on approaching hydrogens.
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A more complex, interesting case is the fluorine�hydrogen
exchange H1 þ F�H2 f H1�H2 þ F presented in Figure 7b,
also at the ROHF level. The H1�H2 DI displays the same shape
shown in the H þ H2 system, while the H1�F does not. As H1
approaches the F�H2 molecule, the F�H2 DI starts to decrease
slowly from its leftmost IRC value, 0.45. This small value indicates a
rather large ground state ionicity, and the topological net charges at
this stage are q(H2) = 0.743, q(H1) = 0.008, and q(F) = �0.750.
As the reaction progresses, δFH2 displays a shallow minimum
around�0.5 IRC, and an inverted parabolic shape peaking at about
the TS followed by a more or less exponential decrease toward the
F dissociation.Notice how the region around theTS coincides with
the relevant chemical changes, in agreement with intuition. At the
peak of the F�H2 DI curve, q(H1) = 0.120, q(H2) = 0.008, and
q(F) = �0.128, and we clearly see the transition between the
starting and the final bonding situation. We may therefore follow

the chemical changes easily from reading the DI figure: a covalent
HH link is formed at the expense of the HF bond in the first stage.
This is followed by a charge transfer process in the vicinity of the
TS. Once this process is completed, the fluorine is expelled as the
HH link consolidates.
As in the previous case, we have also considered the sum of

both DIs, which is well described as a sudden jump between two
rather well-defined values. If this jump is washed out from
Figure 7b, the behavior of the DI sum is pretty similar to that
in the HþH2 case, being constant apart from a small increase in
the TS region. The jump is to be associated with the sudden
availability of an electron for the construction of a covalent bond
H�H, and thus to the transfer of that electron from the F basin
toward the H2 one.
3.4. Migrations. Intramolecular migrations are good examples

of coupled formation and breaking of chemical bonds. In

Figure 7. DI profiles for hydrogen exchange reactions. Left, H1 þ H2�H3 f H1�H2 þ H3. Dashed and full lines are used for the H2�H3 and
H1�H2 pairs, respectively. Right, H1þ F�H2fH1�H2þ F. Dashed and full lines are used for the HH and the HF pairs. For both systems, the sum
of the DIs is shown in red.

Figure 8. DI profiles for the intramolecular migrations studied in this work. In part a, we show the symmetric DIs for the HC1 and HC2 pairs in the
benzenium cation 1�2 hydrogenmigration. In part b, themalonaldehyde keto�enol tautomerism is examined, with theHO andHCpairs indicated by a
dashed and full line, respectively. In part c, we show the HCN to CNH isomerization, using as IRC the angleR between the H to center-of-mass line and
the CN internuclear axis. The HC and HN pairs are marked with dashed and full lines, respectively.
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topological terms, they are accompanied by the transformation of
bond critical points using either the conflict or the bifurcation
mechanisms, using the terminology of catastrophe theory as applied
to chemical structural change.6We have studied three DI profiles of
prototropic migrations: the 1�2 intramolecular hydrogen migra-
tion of the benzenium cation,48 the keto�enol tautomerism in
malonaldehyde,49 and the H�CtNh H�NtC isomerization.
Figure 8a contains the relevant DIs in the 1�2 hydrogen

migration process in the benzenium cation, calculated at the
CAS[6,6] level. The graph shows the DI of the migrating
hydrogen with the two carbons directly involved in the reaction.
As in the H þ H2 case, the reaction is symmetric, and the
inflection point is located exactly at the TS. At the beginning of
the reaction, the DI between the migrating H and the C1 is 0.9
and decreases as the hydrogen moves to the TS. This process is
synchronically coupled to the increase in the HC2 DI and shows
that our expectations based on the argument explored in this
work are again fulfilled. At the inflection point, DI≈ 0.5, and we
have a rather standard covalent-to-covalent transition that may
be modeled uniparametrically.
We have obtained the profiles for the malonaldehyde ke-

to�enol tautomerism at the RHF level and plotted them in
Figure 8b. As shown, the behavior is basically the same as in the
benzenium cation case, the differences associated to the change
in ionicity, much larger in the final situation where a HO link is
present than in the initial one, which is characterized by a rather
covalent HC bond. This forcibly leads to a rather large H�C DI
of about 0.9, to be compared with its H�O equivalent, about 0.5.
The inflection points are placed to the left of the TS. It is to be
noticed that in both cases, the inflection points are located at
about half the total height of the sigmoids, and that the HO curve
displays it at a very small DI value, about 0.25. This half-width
position is quite general in all of the cases examined.
Finally, the HCN isomerization is examined in Figure 8c, again

at the RHF level. The behavior is similar, but this time we may
appreciate a shallow maximum in the HN DI that offers a clear
indication of partial charge transfer.
3.5. Controversial Cases. In order to include systems where

bond paths cause controversy, two systems have been studied:
the normal modes assigned to the stretching of the HC bonds for
the hydrogen atoms located in the bay moiety of the phenan-
threne molecule and the rotation of the CH fragment in
CHCH2SH. The first system has been used by Grimme et al.17

to purportedly show that both theoretical models and the

spectroscopic assignment of the experimental IR stretching modes
are in agreement with a repulsive H1H2 interaction in the bay
moiety of phenanthrene. Thus, the role of the BCP that is found
between both hydrogens in QTAIM analyses is put into question.
The second has been presented by Henn et al.18 as an example of a
molecule where a chemical bond is absent between two atoms (the
SC1 pair), while other theoretical tools, like the natural bond
orbital formalism ofWeinhold and Landis,50 state that it is present.
We have computed DI profiles in both systems at the RHF level.
The DI between the H1 and H2 atoms in phenanthrene at

selected geometries has been constructed following the eigen-
vectors of their HC stretching normal modes. Figure 9a shows its
evolution in the symmetric and asymmetric cases. The distance
between the bay moiety hydrogens at the equilibrium geometry
is about 3.83 bohr. According to the experience gained with the
previous examples, the absence of inflection points along the
symmetric-mode coordinate is compatible with a nonbonded/
repulsive process, as observed throughout this work. Since the
H1�H2 distance hardly varies along the asymmetric motion, the
DI evolution in this normal mode is difficult to interpret and will
not be pursued anymore.
In our second example, a bond path is expected between the

sulfur and the C1 carbon, but topological analyses reported at
several levels of theory18 do not find it at the equilibrium
geometry. To further investigate this problem, we have com-
puted the TS and IRC along the rotation of the C1H between
two quasi-degenerate conformers that differ in the position of the
C1 hydrogen. In this transition, see Figure 9b, the system evolves
between the conformers by passing through two three-centered
ring regions where SC1 BCPs exist. These BCPs are broken
through a bifurcation mechanism. Along the process, δSC2

oscillates in a small window with a width equal to 0.1 around a
clearly covalent value of about 0.9, but the SC1 DI widely
changes between 0.5 andmore than 1.2. According to the insights
developed in this work, it is rather clear that the SC1 interaction
is basically electrostatic in both conformers and that only in
configurations where the hydrogen atom linked to the C1 carbon
is close to coplanar with the SC1C2 plane do we find delocaliza-
tion indices compatible with a SC1 bond.

4. CONCLUDING REMARKS

In this work, we have shown compelling evidence that the
topology of the profiles of QTAIM delocalization indices in
simple chemical processes keeps information about the nature of

Figure 9. (a) DI evolution of the symmetric (open circles) and asymmetric (open squares) modes for the H1�H2 interaction in the bay moiety of
phenanthrene. (b) DI profile and structural change graphs during the CH rotation in CHCH2SH. The ring structure ephemerally exists close to the
rightmost line crossing.
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the chemical changes that are taking place. Three basic modes
have been uncovered. For repulsive/nonbonded cases, the
evolution of the DI turns out to be exponential. In bonded
interactions, two extreme cases appear. In the first, associated to
covalent or shared interactions, the DI shape is sigmoidal.
Contrarily, a bell-like profile is found when charge transfers are
involved.We have also shown how one-parameter models for the
ideal electron distribution functions in covalent and ionic cases
are compatible with these findings if the charge transfer para-
meter evolves sigmoidally with the reaction coordinate. We think
that this points to cooperative phenomena as major players in the
formation or breaking of chemical bonds. Interestingly, the
information provided by DI profiles seems not to be present in
the variation of local scalar fields at bond critical points.

The behavior here uncovered seems of fairly general validity.
Dissociations, both in diatomics and polyatomics, bond exchanges,
and inter- and intramolecular migrations seem to follow it, and the
qualitative pattern is quite independent of the theoretical level used
in the computations. Since calculating DIs is considerably cheaper
than performing a full QTAIMenergy partitioning analysis, the use
of the correlations proposed heremay help in discerning the nature
of chemical interactions in controversial cases, as we have tried to
show by examining a few recent examples. We want to stress,
however, that as with many other findings in real space theories of
chemical bonding, the relationships here explored are empirical
and that we are not aware of any formal justification of them.
Further work in this direction is welcome.
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ABSTRACT: A recently proposed method for the calculation of the effective electronic coupling (or charge-transfer integral) in a
two-state system is discussed and related to othermethods in the literature. The theoretical expression of the coupling is exact within
the two-state model and applies to the general case where the charge transfer (CT) process involves nonorthogonal initial and final
diabatic (localized) states. In this work, it is shown how this effective electronic coupling is also the one to be used in a suitable
extension of Rabi’s formula to the nonorthogonal representation of two-state dynamical problems. The formula for the transfer
integral is inspected in the regime of long-range CT and applied to CT reactions in redox molecular systems of interest to
biochemistry and/or to molecular electronics: the guanine�thymine stack from regular B-DNA, the polyaromatic perylenediimide
stack, and the quinol-semiquinone couple. The calculations are performed within the framework of the Density Functional Theory
(DFT), using hybrid exchange-correlation (XC) density functionals, which also allowed investigation of the appropriateness of such
hybrid-DFT methods for computing electronic couplings. The use of the recently developed M06-2X and M06-HF density
functionals in appropriate ways is supported by the results of this work.

1. INTRODUCTION

The recent progress in molecular electronics fostered a
considerable increase in experimental,1�7 and theoretical,2,3,8�14

investigations of CT in molecular systems. From a theoretical
point of view, many efforts have been devoted to the under-
standing and quantification of the CT efficiency in molecular
systems, which depends crucially on the reorganization energy (that
is, the free energy change caused by the nuclear rearrangement that
follows a CT process) and the charge-transfer integral between the
hole or electron donor and acceptor groups.11,15 This is particularly
evident within the framework of Marcus electron transfer
theory,16,17 where the transfer rate constant is expressed as18

kET ¼ kðVIFÞν exp �ðΔG0 þ λÞ2
4λkBT

" #
ð1Þ

In eq 1, k is the electronic transmission coefficient, which depends
on the effective electronic coupling VIF and is proportional to the
mean-square value of VIF in the nonadiabatic limit (i.e., for suitably
weak coupling between the charge donor and acceptor species19). ν
is an effective frequency that characterizes the nuclear motion along
the reaction coordinate, λ is the reorganization energy, ΔG0 is the
reaction free energy, kB is Boltzmann’s constant, and T is the
temperature. λ is the only relevant parameter in the exponential
nuclear factor for self-exchange reactions, where ΔG0 is zero.
Depending on the system, eq 1 yields, indeed, the rate constant
for electron or hole transfer reactions, the latter being described, in
all respects considered in this paper, as electron transitions in the
reverse direction of the hole transfer in a system with a net positive
charge.

The rate in eq 1 is an important quantity not only for CT
reactions between redox molecular centers but also in molecular
electronics, where it is strictly related to the electrical conduc-
tance through metal�molecule�metal junctions, especially in
the regime of weak molecule�metal couplings,9,18,20 from whence
comes the importance of accurate calculations of the involved
physical parameters. As shown by eq 1, VIF can play a crucial role
in determining the value of kET and also provides a compact link
between kET and the electronic properties of the system.

Disparate approaches to accurate calculation of transfer in-
tegrals have been used in the literature,8,21�34 with an increasing
presence of DFT or hybrid-DFT approaches.14,33�37 This trend
relies on (i) the fact that DFT computational schemes include
electron correlation and can be applied to larger systems than
those allowed by reliable ab initio approaches other than Har-
tree�Fock (HF). On the other hand, the HF approach does not
include the so-called correlation energy. Thus, DFT offers the
best compromise between accuracy and feasibility for the study
of most (bio)molecular systems of relevance to nanoelec-
tronics.38 The trend also relies on (ii) the elaboration of new
hybrid XC functionals, with continuous improvement in their
ability to correct for the presence of unphysical electron self-
interaction. Indeed, hybrid functionals mostly perform better
than self-interaction corrected DFT schemes.39 Moreover, cor-
recting their residual self-interaction errors does not necessarily
improve their description of molecular properties.39

Most quantum chemical methods for the computation of
transfer integrals need to cope with a suitable definition of the

Received: March 21, 2011
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involved diabatic states that describe the different localization of
the transferring charge before and after the hole or electron
transition. Ref 34 provides an expression of the effective electro-
nic coupling, which is exact within the two-state model and does
not make any assumption about the overlap between the diabatic
electronic states. Such formulation is in harmony with the fact
that in most physical situations15 the localization of the
(transferring) excess charge in different redox sites leads to
electronic distributions with nonzero spatial overlap. Thereby,
its application can help physical interpretation (see, e.g., section
2.4) and lead to practical advantages. On the other hand, the
same VIF value is obtained by using diabatic states with different
overlaps (or orthogonal ones), as long as the two-state approx-
imation is satisfied, a sufficiently accurate computational level is
used, and the different diabatic representations are suitably
related, as discussed in the next section.

The method in ref 34 is a generalization of that in ref 33. The
relation between both approaches and previous literature15,40�42

is discussed in sections 2.1 and 2.2. It is worth mentioning, in this
regard, that ref 43 calculates, within a two-electron valence bond
model, and compares coupling matrix elements between the
electronic states of diatomic systems in different representations
(the adiabatic representation, a nonorthogonal diabatic repre-
sentation, and a symmetrically orthogonalized diabatic repre-
sentation). The role of VIF in the transition probability at fixed
nuclear coordinates is investigated in section 2.3. Sections 2.2
and 2.3 provide a full analytical basis for the correct form of the
“effective” coupling or perturbation to be used in nonorthogonal
representations of the two-state dynamics. The investigation of
the long-range behavior of VIF in section 2.4 contributes to an
exhaustive analysis of the role played by the overlap between the
diabatic states in determining the effective electronic coupling.
Then, the systems under consideration and the used computa-
tional setups are described in section 3. Applications follow in
section 4. The VIF calculations provided in this work highlight
limitations, advantages, and suitable uses of the considered
hybrid-DFT implementations. The comparison with previous
results in the literature using Hartree�Fock (HF), multire-
ference,44 DFT,14,30 and other constrained DFT37 approaches
contributes to restricting the ranges of expectation values of VIF
in the studied systems, in view of future experimental validation
and applications.

2. THEORY

2.1. Effective Electronic Coupling Calculations Using Dia-
batic States with Zero and Nonzero Overlap.Within the two-
state model, the ground-state vector of a system is written as

jψæ ¼ ajψIæþ bjψFæ ¼ a0jχIæþ b0jχFæ ð2Þ
where the nonorthogonal wave functions ψI and ψF, or the
orthogonal ones χI and χF, represent the reactant and product
states, respectively, as introduced in the diabatic picture of charge
transfer. In these diabatic states, the excess charge is localized on
the donor and acceptor, respectively, at any value of the chosen
reaction coordinateQ45 (see Figure 1). The energy profile shows
a splitting between the adiabatic ground and first excited states at
the transition state coordinate (here called Qt), where the diabatic
states are degenerate. At such a coordinate, both the requirement
of energy conservation and the Franck�Condon principle46 are
satisfied in the transition from a diabatic state to the other, and
the corresponding Franck�Condon factor takes its maximum.

The separationΔEv of the adiabatic energies at Qt gives a measure
of the effective electronic couplingVIF between |ψIæ and |ψFæ. This
splitting can be easily obtained from the secular equation����� HII � ε HIF � εSIF

HIF � εSIF HFF � ε

����� ¼ 0 ð3Þ

whereH is the Hamiltonian of the two-state system, ε is the energy
eigenvalue,HII = ÆψI|H|ψIæ andHFF = ÆψF|H|ψFæ are the energies
of the diabatic states, HIF = ÆψI|H|ψFæ is their electronic coupling,
and SIF = ÆψI|ψFæ is their overlap. The eigenvalues of eq 3 can be
written in the implicit form47

E( ¼ 1
2
½HII þHFF (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔE2IF þ 4ðHIF � E(SIFÞ2

q
� ð4Þ

whereΔEIF = EI� EFtHII�HFF is the energy difference, at the
given nuclear configuration, between the CT initial (I) and final
(F) diabatic states. Then, the vertical excitation energy can be
written as34,48

ΔEv � Eþ � E� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔE2IF
1� S2IF

þ 4V 2
IF

s
ð5Þ

(so that ΔEv = 2VIF at Q = Qt, where EI = EF
49), where

VIFðQ Þ � 1
1� S2IFðQ Þ

�����HIFðQ Þ � SIFðQ ÞHIIðQ Þ þHFFðQ Þ
2

�����
ð6Þ

is the CTmatrix element or effective electronic coupling or transfer
integral.8 According to the Condon approximation,18 the depen-
dence of VIF on the nuclear degrees of freedom, which is explicitly
shown in eq 6, is neglected all along the Q axis. When such
approximation is not fulfilled, a meaningful value of VIF(Q) to be
inserted into eq 1 for calculating the CT rate needs to be obtained
close enough toQt, i.e., in the proximity of the crossing seam point
of Figure 1. The possible dependence onQ is not explicitly shown
in the next equations. If orthogonal diabatic states are used (e.g., the
localized states are obtained by suitable rotation of the adiabatic
states), then VIF =HIF, and the effective electronic coupling can be
written in terms of a0 and b0 as

VIF ¼ HIF ¼ a0b0ΔEv ð7Þ

Figure 1. Cross-section of the (free) energy profile for the initial (I) and
final (F) electronic states of a typical electron transfer reaction. The solid
and dashed curves describe the adiabatic and diabatic states, respectively.
Q (I) and Q (F) are the equilibrium coordinates of states I and F,
respectively. Qt is the transition state coordinate, which corresponds to
the lowest energy on the crossing seam surface. The reorganization
energy λ is also shown.
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This formula appears in ref 41, besides another original approach
that makes use of the quasi-degenerate perturbation theory and
where the determination of the adiabatic energies or diabatic wave
functions is not compulsory, as only electron correlation contribu-
tions to HIF are explicitly computed.
By using eq 5 for zero SIF and relating a0 and b0 to the adiabatic

and diabatic dipole moments, under the assumption of weakly
interacting diabatic states connected by a zero transition dipole
moment (thus, first order perturbation theory can be used), eq 7
becomes22,42,50,51

VIF ¼ jμ�þjΔEIF
jΔμIFj

ð8Þ

where μ�þ is the transition dipole moment that connects the
adiabatic states and ΔμIF is the difference between the dipole
moments of the diabatic states. Equation 8 represents the
Mulliken�Hush approach to the calculation of VIF = HIF. As
shown in refs 42 and 50d, eq 8 may be extended to the
nonperturbative regime by replacing ΔEIF with ΔEv. In ref 22a,
the generalized Mulliken-Hush (GMH) model is introduced,
which (i) retains the assumption that the diabatic states localized
at different sites have zero off-diagonal dipole moment matrix
elements, (ii) is not restricted to a perturbative treatment within
the state space of interest, and (iii) does not require approxima-
tion of ΔμIF using structural data. In a two-state system, by
expressingΔμIF in terms of the adiabatic dipolemoments μ� and
μþ, and their differenceΔμ�þ, the following result is obtained

22

VIF ¼ ΔEvjμ�þjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔμ�þÞ2 þ 4μ2�þ

q ð9Þ

where also eq 5 written for zero overlap is exploited.
Contrary to the GMH method, in ref 33, the transfer integral

VIF is expressed exclusively in terms of quantities that pertain to
diabatic states with generally nonzero overlap, as

VIF ¼
����� ab
a2 � b2

ΔEIF

����� ð10Þ

This also avoids calculation of the vertical excitation energy,
with evident advantages for the application of eq 10 in DFT
schemes, e.g., for the ab initio study of large portions of bio-
chemical systems. Moreover, it provides a useful link, forQfQt

(where eq 10 has an eliminable discontinuity), with the concept
of resonance energy widely used in valence bond theory (cf. eqs 8
and 11 in ref 34 with eq 10 in ref 52). In ref 33, eq 10 was derived
from the secular equation, eq 3, in the presence of a suitably small
overlap. In ref 34, it is shown that, irrespective of the values of SIF
and Q, VIF is exactly given by (wave function overlap method)

VIF ¼
����� ab
a2 � b2

ΔEIF 1þ a2 þ b2

2ab
SIF

 !
1

1� S2IF

����� ð11aÞ

or, equivalently,

VIF ¼
����� AB
A2 � B2

ΔEIF 1� A2 þ B2

2AB
SIF

 !
1

1� S2IF

����� ð11bÞ

where the overlap integrals A t ÆψI|ψæ = aþbSIF and A t
ÆψF|ψæ = bþaSIF have been inserted. In the same work, it is
shown that eq 10 can indeed be used as an approximation of

eqs 11, at any coordinateQ and in terms of either a and borA andB,
if SIF is much smaller than 2ab or 2AB. Such a a condition is much
weaker than neglecting SIF. In fact, it allows SIF values that can lead
to a considerable difference between the effective electronic cou-
plingVIF and the electronic couplingHIF,

18,30,36,53 related as in eq 6.
For SIF , 2ab, the insertion of eq 11 into eq 5 and the Taylor
expansion of eq 5 up to the zero-order term in SIF/(2ab) gives

ΔEv ¼
�����a

2 þ b2

a2 � b2
ΔEIF

����� ð12Þ

By combining eqs 10 and 12, it is seen that the right-most term
of eq 7 still provides a formal expression for VIF after replacement
of a0 and b0 with a and b, respectively, while VIF 6¼ HIF. In other
words, whereas for zero overlap eqs 7 and 10 are equivalent
solutions of the secular equation and essentially differ by the
respectively required computational approaches, for SIF/(2ab) =
o(1) 6¼ 0 (as it is in several cases11,30,34,48,53�56), the use of
nonorthonal diabatic states for the direct (i.e., without prior and
suitable orthogonalization) computation of VIF is allowed only by
eq 10 or, within the limits of applicability of eq 12, by a modified
eq 7 where the overlap-dependent coefficients

a ¼ A� BSIF
1� S2IF

, b ¼ B� ASIF
1� S2IF

ð13Þ

are employed. Inmany other cases,8,15,34,40,57�59 the diabatic states
that rely on physically meaningful approximations (e.g., the valence
bond structures that correspond to the reactants and products of
the CT reaction15,59) have an overlap that is not negligible
compared to 2ab or is even larger than this quantity. For example,
the value of SIF can be an appreciable fraction of unity in short-
range CT reactions, or, for weakly coupled redox sites, the valence
charge in the ground state can be mostly localized around one of
them, so that a or b is almost unity and the other coefficient ismuch
less than unity. In all such cases, themodified eq 7 and eq 10 are not
equivalent approximations to the exact analytical solution of the
secular equation provided by eq 11, and both fail in quantifying the
transfer integral from nonorthogonal states, for which eq 11 can be
used. Ultimately, eqs 9 and 11 represent alternative theoretical
approaches to the calculation of effective electronic couplings in the
adiabatic and diabatic representations, respectively.
2.2. Wave Function Overlap Method and Diabatic States.

As discussed in the previous literature,15,40,59,60 the definition of
effective diabatic states is not unique. Thus, the use of a given set
of diabatic states to describe the CT reaction under investigation
generally needs to rely on physical grounds. This point was, e.g.,
considered in refs 34 and 48, where different sets of diabatic
states were selected, on the basis of the structure of the system
and the localization of the charge in the donor and acceptor
centers, in order to describe hole transfer through DNA nucleo-
base stacks. Often, the I and F diabatic electronic states are
constructed as the valence bond structures of the involved
reactants and products.15,59 For instance, ref 59 provides
an interesting model for deriving effective diabatic states using
ab initio self-consistent field bond theory. An interesting and
fruitful DFT approach to charge localization is provided by
constrained DFT (CDFT),32 where the addition of a suitable
external effective potential to the Hamiltonian of the CT system
allows one to obtain self-consistently the lowest-energy I and F
states, under the approximations of the given XC functional and the
basis set used to expand the electronwave functions.Theuncertainty
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in the definition of the CDFT diabatic states in general decreases
with the separation of the charge donor and acceptor groups.32

Nevertheless, eq 11 suggests the possibility of using CDFT diabatic
states also in various short-range (and intramolecular) CTprocesses.
The appropriateness of theCDFT approach to charge localization in
such contexts is mainly the subject of future work. In this paper, the
investigation of this point is limited to (i) a guanine�thymine base
stack from regular DNA, which is characterized by the largest
intrastrand effective electronic coupling among theDNAnucleobase
stacks and a related large overlap integral between CDFT-type
diabatic states,34 and (ii) the quinol�semiquinone redox couple, on
the short-distance side of Figure 4.
In this paper, the use of eq 11 with CDFT diabatic states, and a

suitable choice of basis set and hybrid XC density functional, is
proposed as an efficient hybrid-DFT theoretical-computational
method for the first-principles calculation of the effective electronic
coupling in various molecular systems of interest to biochemistry
and nanoelectronics. Also, other valuable methods for the con-
struction of diabatic states15,30,53,61 can be combined indeed with
the use of eq 11. Such implementations can be fruitful and are
desirable, but they are out of the scope of the present work. On the
other hand, tensor product (TP) diabatic states are also employed
in section 4.1. In general, such states can be used for separated
redox sites and in very accurate computational schemes (see, e.g.,
Table 1, where the largest Pople-style basis set is used).34,48

The consistency of using sets of diabatic states characterized
by different overlaps can be investigated and rationalized
by exploiting the L€owdin transformation.40,43 In particular, it is
important to understand to what extent orthogonal and non-
orthogonal diabatic representations can be consistently adopted
in order to calculate the charge-transfer integral for a given redox
system. To this aim, consider first the general case where
physically meaningful assumptions (e.g., based on the involved

valence bond structures) lead to diabatic wave functions ψI and
ψF

62 with appreciable overlap SIF that provide a good description
of the CT reaction under investigation, as validated by compar-
ison with relevant experimental data. I will callΨ = (ψI ψF) the
reference diabatic set. An equivalent orthonormal diabatic set is
obtained using the L€owdin transformation40

χ ¼ ΨS�1=2 ð14Þ
where χ = (χI χF) and S is the overlap matrix defined as

S ¼ 1 SIF
SIF 1

 !
ð15Þ

The insertion of χ in eq 7 or eq 10 with a = a0 and b = b0 leads
to the same VIF value that results from the application of eq 11 in
theΨ representation. In fact, as shown by eq 48 (see Appendix),
insertion of eq 14 into eq 10 leads to eq 11. Considering that
χ can also be obtained by rotation of the adiabatic states,27 eq 14
fixes the rotation angle that relates the suitable diabatic repre-
sentation to the adiabatic one in any direct use of eq 7 by
exploiting orthogonal diabats. On the other hand, eq 11 provides
a general expression of the effective electronic coupling in terms
of a few electronic quantities that characterize the orthogonal
diabatic representation (in this case, the overlap in the expression
of VIF is zero) or any nonorthogonal diabatic representation,
which is related to χ by the L€owdin orthogonalization in
eq 14 and to the reference representation by the equation (see
Appendix)

Ψ ¼ ΨM ð16Þ
where M is the symmetric matrix

M ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ SIFÞ=ð1þ SIFÞ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� SIFÞ=ð1� SIFÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ SIFÞ=ð1þ SIFÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� SIFÞ=ð1� SIFÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ SIFÞ=ð1þ SIFÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� SIFÞ=ð1� SIFÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ SIFÞ=ð1þ SIFÞ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� SIFÞ=ð1� SIFÞ

p
0
B@

1
CA ð17Þ

and SIF = ÆψhI|ψhFæ. Equation 14 is clearly the special case of eq 16
for SIF = 0.
In many circumstances, different diabatic sets can provide

convenient representations of the given CT system (e.g., this can
be the case in section 4.1). Even if these diabatic representations
are related as in eq 17, various sources of error can clearly lead to
different values of the effective electronic coupling and/or the
vertical excitation energy or to consistently wrong results. For
example, DFT calculations are generally affected by the presence
of spurious electron self-interaction,63 although hybrid XC
functionals can yield optimal correction, also depending on the
system.39 Then, since different sets of diabatic states correspond
to diverse electron localizations, the corresponding energies may
differently suffer from self-interaction, thus leading to different
values of VIF even if eq 17 is fulfilled and eq 11 is employed. On
the contrary, but for analogous reasons, similar values can arise
from diabatic sets which are not related as in eq 17. At any rate,
eq 17 can generally provide a helpful check of the consistency and
robustness of the computational results. Then, differences in the
results can even become a source of useful information.
Finally, it is worth noting that the connection between eq 11

and the L€owdin transformation can be reformulated in terms of

the Hamiltonian operator H of the CT system. In fact, the
relation between the orthogonal and nonorthogonal diabatic sets
is an expression of the fact that the algebraic problem of the
secular equation including the SIF terms is reduced to the zero
overlap form if the matrix H is replaced by the self-adjoint
matrix40,64

H0 ¼ S�1=2HS�1=2 ð18Þ
The insertion of eq 41 from the Appendix into eq 18 and
comparison with eq 6 yields

jH0
IFj ¼

�����HIF �HII þHFF

2
SIF þHIFS

2
IF � þ :::

����� ¼ VIF ð19Þ

which reduces to the usually adopted small-overlap L€owdin
transformation,30,40,53

VIF ¼ HIF �HII þHFF

2
SIF ð20Þ

when the terms nonlinear in SIF can be disregarded. Alternatively,
eq 19 is indeed formulated by eq 48 in the Appendix. In
conclusion, (i) the exact expression of the effective electronic
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coupling in terms of a few electronic quantities that characterize
the diabatic states and their connection with the ground state was
obtained in ref 34 by direct solution of the secular equation, using
the definition (eq 6) of VIF; (ii) it is

33,34,41,42

VIF ¼

ÆχIjHIFjχFæ ¼ ja0b0ΔEvj ¼
����� a0b0
a20 � b20

ΔE0IF

����� SIF ¼ 0

ÆψIjH0
IFjψFæ =

����� ab
a2 � b2

ΔEIF

����� SIF ¼ oð2abÞ e oð1Þ

ÆψIjH 0
IFjψFæ ¼

����� ab
a2 � b2

ΔEIF 1þ a2 þ b2

2ab
SIF

 !
1

1� S2IF

����� " SIF

8>>>>>>>>>>><
>>>>>>>>>>>:

ð21Þ
whereΔEIF

0 is the diabatic energy difference between χI and χF; (iii)
VIF is invariant under the L€owdin transformation, hence, in general,
under the change of representation defined by theMmatrix in eq 17.
In ref 34, I stressed that the calculation ofVIF directly from eq 6

or 20 is generally very sensitive to the value of SIF, especially if the
involved matrix elements are computed in a multielectron
scheme. In fact, in this case, the right-hand side of eq 6 involves
a delicate numerical difference of two energy quantities much
larger than their difference (see also p 28 of ref 18). Equation 11
allows one to avoid this critical point. On the other hand, both
the numerator and the denominator of eq 11 tend to zero at the
transition state coordinateQt. However, as is demonstrated in ref 34,
the expression of VIF in eq 11 (i) has an eliminable discontinuity at
Qt, (ii) has the correct behavior for Q f Qt, and (iii) allows
calculation ofVIF with high accuracy evenwhenQ is very close toQt,
as quantified by the fact that ΔEIF(Q) , 2VIF(Q) and thus the
relative difference between 2VIF(Q) andΔEv(Q) is correspondingly
small. Point iii was noticed in ref 48 and is strongly supported by the
cogent computational test in section 4.2 of this work.
2.3. Electron Transition Probability at Fixed Nuclear Co-

ordinates.As shown by eq 1,VIF plays a crucial role in determining
the electronic transmission coefficient k that appears in the electron
transfer rate. Near the transition state coordinate, the electron
transitions that can be caused by this coupling are mixed with the
nuclear dynamics, which, overall, leads to the expression of k. While
the interplay of the electron and nuclear dynamics has been treated
in different, though related, ways in the literature,16,17,19,65�67

common appreciation of those treatments is that the nuclear
coordinates can be taken as external parameters at the short times
when a single electron transfer event occurs. This leads to tackling
the time-dependent Schr€odinger equation for the electronic state of
the system. The electron distributions before and after a CT event
are clearly not eigenstates of the overall system and represent, in
general,18,66 nonorthogonal states. This is, e.g., explicitly considered
in ref 66, where the ground-state wave function at a generic time t is
expanded on two nonorthogonal wave functions

ψðtÞ ¼ CIðtÞψI þ CFðtÞψF ð22Þ
with ÆψI|ψFæ = SIF, and the time-dependent Schr€odinger equa-
tion

ip
∂

∂t
½CIðtÞψI þ CFðtÞψF� ¼ H½CIðtÞψI þ CFðtÞψF� ð23Þ

is solved under the initial conditions

CIð0Þ ¼ 1;CFð0Þ ¼ 0: ð24Þ
This led to an expression of |CF(t)|

2 (used as an expression
of the probability of electron transfer at the given nuclear

coordinates) that extended Rabi’s formula for this square
coefficient to the nonorthogonal set of electronic states, and
where the “effective” coupling or perturbation is not sym-
metric with respect to the two diabatic states. In fact, it
appears in the form HFI �HIISFI, which is different from that
in eq 6 and is an off-diagonal element of the Hamiltonian
matrix H in the Ψ = (ψI ψF) representation. H is non-
Hermitian for HII 6¼ HFF

68 and is obtained by multiplying
eq 23 by ψS* (S = I, F; a standard notation for complex
conjugate quantities is used) and integrating it over the
spatial coordinates, which gives66

ip
∂

∂t
CðtÞ ¼ HCðtÞ ð25aÞ

where C is the column vector of components CI and CF and
69

H ¼ 1
1� S2IF

HII �HIFSIF HIF �HFFSIF
HIF �HIISIF HFF �HIFSIF

 !
ð25bÞ

Various devices were conceived to achieve the desired Her-
mitian behavior within a purely electronic framework.15 In ref 18,
it is argued that the off-diagonal terms of theH operator in eq 25b
include two contributions: “part of the perturbation induces the
transition while other parts distort the zero order states to be
coupled”.18 Now, I decompose the Hamiltonian in eq 25b as
follows:

H ¼
1

1� S2IF
ðHII �HIFSIFÞ VIF

VIF
1

1� S2IF
ðHFF �HIFSIFÞ

0
BBB@

1
CCCA

þ 1
1� S2IF

0
ΔEIF
2

SIF

�ΔEIF
2

SIF 0

0
BB@

1
CCA ð26Þ

where VIF and ΔEIF are defined as above. The first matrix is
Hermitian, and its off-diagonal element VIF is the effective
electronic coupling that determines, essentially, the prob-
ability of transition. To see this, it is necessary to recognize
that, since ψI and ψF, though nonorthogonal, are the initial
and final states, the probabilities of interest are given by
|ÆψI,F|ψ(t)æ|2. According to eq 24, the system is initially in
state |ψIæ, which does not entail zero probability of finding
the system in state |ψFæ, because of the nonzero overlap
between the two electronic states. In fact, |ÆψF|ψ(0)æ|2 =
SIF

2. Note that this probability is well-defined irrespective of
the partner wave function chosen to expand ψ(0). In fact, it
results also from the decomposition of ψ(0) in ψF and the
wave function orthogonal to ψF, i.e., ψ(0) = SIFψF þ (1 �
SIF

2)1/2ψhI with ψhI = (ψI � SIFψF)/(1 � SIF
2)1/2. Then, one

is interested in the probability that the system is in stateψF at
a later time t, that is, |ÆψF|ψ(t)æ|2. The fact that SIF 6¼ 0
means, simply, that the probability of finding the system in
ψI at time t, given by |ÆψI|ψ(t)æ|2, is not equal to 1 �
|ÆψF|ψ(t)æ|2. In order to calculate the transition probability
|ÆψF|ψ(t)æ|2, first I consider that eq 22 and the normalization
condition on ψ give

jÆψFjψðtÞæj2 ¼ 1� ð1� S2IFÞjC1ðtÞj2 ð27Þ
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Insertion of eq 26 into eq 25a and application of the Laplace
transform method yields

C1ðtÞ ¼ 1
2
ðeuþt þ eu�tÞ � 1

1� S2IF

ΔEIF
ΔEv

ðeuþt � eu�tÞ
� �

ð28aÞ

where ΔEv is given by eq 5 and

u( ¼ � i
p

1
1� S2IF

HII þHFF

2
� SIFHIF

� �
-

ΔEv
2

� �
ð28bÞ

Finally, insertion of eqs 28 into eq 27 gives

jÆψFjψðtÞæj2 ¼ S2IF cos
2 ΔEv

2p
t

� �
þ 4V 2

IF

ðΔEvÞ2
sin2

ΔEv
2p

t

� �

¼ S2IF þ
4V 2

IF

ðΔEvÞ2
� S2IF

" #
sin2

ΔEv
2p

t

� �
ð29Þ

The probability oscillates between SIF
2 and 4VIF

2/(ΔEv)
2. As

expected, also in the presence of SIF, unity is attained only ifHII =
HFF. Equation 29 shows thatVIF, which is defined as in eq 6 and is
the off-diagonal element of the Hermitian component of the H
operator in eq 26, is the effective coupling that appears in the
probability of transition between nonorthogonal states, which is
an electron transition probability whenψI andψF are the diabatic
(or localized) states of a typical CT reaction. Notice that,
although the decomposition in eq 26 is not necessary for the
solution of eq 25a, it turned out to be useful to obtain the
transition probability directly in terms of VIF and ΔEv and
thereby to identify the effective perturbation that plays a crucial
role in the amplitude of oscillation of eq 29.
Indeed, because of the overlap between ψI and ψF, there is a

nonzero transition probability also for VIF = 0. In this case, eq 29
becomes

jÆψFjψðtÞæj2 ¼ S2IF cos
2 ΔEIF

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� S2IF

p t

 !
ð30Þ

so that the transition probability oscillates between zero and a
maximum of SIF

2. Such values correspond to ψ = ψhI = (ψI �
SIFψF)/(1� SIF

2)1/2, that is, the state orthogonal toψF, andψ =
ψI. In fact, ψI is not an eigenstate of the Hamiltonian; thus the
system evolves from it and, given the zero effective electronic
coupling between ψI and ψF, the amplitude of the transition
probability cannot overcome the initial value of SIF, while it can
reach zero. To understand it analytically, it is necessary to
consider also the coefficient C2(t), which is provided in ref 66.
By rearranging it in terms of VIF,ΔEIF, andΔEv (or, equivalently,
proceeding as above), and choosing a phase factor consistent
with the choice in eqs 28, the following is written:

C2ðtÞ ¼ � HIF �HIIS
ð1� S2IFÞΔEv

ðeuþt � eu�tÞ ð31Þ

By evaluating eqs 28 and 31 for VIF = 0 and inserting them into
eq 22, the following is obtained:

ψ ¼ cos
ΔEIF

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� S2IF

p t

 !
ψI � i sin

ΔEIF
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� S2IF

p t

 !
ψI

ð32Þ
that is, an oscillation between ψI and ψhI in a wave function
subspace where the maximum overlap of ψ with ψF is given by

SIF, as stated above. A nonzero effective electronic coupling
between ψI and ψF allows the system to go out of this subspace,
which can be defined as a space “quasi-orthogonal” to ψF for
small SIF values. Then, the maximum transition probability is
given by 4VIF

2/(ΔEv)
2, which has the same formal expression as

in Rabi’s formula but with new definitions for the involved quan-
tities as in eqs 5 and 6. In conclusion, the above equations fully
characterizes VIF with the symmetric expression in eq 6 as the
“effective” electronic coupling in the Ψ representation, without
the use of any ad hoc device.
2.4. Overlap between the Diabatic States and Effective

Electronic Coupling in Long-Range CT. The relation between
effective electronic coupling and diabatic state overlap approxi-
mately reduces to a linear one in diverse circumstances:70,71

VIF ¼ CSIF ð33Þ
whereC is a suitable constant for the system under consideration.
Relations of this form have been used to calculate the interatomic
resonance integral70 and also the effective electronic coupling at
larger interatomic distances.71 For CT between off-resonance
states (as is the case, e.g., in DNA base stacks11), the long-range
behavior of VIF can be easily obtained without using empirical
parameters, which can have useful implications for the study of
many biochemical processes. If the given donor and acceptor
centers are far enough, VIF (as well as SIF) is very small and the
electron is almost completely localized on one redox site, e.g.,
ψ = ψI. Then, a = 1, and the normalization constraint Æψ|ψæ =
a2 þ b2 þ 2Re(ab*)SIF yields b = 0, which would give zero
effective coupling, or b =�2sgn(a)SIF. Moreover, at a large
enough distance, it is VIFeΔEIF=ΔEv, and the diabatic energy
difference essentially arises from the distribution of the excess
charge in different local environments, at the given internal
coordinates of the two redox sites. This difference approaches
the valueΔEIF

(0) for infinitely separated redox sites. Thus, on the
basis of the above considerations, eq 11 leads to

VIF =
3
2
jΔEIFjSIF =

3
2
jΔEvjSIF =

3
2
jΔEð0ÞIF jSIF ð34Þ

which fixes the constantC in eq 33 at the value 3/2|ΔEIF
(0)|. The

diabatic energy difference mainly determines the electron loca-
lization on one molecular site. If two diverse redox couples have
the same value ofΔEIF

(0) at suitable nuclear coordinates, different
SIF values indicate different effective electronic couplings, hence
different abilities to spread the excess charge out of the occupied
site. Before concluding this section, it is also worth noting the
similarity between the expression (eq 34) of the transfer integral
in terms of the vertical excitation energy, within the context of
long-distance CT, and the relation between resonance energy
and atomic orbital overlap in ref 70, where the resonance energy
is written in a form similar to the off-diagonal elements in the H
matrix of eq 25b and is set proportional to the ionization energy
for the appropriate valence atomic orbital.

3. SYSTEMS AND COMPUTATIONAL METHODS

3.1. Systems and Purposes.The first system under investiga-
tion is a guanine�thymine (GT) stack from ideal B-DNA
(Figure 2a). The hole transfer between G and T is reconsidered,
after its study in ref 34 with the Becke-half an d-half72 (BHH)
hybrid XC functional, to test the performance of the recently
developedM06-2X andM06-HFXC density functionals.73�75 In
fact, GT is the nucloebase stack with the largest intrastrand VIF
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and is a paradigmatic case of relevance to theoretical studies on
CT through DNA strands. Moreover, since the influence of the
sugar�phosphate backbone on the electronic coupling between
the stacked nucleobases is negligible,11 the backbone can be
excluded from the first-principles calculation of VIF. Thus, both
the TP and CDFT diabatic states can be used to describe the
through-space hole transfer between G and T.
The perylenediimide (PDI; Figure 2b) belongs to a class of

polycyclic aromatic molecules that are promising materials for
nanoelectronics (e.g., for organic photovoltaics and thin film
transistors), due to their ability to organize in well-orderedπ stacks
and to support hole or electron transport.14,76,77 Hence, the
charge transfer integrals for hole and electron transfer through
stacked PDImolecules are parameters of practical relevance. The
calculations performed in this work pursue the following main
objectives: (i) test the performance of the M06-2X and M06-HF
functionals, once used in combination with eq 11, in this kind of
extended aromatic system, where the high-nonlocality character
of the functional can play an important role; (ii) verify the (high)
accuracy of the proposed theoretical-computational approach
also very near the transition state coordinate, where the Condon
approximation can be safely assumed; (iii) contribute to identify,
or restrict, the maximal range of reliable values for the involved
hole and electron transfer integrals. In a similar fashion to
previous works on DNA stacks,48 this is done calculating the VIF
values at different levels of computational accuracy and comparing
the results with valuable ones in the previous literature.14

The distance dependence of the transfer integral and the
fulfillment of eq 34 are investigated on the electron transfer
between a quinol and a semiquinone function in a face-to-face
arrangement. Apart from the importance of the redox reactions
involving this system in biology and medicine,78,79 it was chosen
as a paradigmatic case for testing the performance of theM06-HF
density functional.
3.2. TP and CDFT Diabatic States. The DNA stack can be

easily separated into a donor group D (i.e., one of the two
nucleobases), where the hole is initially localized, and an acceptor
group A , receiving the transferring hole. Hence, the I and F
electronic states can be conveniently defined as |ψIæ = |Dþæ|A
and |ψFæ = |D æ|Aþæ, respectively, where the charge localized
on each base has been explicitly indicated. They are obtained as
tensor products of reference states for the isolated D and A
groups in the initial and final charge states. The necessary
electronic wave functions are built as single Slater determinants
of the lowest-lying occupied Kohn�Sham spin orbitals. The
feasibility of this procedure also regarding the spin contamina-
tion problem63 has been discussed in ref 33 (see also ref 80 and
references therein). The A, B, and SIF overlaps are obtained by
exploiting the ET module in the NWChem computational
chemistry package.8,81 The ET module is not used otherwise.
Afterward, the a and b coefficients are derived from eq 13. The
energy difference between the TP diabatic states is obtained from

ΔEIF ¼ ðEDþ þ EAÞ � ðED þ EAþÞ þWDþ�A �WD�Aþ

ð35Þ
EDþ , EAþ , ED , and EA are the ground-state energies of the
isolated subsystems in the indicated charge states, which are
directly provided by self-consistent field DFT calculations on
such subsystems. WDþ�A and WD�Aþ are the interaction
energies betweenD andA in states |ψIæ and |ψFæ, respectively,
which are computed as energies of electrostatic interaction by

using restraint electrostatic potential (RESP) charges that fit the
quantum mechanical electrostatic potential on a specified grid.
This is performed through the ESP module in the NWChem
program,81 with hyperbolic restraining on the partial atomic
charges. After suitable testing, the maximum distance between a
grid point and any of the atomic centers was set at the value
0.5 nm, and a grid spacing of 0.008 nm was used.
Alternatively (and exclusively for the other two systems), the

diabatic electronic states |ψIæ and |ψFæ are obtained from
CDFT32 calculations on the overall system, performed using
NWChem. The CDFT approach consists of finding an effective
external potential to add to the Hamiltonian in order to get the
electronic state of lowest energy under the specified density
constraint.32 In hole (electron) transfer processes, a unit positive
(negative) charge is localized in D (A ) for the initial (final)
state. ΔEIF is directly given by the difference between the
energies EI and EF of the CDFT states. Hence, the approxima-
tions inherent in the partition scheme of eq 35 and consequent
evaluation of WDþ�A and WD�Aþ are avoided. The L€owdin
population scheme was used in all of the CDFT calculations,
whereas the Becke scheme turned out not to be feasible for the
considered systems and hybrid-DFT approaches.

4. COMPUTATIONAL RESULTS AND DISCUSSION

4.1. Effective Electronic Coupling in the Guanine�
Thymine Dimer. The charge-transfer and spatial overlap inte-
grals for the GT nucleobase stack calculated in this work are
reported in Table 1 (top panel). They are compared with
previous results in the literature (bottom panel) based on the
same set of atomic coordinates.44

Table 1 shows that the hole transfer integrals obtained by
using the M06-2X functional are consistently overestimated
(∼40%) compared to those calculated in ref 34 with the BHH
functional and the values from refs 30 and 44 which use the DFT
fragment-orbital (FO) method and the GMHmethod combined
with Koopmans’ theorem82 approximation (KTA),26 respec-
tively. Thus, on the basis of these results, the M06-2X functional
should not be used for quantitative calculations of effective
electronic couplings in DNA systems involving the GT stack.
On the contrary, the M06-HF functional, which uses full HF

exchange, gives results that (i) are almost insensitive to the
employed basis set and (ii) are in excellent agreement with the
value of VIF obtained in ref 44 by means of the second-order
perturbation formulation (CAS-PT2) of the complete active
space self-consistent field (CASSCF) method. In the reported
multireference calculations, the full active space is indeed redu-
ced to include 11 electrons in 12 π orbitals. Moreover, dynamic
correlation is not included in the CASSCF approach. However,
the CAS-PT2 calculations include the multistate formulation,

Figure 2. Molecular systems under consideration: (a) guanine-thymine
(GT) stack from ideal B-DNA, (b) perylenediimide (PDI) stack, and (c)
quinol�semiquinone redox couple.
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MS-PT2, and tend to overcome these shortcomings. While, as
discussed in ref 34, the comparison between the results from
BHH andmultireference calculations does not allow one to draw
definitive conclusions in favor of either approach, my current
results using eq 11 and the M06-HF functional clearly support
the post-HF data. Furthermore, the results in Table 1 confirm the
conclusions in ref 75 about the ability of this hybrid XC
functional to correct for the unphysical electron self-interaction63

and its considerable improvement on HF. In the M06-HF
approximation,73 the XC energy is obtained by adding the
nonlocal HF exchange energy, as computed from the occupied
Kohn�Sham orbitals, to XC energy with the same local func-
tional form as for M06-L but different values of the parameters
that enforce its compatibility with the presence of full HF
exchange. Ultimately, M06-HF includes both local and nonlocal
exchange, but only the latter survives at large enough distances,
thereby providing the correct asymptotic behavior. Moreover, it
satisfies the uniform-electron-gas limit at both the short and long
range, which is an important formal property, and includes short-
range static-correlation effects that are missing in hybrid func-
tionals where the HF exchange is added to pure correlation
energy. Such features can also lead, on the average, to a better

description of the ground-state energetics than that given by the
popular B3LYP functional.73 By considering the ingredients in
eq 11, the optimal performance of the M06-HF functional might
be attributed to an equilibrated description of the ground state,
with a good medium�long-range behavior of the exchange in
the considered GT system. This avoids an excessive spread of the
valence charge over the two nucleobases, which would otherwise
amount to exceedingly similar values of a and b in eqs 11 and a
correspondingly overestimated transfer integral. The investiga-
tion of other DNA nucleobase stacks is however necessary to
confirm this indication and is the subject of future work, also
considering the low computational cost of the hybrid-DFT
implementation of eq 11. In this regard, it is noteworthy that
the M06-HF functional shows an optimal performance even at
the 6-31g* level of computation, which is an important point for
first-principles calculations of charge-transfer integrals on large-
scale systems.
Note that in eq 11 the DFT energies appear only inΔEIF, that

is, the difference between the energies of the whole system in the
two diabatic states for the given nuclear coordinates. Hence, the
addition of the dispersion terms according to the recipes allowed
by the employed computational chemistry package81 does not

Table 1. (Upper Panel) Diabatic Energy Difference (ΔEIF), Effective Electronic Coupling (VIF) from eq 11, Overlap Integral
(SIF), and Vertical Excitation Energy (ΔEv) from eq 5 for the 50-GT-30 Nucleobase Stack from Regular B-DNA, Calculated in
This Work Using Both CDFT and TP Diabatic Electronic Statesa (Bottom Panel) Results from Hybrid-DFT,34 DFT (with
eq 20),30 HF and Multireference44 Calculationsb

XC functional basis set ΔEIF VIF SIF ΔEv ΔEIF
(TP) VIF

(TP) SIF
(TP)tSIF

This Work

M06-2x 6-31 g* 1.210 0.197 0.0629 1.274

6-311 g** 1.230 0.179 0.0761 1.284

cc-pVTZ 1.230 0.169 0.0826 1.280 1.248 0.1701 0.0171

cc-pVTZ�BSSE 1.248 0.1701 0.0171

6-311þþg(3df,3pd) 1.217 0.168 0.0183

M06-HF 6-31 g* 1.207 0.078 0.0514 1.218

6-311 g** 1.232 0.077 0.0600 1.244

cc-pVTZ 1.258 0.078 0.0630 1.270 1.278 0.0804 0.0177

cc-pVTZ�BSSE 1.281 0.0806 0.0177

6-311þþg(3df,3pd) 1.222 0.075 0.0195

Ref 34

BHH 6-31 g* 1.271 0.135 0.053 1.300 1.305 0.140 0.012

6-311 g** 1.290 0.128 0.064 1.317 1.307 0.132 0.015

cc-pVTZ 1.284 0.126 0.070 1.311 1.300 0.129 0.016

6-311þþg(3df,3pd) 1.272 0.127 0.017

HIF VIF SIF

Ref 30

DFT, FO TZ2P 0.334 0.141 0.023

VIF ΔEv

Ref 44

GMH-KTA 6-31 g* 0.137 1.574

CASSCF(7,8) 6-31 g* 0.098 1.799

CASSCF(11,12) 6-31 g* 0.097 1.415

CAS-PT2(11,12) 6-31 g* 0.081 1.175
aUse of the latter ones is explicitly indicated. bAll energy quantities are expressed in eV.
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change the value of the charge-transfer integral resulting from
eq 11. Furthermore, as discussed elsewhere,48 the approach is
also robust against the basis set superposition error (BSSE). In
this work, it is shown by the data at the M06-2x/cc-pVTZ and
M06-HF/cc-pVTZ computational levels in Table 1, which were
obtained using the counterpoise method.83

The cc-pVTZ basis set84 was used to compute VIF with both
the TP and CDFT diabatic states. The two diabatic sets lead to
very similar VIF values against significantly different overlaps
SIF in either M06-2X or M06-HF calculations. Indeed, the
differences in the transfer integral values can be essentially
ascribed to the slight overestimation of ΔEIF by eq 35. The
similarity of the VIF values, the fulfillment of the two-state
approximation regarding the values of85 Æψ|ψæ = a2 þ b2 þ
2abSIF (Table 2), and the nature of the system, where the D
and A groups are spatially well separated, support the use of
both TP and CDFT states, which are then expected to satisfy
eqs 16 and 17. To see this, the quantities (obtained from
eq 16)

C11 � ÆψIjψIæ ¼ C22 � ÆψFjψFæ
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are considered. The overlaps between the CDFT and TP diabatic
wave functions (identified withΨ andΨ, respectively) obtained
from the M06-2x and M06-HF calculations are compared in
Table 2 with the values obtained by insertion of SIF and SIF (see
Table 1) into eqs 36a and 36b. The agreement is good, thus
confirming the expectation. Notice that, although the SIF values
are smaller than the SIF ones, and much smaller than unity, eq 11
(or its approximation in eq 10) must be used to obtain VIF from
nonorthogonal diabatic states. The corresponding value of HIF

can be obtained from eq 6 and is generally very different fromVIF,
even if the involved energy quantities are computed in a one-
orbital picture, as in ref 30 (see theHIF and VIF values reported in
Table 1).
The assessment of the VIF value for the hole transfer through

the GT stack around 0.08 eV by both the CAS-PT2 method in
ref 44 and the hybrid-DFT one at the M06-HF level in this work
is in my opinion a useful step toward a systematic and consistent

quantification of hole-transfer integrals between stacked nucleo-
bases. This consistency needs to be assessed at a more extended
level in future works, including calculations with the comple-
mentary nucleobases for the GT stack and on other DNA stacks.
It is worth noticing that in the Marcus nonadiabatic regime,
where the CT rate has a quadratic dependence on VIF,

17 a trans-
fer integral of ∼0.08 eV rather than ∼0.13 eV amounts to a
difference by a factor of ∼2.64 in the estimate of the CT rate,
which brings about an important difference if hopping transport
through a strand is considered. Anyway, if either hopping of loca-
lized charges86,87 or polaron diffusive motion88,89 is the effective
transport mechanism, the charge transfer integral between neigh-
boring units plays an important role in the electrical conduction
through DNA systems.90

It is worth noting that all hybrid-DFT implementations lead to
values of the vertical excitation energy between the CASSCF-
(11,12) and CAS-PT2(11,12) values, closer to the latter. In
particular, while M06-2X appears to overestimate VIF, it provides
ΔEv values that are located between theM06-HF and BHHones.
Indeed, a recent study91 shows thatM06-2X performs better than
M06-HF, and widely used hybrid XC functionals such as B3LYP
and PBE0, for the description of other types of excitations, i.e.,
vertical singlet excitations of adenine�thymine and guanine�
cytosine base stacks. On the other hand, the M06-HF functional
was designed73 for accurate predictions of long-range CT excited
states. Future studies with the most recent Minnesota hybrid
meta density functionals (i.e., M08-HX and M08-SO,92 which
may be considered as improved versions of M06-2X,93 also with
reference to the self-interaction term in the correlation functional92)
are desirable on the basis of the above results and discussion.
4.2. Hole and Electron Transfer Integrals in the Perylene-

diimide Dimer. The hole and electron transfer integrals are
calculated for the PDI-H (or simply PDI) dimer, with a hydrogen
atom at the imide position. The geometry of the monomer was
drawn from the Supporting Information of ref 14, and the dimer
was built with the same shift parameters used in ref 14 for the
CH3 derivative. In particular, the stacking distance was fixed at
3.4 Å.94 In order to move the dimer slightly away from the
transition state coordinate Qt, the H atoms in one of the
monomers were further relaxed. The resulting geometry of the
dimer corresponds to a value Q of the reaction coordinate very
close toQt (Q=QtþδQ), as quantified by the fact thatΔEIF(Q),
2VIF(Q) (see Table 3 and also Table S1 in the Supporting
Information).
Considering that the PDI molecule is a kind of cyclic polyene,

the M06-2X functional was first used in the calculations, thereby
following the indications that result from ref 75 and the excellent
performance achieved in ref 14. The hole-transfer (VIF

(h)) and
electron-transfer (VIF

(e)) integrals obtained using the 6-311g**
basis set are reported in the first row of Table 3 (values of the

Table 2. Quality of the Two-State ApproximationUsing TP and CDFTDiabatic States, Quantified in the First TwoData Columns
via the Square Modulus of the Ground-State Wave Function That Results from the First Expansion in eq 2, and the Overlap
Integrals of theDiabatic States Belonging to the TP andCDFT Sets (Cij)Obtained from eqs 36a and 36b, by Inserting the Values of
SIF and SIF from the Calculations (First Line for Each Functional) or Directly from the Computed Wave Functions (Second Line)

Æψ|ψæCDFT Æψ|ψæTP C11 C22 C12 C21 (C12 þ C21)/2

M06-2x eqs 36a and 36b 0.9995 0.9995 0.0499 0.0499 0.0499

computation 0.9983 0.9917 0.9930 0.9910 0.0508 0.0488 0.0498

M06-HF eqs 36a and 36b 0.9997 0.9997 0.0404 0.0404 0.0404

computation 0.9995 0.9934 0.9940 0.9910 0.0395 0.0410 0.0403
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effective electronic coupling and the diabatic energy difference at
the left and right sides, respectively, of each reported interval).
They are close to the effective couplings for the CH3 derivative
provided in ref 14.
By assuming the Condon approximation in [Qt,Qtþ δQ], the

computational accuracy allowed by eq 11 near Qt was tested by
calculating VIF

(h) also at the atomic positions Qj = Qt þ jδQ/10,
with j = 1 to 9. A further test was performed on VIF

(e), at nuclear
coordinates Qj = Qt þ jδQ/10, with j = 1 and 5. The ranges of
values in the first line of Table 3 were thus obtained (see
individual values in Table S1 of the Supporting Information).
Such narrow ranges, with a maximum difference of less than 2%,
show the high accuracy of the transfer integral calculation using
eq 11, irrespective of the fact that the differences in the values
may actually be ascribed to computational uncertainty or small
deviation from the Condon approximation. The small spread in
the VIF

(h) values is also displayed in Figure 3. ΔEIF
95 is chosen as

the reaction coordinate, which highlights the proximity to Qt (cf.
the energy ranges on the two axes).
The values of VIF

(h) and VIF
(e) were also calculated by using a

composite 6-311g**/6-311þg* basis set. To obtain a proper
spanning of the intermolecular space, despite the limited amount
of diffuse functions allowed by the available CDFT implementa-
tion, the basis set was augmented on O and N atoms, and the C
atoms mainly involved in the spatial distributions of the frontier
orbitals according to the calculations at the M06-2X/6-311g**
level. The VIF

(h) and VIF
(e) values remain close to those for the CH3

derivative in ref 14. In particular, the large value of the electron-
transfer integral is confirmed.
The calculation at the BHH/6-311g**/6-311þg* level con-

firms the high value of VIF
(e). Hence, the PDI system, without a

specific substituent at the imide position, is also a promising
candidate for incorporation into electronic devices where excess
electron transport is exploited. BHH yields a value of VIF

(e) that is

about 20% smaller than that provided by M06-2X. Indeed, any
XC density functional is an approximation of the unknown exact
one and can be affected by spurious electron self-interaction,63

with consequent errors in electronic coupling valuations. Thus,
the difference in the BHH andM06-2X values of VIF

(e) is the result
of different approximations to the exact XC functional, and both
values can be, in principle, affected by errors. However, for the
same reason that BHH and M06-2X are quite different approx-
imations, the two values contribute to identify a probable range
for the value of VIF

(e), whence comes the order of magnitude of its
uncertainty. This is valuable information, all the more so that the
size of the system is prohibitive for multireference calculations.
The above comparison and the consistency of the M06-2X

values near Qt denote good performance of the M06-2X hybrid
XC functional for the PDI system. This is an important point in
favor of M06-2X compared to many other XC functionals, which
for large and complicated electronic systems often suffer from
fundamental problems that may lead to divergence or conver-
gence to an energy saddle point rather than to the ground-state
minimum.96 Indeed, the considered PDI system at the given
nuclear coordinates offers a paradigmatic case in this respect. In
fact, the calculations of VIF

(h) using BHH and of VIF
(e) using both

BHH and M06-HF showed problematic convergence and led to
broken-symmetry charge-localized solutions for the ground-state
wave function, which did not allow suitable computation of VIF

(h)

and VIF
(e).

4.3. Long-Range Electron Transfer in the Quinol-Semiqui-
none Redox Couple. Following refs 73 and 75, the M06-HF
density functional was used to study the dependence of the
charge-transfer integral on the distance between donor and
acceptor. Similarly to recent results,37 the transfer integral values
in a semilog plot lie approximately on a straight line (see black
data points and best-fit line in Figure 4); thus

VIF = V0 expð � βRDA Þ ð37Þ
where V0 is a suitable constant, RDA is the donor�acceptor
distance, andβ is the decay factor. On the basis of the whole set of
data points, the decay factor is β = 2.07 Å�1, which is larger than
the value of 1.7 Å�1 predicted by the pathway model.97 However,
if the fit is performed forD�A separations between 3 and 6 Å,
where eq 37 turns out to be well-satisfied, a decay factor β = 1.64
Å�1 is obtained (gray line). On the other hand, eq 34 turns out to
be valid at large enoughD�A distances (RDA g 3.5 Å in the
graph of Figure 4). In particular, the red squares are computed
using the first approximate equality in eq 34.
The results in Figure 4 support the use of the full-HF-exchange

M06-HF hybrid functional over a large range of D�A separa-
tions. Indeed, for the face-to-face quinol�semiquinone system,
the implementation of eq 11 using CDFT diabatic states and the
M06-HF functional appears to perform reasonably well even at

Table 3. Hole (VIF
(h)) and Electron (VIF

(e)) Transfer Integrals and Corresponding Diabatic Energy Differences (ΔEIF
(h) andΔEIF

(e)) in
the PDI Dimer, Using CDFT Diabatic Electronic Statesa

XC functional basis set VIF
(h) ΔEIF

(h) VIF
(e) ΔEIF

(e)

M06-2x 6-311 g** 35.2�35.9 0.04�0.40 127.6�129.7 0.10�0.95

6-311 g**/6-311þþg* 41.5 138.2

BHH 6-311 g**/6-311þþg* 112.9
a First row: ranges of values corresponding to different geometries (see main text) and using the M06-2X hybrid functional. Second and third rows:
values at the nuclear coordinates Qt þ δQ, using the M06-2X and BHH XC functionals, respectively, with the mixed 6-311g**/6-311þg* basis set. All
quantities are expressed in meV.

Figure 3. Effective electronic coupling for hole transfer in a PDI-H stack
(x shift =1.60 Å, y shift =0.94 Å, z shift = 3.40 Å). The y axis starts from 0
meV to point up the small relative spread of the data points.
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the shortest explored distance RDA = 1.54 Å, where the overlap
integral is unduly large, SIF = 0.949 (Table S2 in the Supporting
Information), so that the definition of the CDFT states reaches
the largest uncertainty.32 Yet, the value of VIF is 17.2 eV and
differs by about 2% from the value of 17.6 eV in ref 37. Clearly,
both values can, in principle, be wrong. However, they are
obtained from different theoretical-computational setups (except
for the common use of CDFT diabatic states), and hence the
similarity of the results gives support to their reliability. The results
in this section also support the use of CDFTdiabatic states in short-
range and/or intramolecular CT, but in the latter case, the donor
and acceptor groups are not separated, so it is important to check
that any reliable electron density constraint, which includes the
atoms of a redox site dictated by suitable chemical reasons, leads to
the same value of the effective electronic coupling.

5. CONCLUDING REMARKS

I recently proposed34 a formula (i.e., eq 11 in this paper) for
the calculation of charge-transfer integrals using a few electronic
quantities that characterize the diabatic states and that can be
easily obtained from ab initio computation. Equation 11 applies
to both orthogonal and nonorthogonal diabatic states and is
exact within the two-state model. This is useful in all of those
cases where the nature of the CT system suggests the use of a
nonorthogonal diabatic representation. Moreover, the results of
this work markedly indicate that the quantities involved in eq 11
can be obtained from CDFT32 diabatic states, even if such states
are characterized by a relatively large overlap (or a large one, e.g.,
for the quinol�semiquinone redox system at short distance).
This is to be considered also in future studies of short-range
intramolecular CT reactions.

From an exquisitely theoretical point of view, this work (i)
relates eq 11 to previous approaches to VIF calculation, (ii)
establishes its connection with L€owdin’s transformation, (iii)
fully characterizes VIF, as defined8 in eq 6 (thereby, also as
expressed by eq 11), as the effective electronic coupling or
perturbation that is involved in the probability of transition
between nonorthogonal electronic states, and (iv) establishes
the relation between charge-transfer and overlap integrals in the
long-range CT between off-resonance diabatic states, without the
use of empirical parameters.

As shown in section 2.2, the application of eq 11 to non-
orthogonal diabatic states is equivalent to the exact L€owdin

transformation40 of such states and use of the same eq 11 or eq 10
(for zero overlap) with the L€owdin orthogonal states. Anyhow,
given a physically meaningful set of nonorthogonal diabatic
states, eq 11 can be directly used by calculating the necessary
quantities on these states without a need for their prior ortho-
gonalization or any approximation based on themagnitude of the
overlap.

On the one hand, the analysis in section 2.2 and the Appendix
clarifies the relation between eq 11 and other methods in the
previous literature22,27,41,42 that use orthogonal diabatic electro-
nic states and where the latter can be obtained from rotation of
the adiabatic states.27 In particular, it is observed that, once an
appropriate nonorthogonal diabatic representation of the CT
reaction under consideration is known, the correct rotation of the
adiabatic states must lead to orthogonal diabats related to the
nonorthogonal ones by the L€owdin transformation. Thus, any
criterion for obtaining the diabatic states directly by rotation of
the adiabatic ones should be confronted with indications result-
ing form the nature of the CT system and the way it is initially
prepared (e.g., depending on the initial localization of the charge
in a redox moiety and the distance between donor and acceptor,
hence the spread of the initial electron charge distribution on a
near redox site). In this respect, in my opinion, the CDFT
approach affords a “natural” localization of the transferring electron
charge, since it searches for the charge distribution of minimum
energy under the constraint of charge localization around a given
set of atoms which can be inferred and thus selected on the basis of
chemical grounds. Then, eq 11 allows the use of the CDFTdiabatic
states without approximations, within the two-state model.

On the other hand, since eq 11 is obtained by direct solution of
the two-state secular equation by using the definition of VIF in
eq 6, working with nonorthogonal states requires that eq 6
indeed provides the effective coupling in the nonorthogonal
representation of a two-state dynamical problem. This is not a
trivial point considering that the effective Hamiltonian is repre-
sented by a non-Hermitianmatrix (see eq 25b), whereasVIF from
eq 6 is the off-diagonal element of a Hermitian operator. In order
to extricate this delicate conceptual problem, eq 29 of this paper
shows that VIF from eq 6 gives, as desired, the effective perturba-
tion involved in the transition between two nonorthogonal
electronic states at any fixed nuclear coordinates. Equation 29
can be considered as an appropriate extension of Rabi’s formula
to the case of nonorthogonal electronic states. In particular,
similarly to the latter, it gives the maximum oscillation of the
transition probability for isoenergetic initial and final electronic
states. Ultimately, although the effective Hamiltonian for the
two-state model using nonorthogonal diabatic states is, in gen-
eral, represented by a non-Hermitian operator and various
devices have been used to regain the desired Hermitian
behavior,15 eqs 26 and 29 yield the role of the perturbation term
in theHermitian component of theHamiltonian. Therefore, with
reference to CT processes, eq 6, hence its expression in eq 11,
provides the appropriate expression of the effective coupling
between nonorthogonal states, and not just an ad hoc symme-
trized expression of such coupling.

The computational results of this work contribute to delimit-
ing the theoretical expectation values of the effective electronic
coupling for the considered CT reactions and support selective
use of the Minnesota hybrid meta density functionals75 for the
study of diverse kinds of CT systems. However, in general, the
results of this work, in agreement with previous ones,34,48 stress
the importance of using different hybrid XC functionals and basis

Figure 4. Electron transfer integral (on a natural logarithm scale) vs the
donor�acceptor distance RDA , obtained using eq 11 (black) and the
first equality in eq 34 (red), which clearly fails at small distances. Amixed
cc-pVTZ/aug-cc-pVTZ basis set is used, with diffuse functions added on
theO atoms for a proper spanning of the intermolecular space. The black
and gray best-fit lines are described in the main text.
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sets as a crucial rule in order to identify reliable DFT values or
probable ranges of values for the charge-transfer integral in many
redox systems.

The BHH functional performs better than theM06-2X one for
the computation of the charge-transfer integral in the guanine�
thymine stack, if the results from multireference calcualtions44

reported in Table 1 are taken as reference values. On the
contrary, M06-HF gives values of the charge-transfer integral
and the vertical excitation energy very close to those from the
multireference calculations.44 This fosters use of this hybrid
functional in other DNA stacks, and also further investigation
into the presence of complete Watson�Crick pairs. Moreover,
M06-HF is expected to be particularly useful for studying triplets
of base pairs, where long-range CT is also involved. On the basis
of the current and previous34,48 results, M06-HF and BHH may
provide the best set of hybrid functionals to be applied in the
investigation of the hole transfer through nucleobase stacks.
Nevertheless, it is worth noting that the M06-2X density func-
tional shows optimal performance in the calculation of the
vertical excitation energy for the GT stack.

Overall, M06-2X does much better than all other XC func-
tionals tested on the perylenediimide stack. The analysis of this
large π-electron system points to M06-2X as the most robust XC
functional against convergence problems in the iterative solution
of Kohn�Sham equations. It allowed the calculation of the hole
and electron transfer integrals in the PDI stack very close to its
transition state coordinate with high computational accuracy.

Finally, long-range CT has been studied in the quinol�
semiquinone redox couple, for which M06-HF gives a VIF decay
factor in the expected range37,97 and confirms the theoretical
expectation of eq 34.

Ultimately, the computational results of this paper suggest
BHH, M06-2X, and M06-HF as a good set of hybrid func-
tionals for charge-transfer integral calculations in various
molecular systems. Clearly, future investigation of the most
recent M08-HX and M08-SO92 Minnesota functionals is
desirable.

’APPENDIX

Wave Function Overlap Method and L€owdin Transforma-
tion.The rowmatrixΨ = (ψhIψhF) is related to the orthogonal set
χ = (χI χF) by the equation

χ ¼ ΨS�1=2 ð38Þ
where

S ¼ 1 SIF
SIF 1

 !
ð39Þ

By equating the right-hand sides of eqs 14 and 38, and multi-
plying on the right by the matrix S1/2, the following is obtained:

Ψ ¼ ΨS�1=2S1=2 ð40Þ
The matrix S�1/2 is given by60,98

S�1=2

¼ 1
2

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ SIF

p þ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� SIF

p
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ SIF

p � 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� SIF

p
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ SIF

p � 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� SIF

p
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ SIF

p þ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� SIF

p
 !

ð41Þ

and

S
1=2 ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ SIF

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� SIF
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�
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þ
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@
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ð42Þ
The insertion of eqs 41 and 42 into eq 40 gives eq 17.

Moreover, the comparison of eqs 17 and 41 shows that M =
S�1/2 when S is the identity matrix, i.e., when SIF = 0, which gives
eq 14 as a special case of eq 16.
Finally, I wish to show how the insertion of eq 14 into eq 10

leads to eq 11. According to eqs 14 and 41, the energies of the
orthogonal states χI and χF are related to those of the non-
orthogonal ones ψI and ψF by

EðχIÞ ¼ ðS�1=2Þ211EðψIÞ þ ðS�1=2Þ212EðψFÞ
þ 2ðS�1=2Þ11ðS�1=2Þ12ÆψIjHjψFæ ð43Þ

and

EðχFÞ ¼ ðS�1=2Þ212EðψIÞ þ ðS�1=2Þ211EðψFÞ
þ 2ðS�1=2Þ11ðS�1=2Þ12ÆψIjHjψFæ ð44Þ

where the symmetry of S�1/2 has been exploited. Therefore, the
corresponding diabatic energy differences ΔEIF(χ) t E(χI) �
E(χF) and ΔEIF(Ψ) t E(ψI) � E(ψF) satisfy the equation

ΔEIFðχÞ ¼ ½ðS�1=2Þ211 � ðS�1=2Þ212�ΔEIFðΨÞ

¼ ΔEIFðΨÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� S2IF

p ð45Þ

Alternatively, this result can be obtained by equating the expres-
sions of the vertical excitation energy for the two diabatic sets.
The wave function overlaps are related by the equations

AðχÞ � ÆχIjψæ ¼ ðS�1=2Þ11AðψÞ þ ðS�1=2Þ12BðψÞ ð46Þ
and

BðχÞ � ÆχFjψæ ¼ ðS�1=2Þ12AðψÞ þ ðS�1=2Þ11BðψÞ ð47Þ
Then,

VIF ¼
����� AðχÞBðχÞ
A2ðχÞ � B2ðχÞΔEIFðχÞ

�����
¼
�����½ðS

�1=2Þ211 þ ðS�1=2Þ212�AðΨÞBðΨÞ þ ðS�1=2Þ11ðS�1=2Þ12½A2ðΨÞ þ B2ðΨÞ�
½ðS�1=2Þ211 � ðS�1=2Þ212�½A2ðΨÞ � B2ðΨÞ�

�ΔEIFðΨÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� S2IF

p
�����

¼
����� AðΨÞBðΨÞ
A2ðΨÞ � B2ðΨÞΔEIFðΨÞ 1� A2ðΨÞ þ B2ðΨÞ

2AðΨÞBðΨÞ SIF

" #
1

1� S2IF

����� ð48Þ

that is the expression in eq 11b.
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ABSTRACT:Up to now it has been generally assumed that the electron capture on diselenides XSeSeX0 produces a fragmentation
of the Se�Se bond. However, our high-level ab initio calculations indicate that this is the case only when the substituents X and X0
attached to the diselenide bridge have low electronegativity. Also importantly, even when the two substituents are of similar
electronegativity, the Se�Se bond cleavage rarely is an adiabatic process. For low-electronegative X substituents, the extra electron is
placed in the σ*(Se�Se) antibonding orbital, and the cleavage of the Se�Se bond is the most favorable process. However, the
mechanism of this bond breaking is more intricate than previously assumed, and for asymmetric derivatives it proceeds through a
conical intersection (CI). These findings emphasize the importance of using accurate ab initio calculations, rather than the usually
employed density functional theory approaches, when dealing with reactions in biochemistry and organometallic chemistry, because
the characterization of a CI requires the use of multireference methods to account for the mixing of states. When X is highly
electronegative, the σ*(Se�X) antibonding orbital becomes highly stabilized with respect to the σ*(Se�Se) strongly favoring the
cleavage of the Se-X bond, whereas the Se�Se remains practically unperturbed. Finally, when comparing the present results on
diselenides with those of the disulfide analogues, it is apparent that the activation barriers and the final products of the different
unimolecular reactions are higher in energy for the diselenides, in spite of the higher antioxidant strength of diselenides. This seems
to indicate that the electron detachment process, less favorable for diselenides than for disulfides, competes with the electron-
capture dissociation process and therefore should also be considered to explain the different antioxidant ability of these compounds.

’ INTRODUCTION

Selenium is an essential trace element which has received an
increased interest as it has been identified in a large range of living
beings, including humans.1 It is primarily present in proteins,
mainly under the form of the amino acids selenocysteine (Sec)
and selenomethionine. Selenoproteins have been reported to
play important and diverse roles in organisms, like elimination of
peroxides and other oxidant agents, cancer prevention, and
inflammation protection.2�4 Besides, sulfur and selenium share
many physicochemical properties, and consequently, selenium
usually accompanies or even substitutes sulfur in organisms.
Indeed, the mutation of cysteine (Cys) to Sec has been proved to
be very conservative, preserving the structure and the biological
functionality of the selenomutant.5�15 Nevertheless, the sub-
stitution of Cys by Sec may bring significant advantages as it is
the case for some oxireductases containing catalytic redox-
active Sec,16 whose Cys mutants are typically 100�1000 times
less active.17

Diselenide compounds are of special interest within the huge
family of selenium derivatives for their applications in organic
synthesis18�20 and as therapeutic drugs.21,22 Besides, they are
also found in proteins as diselenide bridges,23 in a similar fashion
to sulfur-containing peptides. Diselenides are well-known for
their high antioxidant activity,24�26 which is actually higher than
that of disulfides, so the study of their reductive cleavage has
attracted considerable attention.27�30 However, there is not
enough information to fully understand the mechanism of this
process. In the present contribution we would like to shed some
light on this open question by modeling the reductive cleavage of

diselenides with the electron-capture dissociation (ECD) reac-
tion, a process largely investigated for disulfides31�36 but which
has not received such attention in the case of diselenides.
Previous studies on dimethyldiselenide37,38 indicate that electron
attachment yields mainly the breaking of the Se�Se linkage since
the extra electron is accommodated in the σ*(Se�Se) antibond-
ing orbital, like for disulfides, although these results are not
sufficient to get a general picture of the electron-capture process
in diselenides.

When an electron is added to a bond A�B, it may happen that
the bond is preserved, a two-center, three-electron (2c3e) A\B
bond being established, or that the bond gets broken, the centers
being bound by means of charge�dipole interactions. A previous
study in our group has shown that both situations are encoun-
tered when an extra electron is added to a diselenide depending
on the electronegativity of the substituent of the diselenide
bond.39 The distinction about the nature of the activated bonds
is of great relevance from themechanistic point of view. The 2c3e
bonds are characterized by a charge fluctuation between the
bonding centers, rendering a nearly equal sharing of the unpaired
charge.40 However, as the bond stretches, it may happen that the
extra charge and spin density, both initially delocalized through-
out the bond, separate and localize into different fragments, a
phenomenon known as charge�spin separation. For this reason
several authors41,42 have pointed out that a proper description of
the dissociation of 2c3e linkages has to appropriately account for

Received: April 4, 2011
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a delocalized covalent ground state for the minimum and a
localized ionic one for the broken fragments, with the conse-
quent (avoided) crossing of such states at certain bond distances.

The theoretical treatment of several electronic states simulta-
neously requires the use of special methodology, mainly when
they are quite close in energy or even cross. Density functional
theory (DFT) is frequently used in biochemistry, but it is
inadequate to describe situations of near degeneracy or states
crossing. Moreover it is well-known that standard DFT drama-
tically fails to describe the dissociation of odd-electron bonds.41�44

This failure is attributed, in part, to the self-interaction error
(SIE), an unbalanced description of the exchange and correlation
terms in approximate DFT functionals. SIE can be alleviated with
a certain amount of HF exchange, i.e., with hybrid functionals,45

but, since the extent of the SIE varies along the potential energy
surface (PES),43,44 a hybrid functional properly describing a
particular region of the PES is likely to fail at other regions, so
they do not provide a general solution to the problem. Many SIE-
free functionals have been developed following the recipe
proposed by Perdew and Zunger,46 although they are still not
well suited to describe the dissociation of 2c3e bonds.43 Other
corrections, like the one proposed by Chermette et al.,47 show
also good results but depend on nuclear charges, which are not
physically observable and are difficult to accurately determine.

As DFT provides a troublesome description of the dissocia-
tion of odd-electron bonds, wave function methods seem a more
reliable alternative. However, previous theoretical studies on the
cleavage of diselenides by electron attachment were performed
with DFT or other unsuitable methods, and their conclusions
may be compromised. Moreover, such works were based on
symmetric molecules or systems bearing low-electronegative
substituents. These situations are far from reality as proteins
are highly asymmetric, and also, they create an environment
where diselenides are exposed to substituents with varying
electron-withdrawing strength, distorting the electronic density
along the bond. The aim of the present contribution is to fully
determine how these two factors: the electronegativity of the
substituents and the asymmetry of the system influence the ECD
reaction of diselenides, as some preliminary results48 suggest that
they do play an important role in the dissociation process. For
this purpose, the CH3SeSeX (X = NH2, OH, and F) set of
molecules has been chosen as representative of asymmetric
diselenides with substituents of increasing electronegativity,
which can be compared with HSeSeH and CH3SeSeCH3

to determine the influence of the asymmetry in the Se�Se
bond cleavage.

’COMPUTATIONAL METHODS

Throughout the Introduction Section we mentioned the
inadequacy of standard DFT-based methods to describe the
dissociation of odd-electron systems. This failure has been
traditionally attributed to the SIE, which has been renamed more
recently as delocalization error,49 present when, due to deloca-
lization, atomic centers bear fractional charges. Both approaches
lead to the same behavior: Approximate functionals tend to
underestimate the energy of systems with fractional charges.
Consequently, MP2 perturbation theory was preferred for
geometry optimizations and is able to recover enough electronic
correlation at a computational affordable cost for the systems
here considered. It is noteworthy, nevertheless, that MP2 can
lead to erroneous geometries in the case of asymmetric 2c3e

bonds.50 However, in a previous publication39 we have checked
the MP2 estimates against more accurate methods, like coupled-
cluster singles and doubles (CCSD), at predicting the geometries
of the systems here considered. In addition to this comparison, it
has also been proposed a rule to assess the validity of the MP2
geometries.50 In all cases, MP2 performs pretty well, showing
that it can accurately describe the geometries of the diselenides
under study. Once a reliablemethod is decided, the 6-31þþG(d,p)
(BS1) expansion has been employed as the basis set, as it is
flexible enough to describe the bonding situations we deal with.
Since we are describing anions, with an electron placed far from
the nuclei, the use of diffuse functions is almost compulsory. The
optimized geometries were identified as real minima of the
potential energy surface by evaluation of the Hessian matrix.
Final energies have been corrected with the CCSD(T) approach,
able to recover correlation effects beyond second order, and a
more extended basis set, namely aug-cc-pVTZ (BS2). Geometry
optimizations and Hessian evaluations with BS1 have been
performed with the Gaussian03 suite of programs,51 while the
single point calculations with BS2 at the CCSD(T) level were
carried out with the MOLPRO 2009.01 package.52

As mentioned above, some of the reactions may involve the
crossing of different PESs, what makes mandatory the use of
multireference methods, among which the most reliable ones
are53 the multireference configuration interaction (MRCI)54 or
the CASSCF/CASPT255 methods. In our study the CASSCF/
CASPT2 approach has been chosen because it is less computa-
tionally demanding than the MRCI approach and it has been
shown to produce reliable results.53,56 Geometries were opti-
mized, when needed, at the CASSCF level with the atomic
natural orbital (ANO) basis set described by Pierloot et al.57

contracted to Se[5s4p3d]/C,N,O,F[3s2p1d]/H[2s1p] (BS3).
With these geometries, high-level energies were obtained with
the multireference second-order perturbation CASPT2 method
and the aforementioned BS2 expansion. The active space was
constructed by distributing 10 electrons (11 in the case of
anions) in 8 orbitals (9 for the anions), which showed good
results in a similar study involving disulfides.58 The multirefer-
ence calculations were performed with the MOLCAS 7.2 pack-
age of programs.59

’RESULTS AND DISCUSSION

Cleavage of the Se�Se Bond. Previous studies on electron
capture of diselenides or their reactions with nucleophiles
focused on the breaking of the Se�Se linkage. This cleavage
seems quite favorable for X = H, CH3, and NH2 considering the
geometrical changes triggered upon electron capture (see Table 1),
with a remarkable increase of the Se�Se distance, while the rest

Table 1. Se�Se and Se�X Bond Lengths (in Å) for the
Neutral (CH3SeSeX) and Most Stable Radical�Anionic
([CH3SeSeX]

�) Diselenide Derivatives Calculated at the
MP2/6-31þþG(d,p) Level of Theorya

X species H CH3 NH2 OH F

CH3SeSeX 2.340 2.322 2.331 2.295 2.262
d(Se�Se)

[CH3SSX]
� 2.948 2.929 2.957 2.529 2.428

CH3SSX 1.484 1.966 1.847 1.833 1.803
d(Se-X)

[CH3SSX]
� 1.483 1.958 1.905 2.016 2.050

a (for X = H, the system is HSeSeH).
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of the molecule remains practically unperturbed. However, as the
electronegativity of X increases, like for X = OH or F, the
activation of the Se�Se bond is less and less important with
respect to that of the Se�X linkage, and actually for the anion
[CH3SeSeF]

�, the Se 3 3 3 F interaction has greatly lost its cova-
lent character.39 Based on this, the electron-capture process
would yield two different types of fragmentations depending
on which of the two linkages Se�Se or Se-X actually cleaves, as a
function of the nature of X. Consequently, we will start by
studying the Se�Se bond fission in the subset of molecules
which seems more prone to it: HSeSeH, CH3SeSeCH3, and
CH3SeSeNH2.
In the anionic form of these three molecules, the extra electron

occupies the σ*(Se�Se) antibonding orbital being delocalized
between both selenium atoms. Therefore, the Se�Se linkage can
be viewed as a typical 2c3e bond. As mentioned earlier, the
dissociation of the Se�Se bond may involve a crossing between
two different states, necessary to connect the reactants, with an
unpaired electron delocalized between the two Se atoms, with
the products, in which that extra charge will be localized on a
particular fragment. However, such a state crossing does not
occur for [HSeSeH]�, as shown in Figure 1, which represents the
variation of the energy of the four lowest states of [HSeSeH]�

along the Se�Se coordinate.
For the anion in its ground state and in its equilibrium

conformation, d(Se�Se) = 3.280 Å, the extra electron occupies
the σ*(Se�Se) orbital. Higher in energy there are two degen-
erate states whose single occupied molecular orbitals (SOMOs)
are π-type linear combinations of the other two p orbitals of
selenium. Finally, still higher in energy, there is a fourth state where
the extra electron is allocated in the σ(Se�Se) MO. The last
three states can be considered as core excited states, since they
can be seen as the result of the attachment of the extra electron to
an excited state of the neutral system. As shown in Figure 1 they
lie very high in energy at the equilibrium distance of the anion,
and although they can participate in dissociative electron attach-
ment (DEA) processes when the anion is generated in crossed
electron/molecular beams experiments,60,61 the important point
here is that as the Se�Se bond is stretched, these four states come
closer in energy until being degenerate at infinity Se�Se distance,

since each HSe moiety has two symmetry-equivalent p orbitals
(four if the two equivalent HSe fragments are considered).
We will show in forthcoming sections that when the system is
asymmetric, there is indeed a two-state crossing between the
ground state and one of the core excited states characterized by a
σ(Se�Se) SOMO. For HSeSeH�, as shown on the bottom right
corner of Figure 1, already at large Se�Se internuclear distances,
the electron is localized either on the rightHSemoiety (black and
red state) or on the left one (green and blue states), situations
which will be strictly equivalent at infinite distance. Conse-
quently, due to the symmetry of the [HSeSeH]� molecule, the
cleavage of the Se�Se bond is a typical adiabatic process. It
should be noted that after the Se�Se bond fission a weakly
bound complex between the two moieties, SeX 3 and SeX�, is
formed. This stationary point of the PES will be named hereafter
post-dissociation minimum.
A similar situation is found for the also symmetric

[CH3SeSeCH3]
� anion. In this case a clearer picture can

be obtained by using, instead of the potential energy curves of
Figure 1, a correlation diagram between the states of the anion in
its equilibrium conformation and the states of the post-dissocia-
tion minimum (see Figure 2). The description at the MP2 and
CASSCF levels of theory of this post-dissociation minimum,
where the two SeCH3 moieties are bound together by means of

Figure 1. Relative energy (calculated at the CASSCF(11,9)/aug-cc-
pVDZ level) of the four lowest states of [HSeSeH]� with respect to the
Se�Se bond distance. To better understand the nature of these states, in
the top left corner of the graph the SOMO of each state for d(Se�Se) =
3.280 Å are depicted. In the bottom right corner, the same diagram can
be found for d(Se�Se) = 10.680 Å. Note that the upper three excited
states can be viewed as core excited states.

Figure 2. Post-dissociation minimum formed by dissociation of the
Se�Se bond in [CH3SeSeCH3]

�, calculated at the MP2/6-31þþG(d,p)
(CASSCF/BS3 in parentheses) level of theory. Bond lengths are given in
Å and angles, in degrees (�).

Figure 3. Correlation diagram of the electronic states of the
[CH3SeSeCH3]

� anion (left-hand side) and the post-dissociation
minimum (right-hand side), where each state is represented by its
SOMO. The numbers in parentheses correspond to the relative energies
(in kJ mol�1) of the states calculated at the MS-CASPT2/aug-cc-
pVTZ level.
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two weak C�H 3 3 3 Se interactions, forcing the Se, C, and two H
atoms to lie in the same plane in a C2h structure, is rather similar.
With this structure, we can now build a correlation diagram
between the states of the anion and those of this post-dissociation
minimum. An inspection of Figure 3 shows that, as for the
HSeSeH system, the Se�Se bond cleavage does not involve the
crossing of two different states. Due to the symmetry of the post-
dissociation minimum, the extra electron is delocalized between
both Se atoms, like in the radical anion. Actually, the structures of
the electronic states in both the anion and the post-dissociation
minimum are quite similar, although these four states become
closer for the post-dissociation minimum, being degenerate at
infinite distance like in [HSeSeH]�.
The results obtained for the symmetric HSeSeH and CH3Se-

SeCH3 make it interesting to investigate the cleavage of the
Se�Se linkage when the symmetry is broken by introducing two
substituents with different electronegativity, like in CH3Se-
SeNH2. In this case, the most favorable dissociation process
leads [SeCH3]

�þ [SeNH2] 3 , while the [SeCH3] 3 þ [SeNH2]
�

dissociation channel lies 40 kJ mol�1 higher in energy. This
finding seems to be counterintuitive, since from the electrone-
gativity difference between the methyl and the amino group, one
would expect the second dissociation limit to be lower in energy
than the first one. However this is not so because the electron
affinity (EA) of [SeCH3] 3 is larger than that of [SeNH2] 3 . In the
former, the lowest unoccupied molecular orbital (LUMO)
corresponds to a nonbonding 4p AO of selenium, while for
[SeNH2] 3 the LUMO is a π*(Se�N) MO, arising from a
combination between the 4p AO of Se and the lone pair of N,
which necessarily rises the energy of the LUMO and, conse-
quently, decreases the EA of the system. The enhanced stability
of the [SeCH3]

�þ [SeNH2] 3 productswith respect to [SeCH3] 3 þ
[SeNH2]

� is also reflected in the structure of the post-dissocia-
tion minimum (Figure 4a). Since in the [SeNH2] 3 radical the
π*(Se�N) antibonding is only singly occupied, the Se�N bond
retains some double-bond character, and actually the SeNH2

fragment of the post-dissociation minimum (Figure 4a) is planar,
the HNH bond angle (115.7�) being close to a pure sp2

hybridization. Conversely, for the [SeNH2]
� anion the structure

is far form being planar, and the Se�N distance is much longer
because the extra electron doubly occupies the π*(Se�N)
antibonding MO. Note that in the post-dissociation minimum
both subunits are held together by a Se 3 3 3HN weak interaction
in a way that the SeNH2 fragment is coplanar to the Se and C
atoms of the other fragment.
How the extra electron gets localized in the SeCH3 moiety is

the question which needs to be answered now because, different

from [HSeSeH]� and [CH3SeSeCH3]
�, analyzed above, this

process cannot be adiabatic. In the [CH3SeSeNH2]
� anion in its

equilibrium conformation, as in the previous cases, the extra
charge is delocalized between both Se, and therefore the charge
localization on the SeCH3moiety can only be accomplished if the
σ*(Se�Se) and σ(Se�Se) MOs strongly interact so that their
combination would recover the p orbitals on each selenium,
enabling the aforementioned charge localization. Thus, the
ground state and one of the core excited states, whose SOMOs
are the σ*(Se�Se) and σ(Se�Se) orbitals, respectively, have to
cross. The corresponding minimum-energy crossing point
(MECP) structure, which is displayed in Figure 4b, is rather
similar to the final post-dissociation minimum since the Se�Se
bond is already practically broken, although the nitrogen still
exhibits some sp3 character as suggested by the HNHSe dihedral
angle. The localization of this late barrier for the Se�Se bond
fission of [CH3SeSeNH2]

� contrasts with what has been found
for the analogous S�S bond cleavage of the [CH3SSNH2]

�

anion.62 For the sulfur derivative, the MECP has a shorter S�S
distance and is more similar to that in the equilibrium conforma-
tion of the anion. Such an early barrier has been also found for
[CH3SeSeNH2]

� but about 50 kJ mol�1 above the late MECP
barrier displayed in Figure 4b.
The correlation diagram between the states of the anion and

the post-dissociation minimum connected through the MECP is
shown in Figure 5.
The low-lying states for the [CH3SeSeNH2]

� anion (left-
hand side of the diagram) are similar to those found for
[HSeSeH]� and [CH3SeSeCH3]

� anions, i.e., in the ground
state the unpaired electron is placed in the σ*(Se�Se) orbital,
higher in energy there are two quasidegenerate states with the p
nonbonding orbitals on each Se as SOMOs, while for the highest
one the SOMO is the σ (Se�Se) MO. On going to the MECP,
the interaction between this latter state (initially D3) and the
ground state (D0) results in an energy lowering of the former
until crossing with the ground state at the MECP. This produces
two degenerate states (D0, D1) which, on their evolution toward
the post-dissociation products, split apart as a consequence of the
privileged charge localization on the SeCH3 moiety. Conse-
quently, the two lowest states (D0, D1) of the post-dissociation

Figure 4. (a) Post-dissociation minimum formed after dissociation
and (b) MECP encountered in the Se�Se bond cleavage of the
[CH3SeSeNH2]

� anion, calculated at the MP2/6-31þþG(d,p)
(CASSCF/BS3 in parentheses) level of theory. Bond lengths are
given in Å and angles, in degrees (�).

Figure 5. Correlation diagram of the electronic states of the
[CH3SeSeNH2]

� anion (left-hand side), the post-dissociation mini-
mum (right-hand side), and the MECP (middle part) connecting them.
Each state is characterized by its SOMO and its relative energy (in kJ mol�1)
in parentheses calculated at the MS-CASPT2/aug-cc-pVTZ level.
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minimum localize the unpaired electron at the SeNH2 fragment
and the negative charge at the SeCH3 moiety. The fact that these
two states are not degenerate reflects the aforementioned
resonance between one of these 3p orbitals of selenium and
the lone pair of nitrogen in D0. Themost important conclusion is
that for strongly asymmetric systems, such as [CH3SeSeNH2]

�,
the cleavage of the Se�Se bond goes necessarily through a
conical intersection in order to localize the extra charge on a
particular fragment.
Other Fragmentation Products. However, the picture pre-

sented in the previous sections for the ECD of diselenides is only
a partial one since other fragmentations products are possible. As
a matter of fact, for both systems, [CH3SeSeCH3]

� and
[CH3SeSeNH2]

�, the most stable fragmentations from the
thermodynamic point of view are not the ones discussed so far
but the release of neutral molecules: CH4 and NH3. To under-
stand why these latter molecules experimentally appear only as
secondary products, it is necessary to explore the PES as-
sociated with these bond fragmentations (See Figures 6 and 7,
respectively).
Both PESs show that, although the release of neutrals is by far

the most favorable process from the thermodynamic point of

view, due to the significant stability of both CH4 and NH3, it has
to overcome higher reaction barriers than those associated with
the Se�Se bond fission. Besides, the loss of CH4 and NH3 is a
two-step process (eq 1), which will surely have a negative
influence in the rate of the overall reaction.

½XHmSeSeX
0Hn��— f ½XHmSeSeþ XHn��— f ½XHm�1SeSe�� þ X0Hnþ1

ð1Þ
As a matter of fact as shown in Figure 6 and 7, in the first step

the [CH3SeSeX0Hn]
� anion leads to a complex between amethyl

radical and a [SeSeX0Hn]
� anion (structure 2), which may

dissociate into the two constituents or undergo a hydrogen
transfer which would yield CH4 þ [SeSeX0Hn�1]

� as final
products.
In the case of methyl-amino derivative (X = C, X0 = N), a

transition structure (TS_anion5) connecting directly the anion
with complex 5 ([SeSeCH2] 3

�
3 3 3NH3) has been located.

Although the corresponding activation barrier is still too high
to render the latter fragmentation channel kinetically favorable
with respect to the Se�Se bond cleavage, it is noteworthy that a
similar transition structure was not found for the fragmentation

Figure 6. Energy profile associated with themain fragmentations of [CH3SeSeCH3]
�. The path leading to the loss of CH4 is highlighted in red. Relative

ΔH values (in kJ mol�1) calculated at the CCSD(T)/aug-cc-pVTZ level are displayed under each structure.

Figure 7. Energy profile associated with the main the main fragmentations of [CH3SeSeNH2]
�. The paths leading to the loss of CH4 and NH3 are

highlighted in red. RelativeΔH values (in kJ mol�1) calculated at the CCSD(T)/aug-cc-pVTZ level are displayed under each structure. For the MECP
structure, the CASPT2 method was used instead.
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of the [CH3SSNH2]
� analogue,62 and hence, the release of NH3

would be more probable in the diselenide than in the disulfide.
These differences between diselenide and disulfide could be due
to the more extended orbitals of selenium, causing the Se�N
bonds being longer than the S�N ones favoring the proximity of
the NH2 and the CH3 groups and therefore the H shift between
them. However, for X0 = C, all the efforts to find a similar late-
transition structure failed, likely reflecting the lower basicity of
the methyl group with respect to that of the amino one.
Preliminary results also suggested that the electronegativity of

the substituents has an important influence in the ECD process
of diselenides.48This effect can be assessed by considering
CH3SeSeF. Recalling the results of Table 1, the electron attach-
ment produces amuch larger activation of the Se�F bond than of
the Se�Se one, so the [SeCH3] 3 þ [SeF]� dissociation limit lies
above in energy than the [CH3SeSe] 3 þ F� one. More im-
portantly, the energy barrier associated to the cleavage of the
Se�F bond is quite low (see Figure 8). In particular, the release
of HF is the most likely process since the barrier of the Se�F
bond fission is of ca. 10 kJ mol�1, and the proton transfer from
[CH3SeSe] 3 to F

� is practically barrierless. Actually, although in
terms of electronic energies, TS_12 lies above 1 and 2, when the
zero point energy correction is included, it passes below 1
indicating that in practice the process is barrierless. Regarding
the [CH3] 3 þ [SeSeF]� exit channel, which is the third most
stable, it is noteworthy that the value of the T1 diagnosis of the
CCSD(T) method (0.03), indicates that the TS_anion3 has a
non-negligible multireference character. When its energy is
recalculated with CASPT2, the value obtained (172 kJ mol�1)
suggests that this barrier is even higher than shown in Figure 8.
So far, two types of systems have been presented, depending

whether the Se�Se or Se�X bond fissions are the most favorable
process. The [CH3SeSeOH]

� radical-anion represents an inter-
mediate situation since the transition states involved in both
Se�Se and Se�O bond cleavages, TS_b3 andMECP2, respec-
tively (Figure 9), are of comparable relative energies. It can be
observed that this PES is much more intricate than the ones
previously discussed. Starting from the most stable anionic
isomer, namely stretched-anion, two other isomers can be

formed, bent-anion and book-anion,39 which are better prepared
for the breaking of the Se�O and Se�Se linkages, respectively.
From the book-anion, the Se�Se bond fission goes through a
two-state crossing (MECP2), as previously described for CH3Se-
SeNH2, to yield structure 6, where the [SeCH3]

� and [SeOH] 3
moieties are bound together by a Se 3 3 3HO weak interaction.
This intermediate can give rise to two different products:
[SeCH3]

� þ [SeOH] 3 or CH3SeH þ [SeO]�, which in this
case are practically degenerate. The bent-anion can undergo the
cleavage of the Se�C bond through the transition structure
TS_b1 to yield structure 1, which can directly lead to [CH3] 3 þ
[SeSeOH]� or CH4 þ [SeO]� through a hydrogen transfer.
More favorable is, nevertheless, the breaking of the Se�O bond
to yield structure 3. This intermediate species can directly lead to
[CH3SeSe]

� þ [OH] 3 or, more interestingly, undergo an
internal charge transfer through MECP1 to end up in 4, which
is similar to 3 but with an inverse charge polarization. Structure 4
is better prepared to yield, the final products [CH2SeSe]

� þ
H2O, through a proton transfer (TS_45). The higher energy
of [CH3SeSe] 3 þ [OH]� exit channel with respect to
[CH3SeSe]

� þ [OH] 3 explains why the rupture of the Se�O
bond in (3) produces a hydroxyl radical. Consequently, the release
of H2O andHSeCH3, which are among themost stable products, is
significantly hindered by the high barrier needed to convert 3
into 4. Conversely, for the analogous disulfide,62 [CH3SSOH]

�,
the [CH3SS] 3 þ [OH]� exit channel was found to be lower in
energy, and accordingly, no charge transfer was needed to obtain
H2O and HSCH3. A similar discrepancy is found between the
S and Se derivatives as far as the relative stabilities of the
[CH3X] 3 þ [XOH]� and CH3XHþ [XO]� (X = S, Se) products
is concerned. According to the more reliable CCSD(T) estimates
both exit channels are equally stable when X = Se, whereas for X = S
the latter products are ca. 50 kJ mol�1 lower in energy.
Comparison between Diselenides and Disulfides. The full

mechanisms of the different unimolecular reactions triggered by
electron attachment to diselenides can be used to get some
insight into the redox strength of sulfur- and selenium-containing
proteins. Although sulfur and selenium share many physico-
chemical properties, valence orbitals of Se are more diffuse than

Figure 8. Energy profile associated with the main fragmentations of [CH3SeSeF]
�. The paths leading to the loss of HF is highlighted in red. Relative

ΔH values (in kJ mol�1) calculated at the CCSD(T)/aug-cc-pVTZ level are displayed under each structure.
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those of S, which explains some of the differences between the
mechanisms of the ECD of disulfides and diselenides described
so far. For instance, the fact that Se�N bonds are larger than
S�N ones may rationalize the existence of a direct unimolecular
process for the release of NH3 in [CH3SeSeNH2]

�, which is
absent in [CH3SSNH2]

�.
More interesting are the differences between [CH3SSOH]

�

and [CH3SeSeOH]
� regarding the fission of the A�O bond

(A = S, Se). As mentioned above, the cleavage of the Se�O
linkage produces [CH3SeSe]

� þ [OH] 3 , while for the disulfide
[CH3SS] 3 þ [OH]� is obtained. This is so because the EA of the
[OH] 3 radical (1.74 eV) is slightly higher than that of [CH3SS] 3
(1.72 eV) but significantly lower than that of [CH3SeSe] 3
(1.91 eV), likely reflecting a smaller interelectronic repulsion,
due to the more diffuse orbitals of Se. The different EA of the
[CH3SS] 3 , [CH3SeSe] 3 and [OH] 3 radicals also helps us to
rationalize the different mechanism of the S�O and Se�O bond
cleavage. Due to the similar EA of the [CH3SS] 3 and [OH] 3
fragments, the extra electron is nearly delocalized between both
moieties (their NBO charges being 0.48 and 0.52 e, respectively),
and a conical intersection is needed to accomplish the charge
localization after bond breaking, in a similar fashion as in the cleavage
of the Se�Se bond previously described. However, the dissimilar
EA of the [CH3SeSe] 3 and [OH] 3 produces the extra electron to
be more localized on the former (the NBO charges being
0.60 and 0.40 e, respectively), favoring its dissociation into
[CH3SeSe]

�þ [OH] 3 throughTS_b3 (See Figure 9). Although
for both [CH3SSOH]

� and [CH3SeSeOH]
� the most favorable

process from a thermodynamical viewpoint is the release of H2O
(see Figure 9 for the diselenide and Figure 10 of ref 54 for the
disulfide), the mechanisms behind are significantly different. In

both cases water is formed by a proton transfer from [CH3AA] 3

toward [OH]�, but the mechanism by which these two species
are formed is different if A = S or Se. While in the case of
[CH3SSOH]

� the breaking of the S�O bond directly leads to
[CH3SS] 3 þ [OH]�, the same process for [CH3SeSeOH]

�

leads to [CH3SeSe]
� and [OH] 3 , and a subsequent charge

transfer to produce [OH]� through a quite high barrier
(MECP1 of Figure 9) associated with a conical intersection is
needed. As a result, the production of water should be much
more likely to occur in [CH3SSOH]

� than in [CH3SeSeOH]
�.

Figure 9. Energy profile associated with the main fragmentations of [CH3SeSeOH]
�. The paths leading to the loss of CH4 and H2O are highlighted in

red. Relative ΔH values (in kJ mol�1) calculated at the CCSD(T)/aug-cc-pVTZ level are displayed under each structure. For the MECP1, MECP2,
TS_b3, and 3 structures, the CASPT2 method was used instead.

Figure 10. Four lowest states of theMECP structures corresponding to
the transition between the [CH3AA]

� þ [OH] 3 and [CH3AA] 3 þ
[OH]� products for (a) [CH3SSOH]

� and (b) [CH3SeSeOH]
�. Each

state is characterized by its SOMO and its relative energy (in kJ mol�1)
in parentheses calculated at the MS-CASPT2/aug-cc-pVTZ level.
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Interestingly, for [CH3SSOH]
� is its dissociation into

[CH3SS]
� þ [OH] 3 the one that occurs through a CI involving

D0, D1, and D2 (See Figure 10), which constitutes the first
example of a three state crossing in a thermal reaction occurring
in the ground state.63 These three states correspond to one
allocating the unpaired electron in a π*(S�S) orbital (ground
state of [CH3SS] 3 ) and another two where the unpaired electron
is in a p orbital of O (the 2Π ground state of [OH] 3 ) (see
Figure 10a). In contrast, for the diselenide analogue the C�H 3 3 3O
interaction, which stabilizes MECP1, breaks the degeneracy of
the two p orbitals of O (see Figure 10b).
However, the mechanism of the ECD of disulfides and

diselenides shows many more differences from a quantitative
point of view. As previously mentioned, diselenides are better
prepared to accommodate the extra charge due to the more
extended orbitals of selenium. Consequently, their unimolecular
fragmentations show higher reaction barriers than disulfides, and
the final products also lie higher in energy (see Table 2).
Experimentally, however, diselenides are stronger reductants
than disulfides.17,64,65 The conciliation between this experimen-
tal evidence and the fact that the activation barriers for the
unimolecular fragmentation of diselenides are higher than for the
disulfide analogues suggests that other processes, such as the
ejection of the extra electron, may compete with the ECD.
Indeed the EA of these systems (see Table 2) is smaller than
the energy required to break the A�A and A�X bonds. This
means that a complete picture of the reductive ability of disulfides
and diselenides should consider the electron detachment reac-
tion. A first estimate about the extent of this reaction can be
obtained from the EA values, which indicate that the electron
release process should be less important for diselenides than for
disulfides, which would be coherent with the higher reductant
strength of the former.

’CONCLUSIONS

Based on what has been generally assumed for disulfides and
some experimental results on simple diselenides, like dimethyl-
diselenide, one might expect that the electron capture on
diselenides XSeSeX0 produces a fragmentation of the Se�Se
bond. However, our results indicate that this is the case only
when the substituents X and X0 attached to the diselenide linkage
have low electronegativity. Also importantly, even when the two
substituents are of similar electronegativity, the Se�Se bond
cleavage rarely is an adiabatic process.

In our detailed mechanistic study of the different unimolecular
reactions triggered by electron attachment to CH3SeSeX dis-
elenides, we have found that, quite surprisingly, the most favorable
processes, from a thermodynamic point of view, correspond to the
release of neutral molecules: CH4, NH3, H2O, and HF. Never-
theless, these products are only likely to be observed for very high
electronegative substituents X such as F due to two factors:
(i) the occupation of theσ*(Se�X) antibondingMOby the extra
electron is favored when X is a very electronegative element,
facilitating the breaking of the Se�X bond and (ii) the activation
barrier associated to the proton transfer which produces HF is
rather low. Although both conditions (i) and (ii) are fulfilled for
X = O, the release of H2O is disfavored because the breaking of
the Se�O bond produces a hydroxyl radical (3), which has to
undergo an internal charge transfer through a very high conical
intersection barrier to obtain a precursor (4) with the proper
charge distribution to produce [CH2SeSe] 3

� þ H2O.
For low-electronegative X substituents, the extra electron is

placed in the σ*(Se�Se) antibonding orbital, and the cleavage of
the Se�Se bond is the most favorable process. However, the
mechanism of this bond breaking is more intricate than pre-
viously assumed since, although for symmetric systems, such as
HSeSeH or CH3SeSeCH3, it is strictly adiabatic, for the asym-
metric CH3SeSeNH2 it proceeds through a CI. This crossing
between two states is necessary to localize in one of the two
fragment products the extra electron, which in the anion is
delocalized in the σ*(Se�Se) antibonding MO. These findings
emphasize the importance of using accurate ab initio calculations
for the study of electron attachment dissociations of diselenides
and, perhaps, other related processes. Many reactions in bio-
chemistry and organometallic chemistry are usually investigated
by DFT-based methods due to the size of the systems. However,
the characterization of a CI requires the use of multireference
methods to account for the mixing of states. This methodological
problem has recently been addressed by Shaik and co-workers66

in the study of the active site of enzymes cytochromes P450 and
chloroperoxidase, where the use of CASPT2/MM calculations
might change the multistate reactivity of these systems by
including some states not present in the DFT/MM picture.

When X is highly electronegative, the σ*(Se-X) antibonding
orbital becomes highly stabilized with respect to the σ*(Se�Se)
strongly favoring the cleavage of the Se�X bond.

Finally, when comparing the present results on diselenides
with those of the disulfide analogues, it is apparent that the
activation barriers and the final products of the different

Table 2. Reaction Barriers (B) and Dissociation Energies (DE) of the Cleavage of the A�A and A�X Bonds and the Subsequent
Hydrogen-/Proton-Transfer Process (Htransf) to Lead to the Loss of Neutrals (CH4, NH3, H2O, and HF) for the CH3AAXHn

(A = S, Se; X = CH3, NH2, OH, F) Systemsa

barriers / X B(A�A) DE(A�A) B(A�X) DE(A�X) Htransf AA þ XHnþ1 EA

C S 83b 111b 80b 116b 16b 23c

Se 121 112 118 130 66 53d

N S 33 35b 32b 52b 78b �20b 0c

Se 48 93 41 99 111 40 49d

O S 33 83b 56b 90b 4b �37b 11c

Se 64 135 54 151 140 44 73d

F S 21b 63b 0b 23b 77c

Se 39 103 0 57 124d

aThe adiabatic EA of the neutral systems is also displayed. All values are in kJ mol�1. bTheoretical values taken from ref 62. cTheoretical values taken
from ref 58. dTheoretical values taken from ref 39.
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unimolecular reactions are higher in energy for the diselenides, in
spite of their higher antioxidant strength. This seems to indicate
that the electron detachment process, less favorable for disele-
nides than for disulfides, competes with the ECD process and
therefore should also be considered. However, a more detailed
study of the electron detachment process needs to be carried out
to validate this hypothesis.
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ABSTRACT: Understanding charge transport processes at a molecular level is currently hindered by a lack of appropriate models
for incorporating nonperiodic, anisotropic electric fields in molecular dynamics (MD) simulations. In this work, we develop amodel
for including electric fields in MD using an atomistic-to-continuum framework. This framework provides the mathematical and the
algorithmic infrastructure to couple finite element (FE) representations of continuous data with atomic data. Our model represents
the electric potential on a FE mesh satisfying a Poisson equation with source terms determined by the distribution of the atomic
charges. Boundary conditions can be imposed naturally using the FE description of the potential, which then propagate to each atom
throughmodified forces. Themethod is verified using simulations where analytical solutions are known or comparisons can bemade
to existing techniques. In addition, a calculation of a salt water solution in a silicon nanochannel is performed to demonstrate the
method in a target scientific application in which ions are attracted to charged surfaces in the presence of electric fields and
interfering media.

1. INTRODUCTION

The application of molecular dynamics (MD) simulations for
understanding complex processes at the atomic scale has wit-
nessed a radical improvement in the past three decades.1 At
present, however, most MD simulations are still performed in
periodic domains due to the difficulty of accurately prescribing
boundary conditions that break the spatial symmetries and
enable many problems of scientific and technological interest
to be examined. For example, simulating the electric double layer
that forms at the interfaces of charged surfaces and ionic
solutions is difficult to model with conventional techniques
based on periodic boundaries in applications where the domain
is anisotropic or the application of boundary conditions is
required. The recent United States Department of Energy Basic
Energy Sciences report2 on research needs in electrical energy
storage devices points to the inability to represent inhomoge-
neous electric fields within MD as one of the most important
barriers to MD playing a role in modeling charge transport in
batteries and supercapacitors. This statement is a direct conse-
quence of the aforementioned difficulty in breaking spatial
symmetries in MD simulations. By examining the current
methods for incorporating long-range electric field effects in
MD, the limitation can be better understood.

MD simulations achieve their computational efficiency by
using a cutoff radius, rc, such that any two distinct atoms R
and β only interact if the distance between them, rRβ, is such that
rRβ < rc. The forces that convey the interactions are determined
by the potential energy of the system comprised of empirical
functions dependent on interatomic distances. The functional
form of most MD potentials is such that the decay rate with
distance is fast, implying the cutoff radius approximation is appro-
priate. However, the electric potential between two charged
particles only decays as rRβ

�1, so possibly an infinite amount of
energywill be artificially removed from the system if this interaction

is truncated. Because including an interaction between any two
atoms requires both additional memory storage and increased
computational time, directly simulating charged atoms is intractable
for all but the smallest systems. Therefore, algorithms which can
approximate the Coulombic interaction between particles have
been developed to model charged systems while retaining the
scalability and the efficiency of MD. Two common approaches
for computing long-range electrical interactions are Ewald
summations3 and the particle�particle/particle�mesh (PPPM)
method.4 Other notable long-range interaction methods are the
particle�mesh Ewald technique5 (similar to the PPPM method),
charge sheets,6 and the fast multipole method7 for long-range
Coulombic forces and the Ewald method for long-range dispersion
forces.8

Long-range methods for calculating electrical forces are often
derived from the following decomposition of the electric poten-
tial due to point charges:

U ¼ k
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where continuous charge densities FR are introduced based on
the idea that long-range forces are less sensitive to the location of
the charges. In eq 1,U is the total electrostatic potential energy of
the system as a function of all the atoms in the system, denoted by
the set A and indexed by R and β (separated by distance rRβ)
with each atom having a charge qR. Coulomb’s constant is
represented by k. The first term accounts for short-range inter-
actions between particles, while the remaining terms describe the
long-range effects of smooth charge distributions associated with
each atom, FR. In both the PPPM and Ewald methods, the short-
range sum is truncated to include only near neighbors, while FR is
represented using a Gaussian distribution as a finite-width
approximation to the Dirac δ function (although this is not
strictly required by the PPPM method). While the terms based
on FR appear redundant, this form of the equation is amenable to
separation between short- and long-ranged interactions based on
a cutoff radius. In this mode, the first term accounts for the
electrostatic interaction between two charges within the cutoff
radius. It is corrected by the second term, which is needed when
the charge density of every atom is used to compute the third
term in eq 1 for the long-range interactions. Ewald sums
analytically solve this equation using the Fourier space repre-
sentation of the convolution of each FR. The PPPM method
instead restricts FR to a grid and then computes its Fourier
transform to quickly solve for the total electrostatic potential. Of
the two, the PPPM approach is more widely used than the older
Ewald sum, particularly for large systems.9 It can be further
accelerated by choosing “assignment functions” narrower than
FR to interpolate the forces and correcting the potential solve
with a modified Coulomb Green’s function.4

Despite the differences in performance that drive the pre-
ference of one method over the other, both use analysis in
Fourier space to solve eq 1 and thus are applicable for systems
containing at least one periodic direction. Further, there is no
mechanism within the methods to assign commonly needed,
general boundary conditions associated with continuous poten-
tial fields. Methods to enable these types of simulations have
been successfully developed for specialized geometries. For
example, two-dimensional Ewald sums have been used in slab
geometries.10�12 An alternative is to use the full three-dimen-
sional Ewald sums and extend the computational domain in
the nonperiodic direction,13 although the domain may need to
be enlarged three to five times in extent, thus increasing the
computational expense and introducing Gibbs artifacts.14 These
approaches have been used to simulate a variety of physically
important systems. Examples include a silicon nanochannel with
dissolved NaCl15 (a correction term is used to account for the
channel’s dipole moment),16 biological membranes,17,18 and
ions at liquid/gas interfaces for systems with a net charge.19

In addition, a great deal of expertise using these methods has
been developed in the research community, and they have
been extensively compared against each other to determine the
most appropriate long-range electric field model for a particular
problem.9,20,21

While much work has been done to examine fully periodic and
slab periodic systems, the authors are unaware of any general
formulation applicable to systems without periodicity. The
present work aims to provide such a framework by developing
a new method for computing the electric field within an
atomistic-to-continuum (AtC) framework. AtC methods involve
coupling the discrete atomic dynamics in MD to spatially
continuous processes represented by finite elements (FE). See

the review article of Miller and Tadmor22 for a comparison of
AtC approaches for mechanics simulations in which the FE
represents continuous displacements and stresses. For this
application, however, the FE will compute the long-range electric
field, while the MD calculates the atomic motion. Shape func-
tions associated with the elements enable projection of the
atomic point charges to a continuous function spanned by the
FE basis. In this way, the present AtC approach can be thought of
as extending the PPPM method to a general basis set beyond
harmonic functions. The next section describes the mathematical
formulation required to apply AtC techniques to resolving
electronic interactions of particles over distances longer than
the cutoff radius of their Coulombic interactions. The algorith-
mic framework used in this work is based on multiscale AtC
coupling23 as implemented in the MD code LAMMPS (see
ref 24 and http://lammps.sandia.gov for more details about
LAMMPS). The theory section is followed by Section 3 which
presents some example calculations to demonstrate the method’s
performance and applications. Finally, some conclusions are
offered in Section 4.

2. MATHEMATICAL FORMULATION

2.1. Mathematical Framework for Multiscale Modeling.
Themultiscale modeling framework used in this work is based on
approximate FE projections of MD data to restrict atomic
quantities to a FE mesh and corresponding interpolation opera-
tors to compute FE quantities on atoms.23 The FE method is
founded on approximating arbitrary integrable functions with a
subset of functions contained in a space W . In the case of a
continuous charge density field F(x) for x ∈Ω⊂ R3, F is weakly
equivalent to a function F̂(x) ∈ W ifZ

wF̂ dV ¼
Z

wF dV , " w ∈ W ð2Þ

Now assume that the spaceW can be spanned by a finite number
of basis functions, denoted shape functions, with the Ith function
written as NI, where indices I are in the finite set F . Then the
approximate charge density field can be written as

F̂ ¼
X
I ∈ F

NIðxÞFI , " x ∈ Ω ð3Þ

where FI is the nodal charge density associated with the Ith shape
function. In order to determine the nodal charge densities FI, the
function F is projected onto W in the least-squares sense
according to the Bubnov�Galerkin formulation:X

J ∈ F

FJ

Z
Ω
NINJdV ¼

Z
Ω
NIFðxÞdV , " I ∈ F ð4Þ

In standard FE notation,
R
ΩNINJ is the IJth entry of the “mass

matrix”, while
R
ΩNIF(x)dV is the inner product of the contin-

uous function F and the Ith FE basis function.
With this formulation, the set of equations, eqs 2�4, is strictly

only appropriate for reducing the dimensionality of continuous
functions, so it must be modified to account for the discrete
nature of atomic quantities in MD. Typically, FE data take the
form of nodal densities (i.e., charge density), while the atomic
data are primitive variables (i.e., charge). These distinct quan-
tities can be related by defining atomic densities using a small but
finite associated volume, ΔVF

R (to be determined later). In this
work, it is assumed that theMD and FE domains exactly coincide.
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Because continuous integration is not well-defined over the
discrete atomic locations, the projection of a continuous function
onto its FE representation is performed in this work by summa-
tion over the atomic charges qR:X

J ∈ F

FJ

Z
Ω
NINJdV ¼

X
R ∈ A

NR
I

qR

ΔVR
F
ΔVR, " I ∈ F ð5Þ

using the approximation:

FðxRÞ � FR ¼ qR

ΔVR
F

ð6Þ

following the ideas introduced by Wagner et al.23

In eq 5, two notions of associated atomic volume are
present. The physically motivated ΔVF

R is a measure of the
space occupied by atom R such that FR is an approximation of
the true bulk density. In contrast, ΔVR is an integration quad-
rature weight used to make the discrete sum approximate the
continuous integral. While there is no requirement that these two
volumes associated with atom R be equal, equating the two
atomic volumes, i.e., ΔVF

R = ΔVR, will prove advantageous.
This equality enables the fundamental relationship between a
continuous density and its associated atomic quantity to be
derived asX

J ∈ F

FJ

Z
Ω
NINJdV ¼

X
R ∈ A

NR
I q

R, " I ∈ F ð7Þ

The notation used in these equations and the remainder of this
work is as follows. Indices in the setF are denoted by subscript
Roman letters, while superscript Greek letters denote atomic
indices from the setA enumerating the atoms in the system.NI

R

then denotes the value of the shape function associated with node
I at the position of atom R, i.e., NI(x

R). The variables F and q
denote charge density and charge, respectively. In the sequel, all
explicit set associations will be removed except where needed for
clarity.
To verify the appropriateness of eq 7, it can be related to

continuum models of fluid flow by differentiating it with respect
to time. On the right-hand side, the result is

d
dt

X
R

NR
I q

R ¼
X
R

qR
d
dt
NR
I ¼

X
R

qRrNR
I 3 v

R ð8Þ

The time derivative of the left-hand side produces two terms:

d
dt

X
J

FJ

Z
Ω
NINJdV

2
4

3
5¼X

J

dFJ
dt

Z
Ω
ðNINJdVÞ þ FJ

Z
Ω

d
dt

ðNINJdVÞ
" #

ð9Þ
The term multiplying dFJ/dt is the standard FE mass matrix
while Z

Ω

d
dt

ðNINJdVÞ ¼ d
dt

Z
Ω
NINJdV

� �
¼ 0 ð10Þ

because the shape functions are fixed in the spatial domain and do
not change with the movement of the atoms. To get eq 8 into the
appropriate form, considerX

R
qRrNR

I 3 v
R ¼

X
R

rNR
I 3 ðFRvRÞΔVR

�
Z
Ω
rNI 3 ðFvÞdV

The accuracy of the approximation of this equation is a function
only of the approximate MD quadrature with weights ΔVR.
The standard, continuous time evolution equation for density

F is

dF
dt

þr 3 ðFvÞ ¼ 0 ð11Þ
which has the usual FE approximation:X

J

dFJ
dt

Z
Ω
NINJdV ¼ �

Z
Ω
NIr 3 ðFvÞdV ð12Þ

¼
Z
Ω
rNI 3 ðFvÞdV �

Z
Γ
NIðFvÞ 3 ndS ð13Þ

where Γ is the boundary of the set Ω. Hence, if the atomic
quadrature is exact and if there is no flux of atoms in or out of the
system, then the standard FE approximation to the charge con-
servation equation is obtained which verifies the approach0s con-
sistency. The precision of the quadrature is related to the number of
atoms in each element, so as the ratio of atoms per element becomes
large, the correct continuous transport equation is recovered.
2.2. Electric Field Model. 2.2.1. Long-Range Electric Field.

The emphasis of this work is on the formulation of an AtC
electric field in which long-range interactions are computed on a
FE mesh and communicated to the atoms, while short-range
interactions are modeled directly by Coulombic interactions to
maintain high fidelity. Each charged atom contributes to the
electric potential, and because the potential is long-range, a direct
restriction of the electric potential would be prohibitively costly,
just as direct computation of the long-range Coulombic interac-
tions is costly. Instead, the equation governing the electric
potential will be solved on the FE mesh. The continuous
equation governing the electric potential is

r2j ¼ � 1
ε0

F ð14Þ

with ε0 being the dielectric constant.
It is now necessary to determine what FE equations the

electric potential should satisfy. Standard FE practice is to
multiply by the shape functions and integrate by parts to reduce
the smoothness requirements on the solution, a procedure
which produces:Z

Ω
rNI 3rjdV ¼ 1

ε0

Z
Ω
NIFdV �

Z
Γ
NIE 3 ndS ð15Þ

Here, the electric field is given by E = �3φ and must be
prescribed on boundaries with a free potential φ. If the FE
electric potential is approximated by an expansion in the shape
functions:

ĵðxÞ ¼
X
I

NIðxÞjI ð16Þ

and the continuous charge density is approximated by the FE
projection in eq 7, the FE equation for the potential isX

J

jJ

Z
Ω
rNI 3rNJdV ¼ 1

ε0

X
J

FJ

Z
Ω
NINJdV �

Z
Γ
NIE 3 ndS

ð17Þ
where we recognize the first matrix

R
Ω3NI 33NJdV as the usual

“stiffness’’matrix of FE and the second
R
ΩNINJdV as the “mass’’
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matrix. In contrast to the AtC projection, continuous integrals
are retained because all quantities involved are continuous. This
difference highlights the contrast between intrinsic (atomic-
based) and extrinsic (non-atomic-based) fields.

2.2.2. Atomic Electric Field. The equations described in the
previous section provide a straightforward definition for the
electric force on an atom due to the FE electric potential:

fRe, FE ¼ qRE ¼ � qRrĵðxRÞ � � qR
X
I

rNR
I jI ð18Þ

While this force could account for the entirety of the electrical
interactions present in a system of interest, it would be
impractical because the FE mesh resolution would have to be
such that there were more elements than atoms to obtain a grid-
converged solution. Alternately, all the Coulombic interactions
could be explicitly incorporated according to

fRe,C ¼
X
β ∈ A

β 6¼R

kqRqβ

r2Rβ
r
0
Rβ ð19Þ

where rRβ
0
is the unit vector in the direction of rRβ = xβ � xR.

In order to effectively blend eqs 18 and 19 into a unified
formalism, the FE electric field must be split into two parts:
φ̂ = φ̂lRþ φ̂

sR. The first term, φ̂lR, represents the potential due to
charges from all atoms outside of the cutoff radius,A \N R, and
the imposed boundary conditions, i.e., the long-range interac-
tions. It satisfies eq 17 with a modified nodal charge density FJlR

given by X
J

FlRJ

Z
Ω
NINJdV ¼

X
βA ∈ N R

Nβ
I q

β ð20Þ

The second part of the decomposition, denoted by φ̂sR, accounts
for the short-range contributions to the potential due to charges
from individual atoms within the cutoff radius of atom R, i.e.,
β ∈N R, whereN R is the set of neighbors of atom R (including
R itself). It is computed by solving eq 17 with homogeneous
boundary conditions and a nodal charge density FJ

sR defined with
a modification of eq 17:X

J

FsRJ

Z
Ω
NINJdV ¼

X
β ∈ N R

Nβ
I q

β ð21Þ

Note that the decomposition is different for each atom and hence
the dependence of the superscript on R.
While the equations discussed in the previous subsection

describe the FE component of the electrical interaction, combin-
ing the Coulombic interactions with two components of the
electric field decomposition will provide a mechanism to balance
fidelity and cost of the method. Tractability implies that a finite
cutoff distance is needed, as is standard in MD.3 Outside of this
cutoff, the only information regarding charge interactions be-
tween two particles is provided by the large-scale electric field.
However, inside this cutoff radius the electrostatic force is most
accurately described by Coulomb’s law. Within this framework,
the total electrostatic force on atom i is

fRe ¼
X

β ∈ N R

kqRqβ

r2Rβ
r
0
Rβ � qRrĵ lRðxRÞ ð22Þ

The force has been decomposed into a Coulombic and FE
long-range force. Recall the potential decomposition implies:

rĵ lRðxRÞ ¼ rĵðxRÞ �rĵsRðxRÞ ð23Þ
Because the potential satisfies a linear equation, the short-range
potential can be expressed as the sum of the electric potentials
due to single atoms:

ĵsRðxRÞ ¼
X

β ∈ N R

φ̂
β ð24Þ

where the notation ĵβ has been used to denote the potential
arising from the charge associated with atom β only with
homogeneous boundary conditions. By using eq 23 and eq 24,
eq 22 can be rewritten as

fRe ¼
X

β ∈ N R

kqRqβ

r2Rβ
r
0
Rβ � qR rĵðxRÞ �

X
β ∈ N R

rφ̂
βðxRÞ

2
4

3
5

¼
X

β ∈ N R

kqRqβ

r2Rβ
r
0
Rβ � qRrĵðxRÞ þ qR

X
β ∈ N R

rφ̂
βðxRÞ

ð25Þ
Equation 25 partitions the total electrostatic force between the
exact Coulombic part at short ranges and a corrected FE
accounting for the long-range energy and boundary conditions.
Accounting for a smoothly decreasing Coulombic energy

between particles as occurs in many MD potentials (e.g.,
CHARMM)25 is straightforward in this approach. Equation 22
is modified as follows:

fRe ¼
X

β ∈ N R

hðxR, xβÞkq
Rqβ

r2Rβ
r
0
Rβ � qRrĵ lRðxRÞ

� qR
X

β ∈ N R

½1� hðxR, xβÞ�rφ̂
βðxRÞ

where h is an arbitrary smoothing function. The resulting total
force decomposition is

fRe ¼
X

β ∈ N R

hðxR, xβÞkq
Rqβ

r2Rβ
r
0
Rβ � qRrĵðxRÞ þ qR

X
β ∈ N R

hðxR, xβÞrφ̂
βðxRÞ

Given the expression for the total electrostatic force acting on
atom R in eq 25, the Coulombic interaction is computed from
theMD, while the large-scale electric field is applied directly from
the FE. It therefore remains to determine an effective manner in
which to compute the contribution of the electric field at an atom
strictly from its neighbors. Directly solving for the electric
potential based on this set is a burdensome cost because it must
be repeated over every atom and scales with the size of the FE
mesh; a potentially significant burden for large three-dimensional
grids. Instead, a method using Green’s functions, GI(x) = ∑KNK-
(x)GK

I , computed on the FE mesh is preferable because it can be
used to efficiently invert eq 17. The Green’s function associated
with the Ith node satisfies the system of equations:X

K

GI
K

Z
Ω
rNJ 3rNKdV ¼ 1

ε0
δIJ ð26Þ

with δIJ being the Kronecker δ. Boundary conditions are taken
to be homogeneous by definition in eq 26. The factor of 1/ε0,
while not necessary, is retained to facilitate later notation. The
nodal variables GJ

I define the response of each mesh node, J,
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to an impulse at the Ith node, and can be recognized as scaled
coefficients of the inverse stiffness matrix. A solution for the
total potential at every node I can be written as

jI ¼
X
J

GJ
I fJ �

Z
Γ
NIE 3 ndS ð27Þ

where

fJ ¼
X
K

FK

Z
Ω
NJNKdV ð28Þ

Using this formulation, the potential due to only the neighbors
is defined by two operations:X

J

FβJ

Z
Ω
NINJdV ¼ Nβ

I q
β, " β ∈ N R ð29Þ

φ
β
I ¼

X
J

FβK
X
K

Z
Ω
NJNKdV

 !
GJ
I ð30Þ

This framework allows the potential at atom β due to its
neighbors to be easily evaluated. However, rather than solving
eq 30 directly, substituting into it the right-hand side of eq 29
yields

φ
β
I ¼

X
J ∈ F β

Nβ
J q

βGJ
I ð31Þ

obviating the need to solve eq 29 for FJβ. In fact, making a
similar substitution in eq 17:X

J

jJ

Z
Ω
rNI 3rNJdV ¼ 1

ε0

X
R

NR
I q

R þ
Z
Γ
NIE 3 ndS ð32Þ

means that F̂ itself need never be computed except as required
for postprocessing, saving the computational cost of a matrix
inversion . More importantly, eq 31 has been “localized” such
that rather than have every node J included in the sum, instead
a much smaller set, denoted byF β, is required. It is the set of
shape function indices whose support includes atoms in the
set N β. A graphical example is shown in Figure 1, and an
algorithm for its determination is provided in algorithm 1
(see Chart 1). This algorithm guarantees that all nodes with
shape functions corresponding to atom pairs that could be
neighbors, if one of them is in the support of node I, are
included but no others are. If the mesh size is bounded below,
then the number of nodes retained in each sparsity pattern is
bounded above and is independent of the total number of
nodes in a mesh. This allows the short-range interactions to be
correctly accounted for in an efficient manner.
The operation count for computing the short-range FE field

using eqs 31 and 32 scales as O nA nN R

� �
), where nA is the

number of atoms, and nN R is the average number of neighbors
per atom because nN R sums must be performed per atom. This is
the same operation count as is needed to evaluate the long-range
Coulombic interactions and naturally fits into the spatial decom-
position mode of parallelism. However, the factor contained in
the scaling itself depends on the number of FE nodes because
each term in the sum involves a vector of data at each node. If a
highly refined grid is used, the cost of evaluating the short-range
FE electric forces will dominate the short-range Coulombic force
computation.

2.3. Boundary ConditionModels. Imposing classical bound-
ary conditions on MD systems presents a challenge because, at
the scales of MD, boundary conditions are actually fluctuating
quantities rather than fixed constraints. This section describes
how some relevant types of boundary information can be
applied within the present methodology. The first boundary
conditions considered are Neumann conditions, which involve
the normal derivatives that appear explicitly in eq 15. If the
system is immersed in a strong and known electric field, setting
E at the boundaries to this quantity will impose the correct
conditions. It can also be based on known currents because
these are proportional to the electric field strength. If far-field
data indicate there is no overall electric field or current, E
should be set to zero because that is correct on average.
Accounting for the fluctuations in the boundary conditions as
a result of the unsteadiness of the physics at the nanoscale is
beyond the scope of this work.
The next case of interest is a charged infinite surface, which

will occur in an MD calculation if one or two dimensions

Figure 1. Schematic of the short-/long-range decomposition of the
atoms within a cutoff radius and the nodes for whichGI

J is nonzero. Blue
atoms are within the cutoff radius of the central atom, while red atoms
are not. Similarly, the blue parts of the mesh denote the set of nodal
Green’s functions which must be retained for that atom, while the nodes
in red part of themesh will not contribute to the correction of the electric
potential.

Chart 1. Determination of Green’s Function Sparsity Pattern
for node I
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parallel to the surface are periodic. Because an infinite surface
carries infinite charge, a potential cannot be assigned to this
surface. Rather, a bulk electric field should be applied perpen-
dicular to the surface with strength based on the desired surface
charge density. At the surface, the potential is set to zero so that
the total electric potential is the superposition of two potentials
arising from different sets of charge: (1) the charge that
generates the bulk electric field and (2) the charged particles
represented in the MD.
In addition to the surface charge, special considerations must

be given for periodic boundaries. Within the current imple-
mentation, the potential is not computed in Fourier space and
therefore cannot be determined to a global constant. Instead, a
single (arbitrary) node is fixed to an arbitrary value, although
other methods are possible (e.g., setting a global constraint on
the average potential). A prerequisite for this approach is the
net charge within the simulation box is zero, otherwise the
spatially varying component of the potential due to point
charges cannot be periodic. Further complications arise from
the Green’s function equation, eq 26. The Green’s function of
interest in this case is nonperiodic and infinite because the
short-range charges should affect only interacting pairs rather
than the infinite number of interactions of an atom with all the
periodic images of its neighbors. Overcoming this challenge is
possible, for example, the infinite Green’s function can be
approximated on a larger mesh or the analytic Green’s function
projected onto the existing basis. However, this approach will
be deferred to future work. Instead the PPPMmethod is used to
account for the electric forces in those directions, while the AtC
approach only applies forces in the nonperiodic directions even
though the electric potential is three-dimensional. A small error
is introduced using this approach because the nonperiodic
component will have a slight overcorrection due to the presence
of its periodic images.
A final case of interest is the inclusion of a finite, fixed

potential surface. For the purpose of developing appropriate
models of such a surface in this work, a fixed potential surface is
defined as a surface with a prescribed charge distribution such
that the desired potential is the self-induced value everywhere
on the surface. In contrast, a surface with a fixed charge will
have a varying potential due to the presence of external charge
sources, such as point charges. In large systems, it is reasonable
to assume that an external voltage will maintain a potential
roughly constant in time, but at the small time and length scales
present in MD, this is an approximation. The surface charge
would also depend on the electronic properties of the surface.
For example, the surface charge in a conductor will vary to
maintain the absence of an electric field inside the conducting
body, while other surfaces would require a more complex
relationship between surface charge and voltage. These effects
are not included in the surface charge model that follows but are
somewhat mitigated by the inclusion of short-range interac-
tions with the wall.
Consider a fixed charged on a finite surface specified on a set of

FE faces that must not be periodic in any direction. Because the
faces are finite, a constant surface charge density will notmaintain
a constant potential. The potential due to a continuous charge
σ(x) on a surface can be determined by

VðxÞ ¼
Z
S

kσðsÞ

)x� s )

dS ð33Þ

The FE projection for the voltage isX
J ∈ I

VJ

Z
S
NINJdS ¼

Z
S
NIVðsÞdS

¼
Z
S
NI

Z
S0

kσðs0Þ

)s� s0 )

dS0
� �

dS, " I ∈ I

ð34Þ
where I is the set of FE nodes belonging to surface S. The
integral on the right-hand side of eq 34 can be evaluated using
standard FE face quadrature. As an aside, if the charge distribu-
tion is also defined by a FE expansion, then eq 34 becomes
X
J ∈ I

VJ

Z
S
NINJdS ¼

X
J ∈ I

σJ

Z
S
NI

Z
S0

kNJ

)s� s0 )

dS0
� �

dS, " I ∈ I

ð35Þ
Equation 35 defines a linear relationship between the nodal
potential on a surface and its associated nodal charge. The nodal
charge for a fixed potential can be determined by solving eq 35 for
σJ while setting VJ to be fixed.
Within the multiscale framework for the electric potential, the

surface charge will play a similar role to the atomic charges in that
they both induce a long-range potential and provide short-range
interactions. To consider these types of interactions, we further
expand eq 25 by accounting for the surface charge in the electric
potential:

fRe ¼
X

β ∈ N R

kqRqβ

r2Rβ
r
0
Rβ þ qR

X
I

σI

Z
S ∩ BðxR, rcÞ

kNI

)xR � s )2
r
0
RβdS� qRrĵR

þ qR
X

β ∈ N R

rĵβðxRÞ þ qR
Z
S ∩ BðxR, rcÞ

rĵR
s dS ð36Þ

The first integral accounts for the exact short-range force exerted
by the surface charge, while the second integral is a correction
removing the effect of the surface charge through the FE
potential on atom R. Both integrals can be evaluated directly
using FE quadrature, although other quadrature schemes are
possible (e.g., based on atoms contained in those faces). The
potential induced by the surface charge can be determined by
computingGreen’s functions for each of the quadrature points by
first solving eq 35 for the induced surface potential of a unit
charge and then solving the electric potential equation treating
the surface as a fixed potential boundary. This results in addi-
tional Green’s functions for each quadrature point in the surface.
In general, these Green’s functions are highly nonlocal because

charge at any point on a surface induces a nonzero potential
everywhere on the surface, as shown in eq 35. However, the
resulting short-range interactions can still be localized by trun-
cating the Green’s functions to only those nodes within a cutoff
radius of the surface, in exactly the same manner as was done for
the point charges. The surface Green’s functions can also be
computed and stored during a precomputation phase. This
method is a low-storage, low-cost approach that accounts for
accurate short- and long-range interactions between chargedMD
atoms and prescribed surface data. An important point to note is
that for any quadrature scheme used to evaluate the surface
integrals in eq 36, each quadrature point will require its own
Green’s function.
2.4. Implementation Details. The methods described above

were implemented in LAMMPSwithin an existingAtC framework.
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This framework generates a FE mesh overlaying a region of atoms
and computes piecewise linear shape function values and deriva-
tives at FE quadrature points and atomic locations. A preprocessing
step first computes the list of neighboring nodes for each node
based on the force cutoff radius according to algorithm 1 (see
Chart 1). Then the stiffness matrix is set up for the electric
potential, eq 32, and used to compute each Green’s function
according to eq 26. Green’s functions are then truncated and stored
in sparse vectors based on the nodal neighbor lists. At the same
time, fixed potential boundary values are determined by eq 34.
Then the Green’s function for each surface quadrature point used
to evaluate eq 34 is calculated by solving eq 32. The bulk of the
work of this method occurs immediately after the LAMMPS force
calculation step, which is between the two steps in the standard
Verlet time integration scheme.1 At each time step, the shape
functions NI

R used in the projection operation eq 7 must be
updated to the new positions of the atoms.
After the shape function-related quantities are updated, the

charges can be restricted using eq 7 with row�sum lumping to
form the right-hand side for the FE electric potential, eq 32,
enabling its calculation using the precomputed stiffness matrix.
Neumann conditions are applied by adjusting the right-hand side
during the solve, while Dirichlet conditions are satisfied by a
penalty method. This method weights the diagonal entry of all
fixed nodes with a value 104 greater than the maximum diagonal
value in the left-hand side matrix. Correspondingly, the right-hand
side is modified by adding the same penalty factor multiplying the
desired potential value. It should be noted that other matrix
solution schemes would perform adequately in this application.
LAMMPS adds in the Coulombic interaction before the present

method is executed, so only the last two terms in eq 25 need to be
accounted for. The first, accounting for the total FE electric field, is
added to all atoms. Afterward, the truncated FE potential asso-
ciated with each atom is computed using the Green’s functions
multiplied by the restricted atomic charges. This preprocessing
step allows the neighbor FE potentials for each atom to be quickly
calculated by summing over the FE potential contribution of all its
neighbors. The potential is then corrected to result in the
appropriate electric force at each atom using eq 25.
Charged surfaces are implemented in an approximate manner.

In a preprocessing step, consistent with a form of row�sum
lumping approximation of eq 34, the potential is determined
from a fixed charge by

VI ¼
X
y ∈ Q

kσðyÞ
jxI � yjwðxI , yÞ ð37Þ

where Qdenotes the location of the Gauss quadrature points on
the face, andw is the associated quadrature weight. This approach
ensures the denominator is always nonzero. To evaluate the
short-range interactions, the nodes are used as effective charge
locations with charge set to the shape-function weighted integral
of the surface charge:

ηI ¼
Z
Γ
NIσðxÞdS ð38Þ

with the integral evaluated using the sameGaussian quadrature as
eq 37. Note that ηI is the effective charge associated with node I
and not a nodal value of a finite element representation of σ̂.
When computing the short-range surface interactions and

corrections in eq 36, only nodes within the cutoff radius of each
atom are considered, and then their Green’s functions are used to

remove the FE potential. As a simplifying approximation, face-
specific Green’s functions are not computed for the charge at
each quadrature point that contributes to the charge at node I in
eq 38. Instead, only their contributions to the potential at node I
are considered, which allows the same Green’s functions, as
those used in eq 31, to be reused. The net effect of all these
approximations is that low-order integration is used to evaluate
the first integral in eq 36, while the correction from the second
integral does not take into account all the long-range impact of
local charge on the fixed potential boundary condition applied
in eq 32.
Improvements to the surface charge fidelity can be made by

improving the order of integration over the surface within the
cutoff radius andmore accurately estimating the impact of charge
associated with quadrature points on the electric potential. A final
improvement in performance can be realized by maintaining
neighbor lists at each surface quadrature point to avoid the search
over all atoms to determine those near a wall. (Walls are currently
implemented in LAMMPS with this more expensive approach as
well.) These improvements in the implementation of charged
surfaces as well as more general models for other types of surfaces
and periodic boundary corrections for eq 25 are deferred for
future work.

3. COMPUTATIONAL RESULTS

3.1. Comparison with Analytic Results. To verify the basic
correctness and implementation of the method, a simple stack of
atoms was set up with fully periodic conditions along the span
(y,z). Periodic conditions on the atomic forces were also used
along the length of the stack (x) to maintain the equilibrium
structure. An FCC lattice structure with spacing 4.08 Å, resulting
in 144 atoms, was used to develop a test case amenable to
analytical solution. Around this lattice a FEmesh was constructed
to represent the continuous charge distributions and electric
field. While the elements have nonzero volume, periodicity in the
y and z directions effectively makes the elements one-dimen-
sional with length 2.04 Å. However the FEmesh is not periodic in
the x direction so fixed potential and electric field boundary
conditions can be applied. The overall structure is shown in
Figure 2a.
The electric field in this case was driven by both boundary

conditions and internal charges. Each atom was given a unit
charge (equivalent of a proton) such that the system’s charge
density was uniform at 5.89� 10�2 unit charges per Å3. The FE
potential was fixed to zero at the left end. At the right end, either
an insulating or a fixed electric field condition was used. The
known boundary conditions and charge densities allow the
analytic solution to Poisson’s equation to be determined. All
the calculations in Section 3 used a 10 Å cutoff radius. As shown
in Figure 2, in both cases the analytic solution is recovered by the
method. This case tests the Poisson solver and projection
operations. The results verify their implementation and demon-
strate that the overall mathematical formulation of the problem is
reasonable given the behavior of the FE system.
3.2. Comparison with Existing Methods: PPPM and Ewald

Sums. Providing a quantitative comparison of the present
method with existing approaches for including long-range elec-
trostatic forces in MD is an important aspect of verifying the
technique. These are primarily PPPM and Ewald sums as
described in Section 1. Since these methods are only appropriate
for periodic systems, a fully periodic FCC lattice system is created
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with dimensions 65.28� 12.24� 12.24 Å3 and lattice spacing of
4.08 Å, composed of 576 atoms. The atoms are uncharged except
for a group with a positive unit charge and a group with a negative
unit charge, as shown in Figure 3 (which also shows the finest
FE mesh). Initial computations were performed with the short-
range Coulombic force disabled so that the only forces acting on
the atoms are the long-range forces generated by the method.
Hence the issues with periodicity affecting the short-range
correction discussed in Section 2.3 do not affect this calculation.
As shown in Table 1, the proposed AtC method produces forces
similar to the other methods. In each case the force acting on the
negatively charged atoms is presented because the net force was
zero for all methods. To see how this is related to the FE fields,
Figure 4 shows the FE charge density and the electric potential

variables. The charge density is simply the approximate projection
of the atomic state and enters into the right-hand side of the
equation governing the electric potential. On the coarsest mesh,
inadequate resolution exists to accurately solve the gradients
needed in this equation, resulting in significant error in the solution.
This test demonstrates the correctness of the theory and

implementation regarding the prolongation of the long-range

Figure 2. Basic verification test case: (a) shows the problem set up,
while (b) presents the results for different boundary conditions.

Figure 3. Schematic of the PPPM and Ewald comparison case with the
present method. Red atoms are positively charged, green atoms are
negatively charged, and blue atoms are neutral.

Table 1. Comparison of the Force Computed by the Long-
Range Electric Fielda

force (g ps/Å2 mol) method/mesh

8.49533 � 106 PPPM

8.49543 � 106 Ewald sums

4.71971 � 106 8 � 1 � 1 elements

8.49547 � 106 16 � 1 � 1 elements

8.49547 � 106 32 � 1 � 1 elements

8.49547 � 106 32 � 2 � 2 elements

8.49547 � 106 32 � 4 � 4 elements
aThe present method, with entries denoted by the mesh size, is shown
along with existing approaches. Execution times were also compared
using software profiling tools. The 16� 1� 1 element AtC computation
was slightly more expensive than the PPPM method and considerably
cheaper than the Ewald summations. As the grid is refined the cost
increases, with the 32 � 1 � 1 and 32 � 2 � 2 element meshes
bracketing the cost of the Ewald solution. Note the AtC electric field
solver has not been optimized, while the existing methods in LAMMPS
and their associated fast fourier transforms are highly optimized.

Figure 4. Finite element fields from the finest mesh used to compare
against the PPPMmethod and Ewald Sums. (a) Charge density and (b)
electric potential using this charge density as a source.
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force from the FE to the atoms, including the use of FE shape
functions to take derivatives of the electric potential. It further
demonstrates that the method has accuracy comparable to
existing methods, even though the finest FE grid had only 256
elements, while the automatically generated PPPM method
required a grid of 2.592 � 106 (320 � 90 � 90) Fourier
collocation points to achieve a relative error of 10�4. This is
the only case considered in this work in which a fully periodic
system could be used because dynamics were not evaluated, and
therefore the short-range FE correction was not needed (recall
the current correction scheme is not designed for handling
periodic directions). However, to use the FE method the node
corresponding to the origin was fixed to have zero potential so
the Poisson equation would be well-posed.
3.3. Comparison with Full Anisotropic Solution. For the

purposes of comparing the proposed method to its alternatives,
there is one other way to incorporate long-range electrical
interactions between charged particles in MD: “brute force”
calculation of the electric field using a finiteMD simulation with a
Coulombic cutoff distance greater than the maximum possible
atomic separation. For most simulations, the cost of building the
neighbor lists and computing the interatomic electrical interac-
tions would prevent application of this method. Furthermore, it
is inappropriate for periodic systems because an infinite cutoff
radius would be required. While such limitations render such an
approach impractical for computations of scientific interest, a
small model problem has been developed that serves as a
surrogate for an electric double layer. This problem also enables
investigation of some of the complex boundary conditions that
can be applied. At the wall, a fixed surface charge condition will be
used, which introduces some error by transforming into a fixed
potential boundary condition at long distances. Also, Neumann
conditions will be used to prescribe the remaining boundary
conditions on the electric field, but as will be shown, this is an
approximation because there is no way of knowing what the
normal component of the electric field should be.

The model system built to examine this case consists of an
FCC gold lattice with spacing 4.08 Å over a horizontal span of
22.44� 22.44 Å2. The lattice is not periodic in any direction, and
these atoms are held fixed. They serve as an effective force field
on a system of liquid argon on top of this structure to a height of
22.44 Å. Dimensions of the box were selected to be themaximum
size such that the neighbor lists could fit in the available memory
and still be long enough for atoms at opposite ends of the box to
be neighbors. The fluid used was argon, which was equilibrated at
300 K for 50 ps with a time step of 0.5 fs using the Nos�e�Hoover
thermostat.26 A schematic of the system, including the FE mesh,
is shown after the equilibration step in Figure 5. Upon creation,
certain argon atoms were randomly chosen to have a positive unit
charge so that during equilibration they tend to separate. Argon
atoms were confined by 9-3 Lennard-Jones (LJ) walls along the
five sides without gold, with the energy given by

E ¼ ε93
2
15

σ93

r

� �9

� σ93

r

� �3
" #

, r < rc ð39Þ

with ε93 = 0.0195 eV and σ93 = 3.45 Å. Interatomic forces were
modeled using LJ interactions, i.e.:

Ei ¼ 4εi
σi

r

� �12

� σi

r

� �6
" #

, r < rc ð40Þ

Parameters for LJ interactions are the energy depth of the well ε,
the length scale σ, and the cutoff radius rc. Gold�gold interac-
tions use ε = 0.724 eV and σ = 2.598 Å, while the argon�argon
model has ε = 0.010 eV and σ = 3.405 Å. A uniform cutoff radius
of 13.0 Å was used for the interatomic LJ interactions, while
rc = 10 Å for the wall and short-range electrical interactions when
using the AtC method. Cross-species interactions were parame-
trized by mixing the potential parameters according to the rules
εij = (εiεj)

1/2 and σij = (σi þ σj)/2.
After equilibration, the top layer of gold atoms is negatively

charged so that it can be exactly screened by the ions. This
configuration is run to a statistical steady state using either only
Coulombic interactions with a long cutoff distance of 40 Å or the
present method with a much more modest cutoff of 13 Å. As
already mentioned, exactly resolving all long Coulombic inter-
actions was the limiting factor in choosing this geometry. The FE
mesh was created to cover the liquid using 7 � 7 � 7 uniform
elements of size approximately 48 Å3. When using the AtC
method the gold atom charge was removed and accounted for by
use of a fixed charge boundary and its corresponding spatially
varying surface potential, as described in the previous section.
Fixing the gold atoms was chosen in order to remove surface
deformation phenomena from the problem, with a consequence
being that the wall acts as a cold surface. Zero normal electric field
(Neumann) boundary conditions were used on all other sides,
which serves as a rough approximation to the true electric field’s
behavior when the long cutoff is used.
This case illustrates the difficulty in exactly translating con-

tinuous boundary conditions to an atomistic setting. An insulat-
ing condition is only appropriate in the limit of an infinitely small
screening layer such that the electric field is zero outside of the
domain of interest. This limit is violated even in the steady state
of this solution and is clearly incorrect during the transient.
Further, the charged surface is treated as a fixed potential surface
by the FE electric potential, when in reality the potential varies
based on the distribution of the atoms. In a true conductor, for

Figure 5. Schematic of the argon/gold configuration. Gold atoms are
yellow, neutral argon atoms are light blue, and positively charged argon
atoms are dark blue. Particles are kept in the box using 9-3 LJ walls at
each unbounded side of the mesh, which is colored using the electric
potential.
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example, the potential and surface charge would change to make
the electric field in the conductor zero. Derivations in this work
have focused on developing the general framework for the long-
range potential in terms of solving an appropriately sourced
Poisson equation in conjunction with the standard fixed potential
and insulating boundary conditions encountered in electro-
statics. While a few enhancements have been made to approx-
imate surfaces with a fixed charge, boundary models to better
account for the physics are left for future work.
Despite the inconsistency noted above, the exact MD

solution can be compared against the MD solution using the
long-range FE electric field. However, it is sufficient to obtain
reasonable quantitative comparisons between the two solu-
tions since the bulk of the potential drop occurs both very near
and perpendicular to the gold surface. In both cases, 24 charged
atoms lie in an immobile layer near the wall, while three remain
mobile above this layer (based on the particles’ trajectories,
one of the free atoms is partially screened). By congregating
near the wall, these atoms screen the electric field so it
drastically reduces in magnitude away from the wall. The
dynamics of these atoms indicate they are highly attracted to
the charged wall as they experience only a vibrational motion
after their adsorption, however there is a limit to how densely
they can be packed.

The AtC method can also be used to extract comparable
quantitative data from the simulation. After the gold is charged,
an initial transient occurs during which the free charged argon
atoms form the immobile screening layer on the wall. It can be
visualized by examining the time history of the nodal charged
argon density adjacent to the wall. The atomic configuration is
visualized in Figure 6, while Figure 7 shows this density
averaged over the first node of the FE calculation (a similar
mesh was set up over the long-range cutoff geometry for
postprocessing only, exactly as in Figure 5). Both cases have
nearly identical rise times with the density in the long-range
case being slightly higher than the AtC case. Given how the data
is partitioned in FE, this indicates the location of the layer is
slightly closer to the wall when the long-range Coulombic
cutoff is used. To determine precisely the difference in the
height of the layers, the simulation is run for an additional
nanosecond with the density data averaged over nodes at the
same vertical distance from the gold. As shown in Figure 8,
despite the approximate nature of the insulating FE boundary
conditions and the low-order quadrature used to implement
the charged surface, good agreement is obtained with the exact
solution when using this method in both quantitative and
qualitative senses.
3.4. Electrolyte Flow in a Silicon Nanochannel. In this case,

flow in a nanofluidic device is considered. A full analysis of this
configuration is beyond the scope of this work, but the case
illustrates how to perform these types of technologically
relevant simulations. Silicon crystals form walls at the top and
the bottom of a region of salt water, which is free to flow in the
wall-parallel directions. Periodic conditions are used to allow
this flow, while the channel walls break the symmetry. Table 2
gives the potential type, coefficients, and source for each pair of
interactions considered in the simulations. References refer to
relevant simulations that used these parameters in similar
physical situations, except for the Stillinger�Weber (SW),
where the originating reference for this potential is provided.
All short-range charged interactions were modeled using Cou-
lombic interactions with a sharp cutoff at 10 Å. Water is
modeled using the TIP328 set of pairwise LJ coefficients and
with charges on the oxygen of �0.830 and the hydrogen of
0.415 in terms of fractions of a proton charge. For the Morse
potential the parameters are the energy D0, inverse length scale

Figure 6. Comparison of the final MD state from: (a) the direct
calculation and (b) the AtC method. See Figure 5 for the color legend.

Figure 7. Time history of the plane-averaged charged argon density at
the FE node adjacent to the gold.

Figure 8. Time-averaged nodal charged argon densities at the
steady state.
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R, equilibrium distance r0, and cutoff radius rc:

E ¼ D0½e�2Rðr � r0Þ � 2e�Rðr � r0Þ�, r < rc ð41Þ
The units used are Å for length and eV for energy. Note that
hydrogen atoms only interact with other atoms electrically. In
general, interactions were chosen to match the model of Qiao
and Aluru15 in the case of the silicon nanochannel.
Figure 9 illustrates the computational geometry. The silicon

planes are initialized in a similar manner to the gold in Section 3.3
except for the periodic boundaries in the transverse direction.
The silicon is arranged in a diamond lattice with the [111] face
toward the water, and then the arrangement is adjusted to
minimize the potential energy to account for the exposed ( z
faces. A box of water containing 16 sodium and 16 chlorine ions
dissolved in 1819 water molecules is initialized for 1 ns, using a
time step of 0.5 fs, in a fixed region using the Nos�e�Hoover
thermostat to maintain a fixed temperature of 300 K and 9-3 LJ
walls to contain the fluid in the wall-normal directions. After
equilibration, the water (without the LJ walls) is inserted
between the silicon planes and allowed to readjust for 1 ns.
During this phase, the water was integrated using Newtonian
dynamics, while the Nos�e�Hoover thermostat was applied to

the silicon so it could thermally regulate the salt water. After the
entire system comes into equilibrium, electric fields of strength
�1 V/nm were applied in the x (wall-parallel) and z (wall-
normal) directions. With these fields in place, ions of opposite
charge are forced to flow along the channel in opposite directions
as well as aggregate to opposite sides of the channel, resulting in
shear flow in the channel. Statistics were captured after running
for 0.1 ns using the method of Zimmerman et al.29

A similar case was originally considered by Qiao and Aluru
using a different methodology to account for the ionic electric
field by applying a wall-normal correction to the Ewald summa-
tions used to compute the long-range electrostatic interactions in
the periodic directions.16 In addition, the potential drop was
applied by fictitiously charging the silicon atoms.
The present method instead decomposes the electric potential

into three components and uses themost appropriate method for
each. To account for the applied voltage drop in the wall-normal
direction, a fixed electric field was used requiring minimal
additional computation. Similarly, the wall-parallel flow was
driven by a fixed electric field. Electrical interactions induced
by water and ions in the wall-parallel directions were handled
using the PPPM method in LAMMPS in a slab mode (and
explicitly removing wall-normal forces). Motivating the use of
PPPM for this component of the field is the fact that using the
Fourier basis is more efficient than a general FE basis, whereas
the AtC method’s purpose is to account for inhomogeneous
directions with Dirichlet and Neumann boundary conditions.
The Green’s functions used to correct the short-range interac-
tions by the AtC method are nontrivial to implement correctly
for periodic boundaries because if they account for the periodi-
city they will remove too much force, as noted in Section 2.3.
Specifically, the long-range forces from periodic images of nearby
atoms will be canceled. Note the short-range electrostatic inter-
actions are handled using the standard Coulombic formulation
implemented directly in LAMMPS.
As previously noted, the PPPM approach requires approxima-

tions in the wall-normal direction, which can be avoided by using
the AtCmethod to compute the wall-normal electric potential. In
order to have the correct total potential when each component is
summed, fixed (zero) potential boundary conditions are used at
the layer of silicon atoms adjacent to the salt water. Use of these
boundary conditions also mitigates the numerical errors in the
wall-normal direction of the periodic Green’s functions. Grid
spacing of the AtC FE mesh is chosen to be half the cutoff radius
to minimize the impact of errors from the electric field solve on
the atomic forces. In general, the grid spacing should be less than
the cutoff radius because of the numerical errors associated with
approximating the delta functions due to the point charges in the
source term. However, within the present formulation, if a fixed
cutoff radius is used, then the total electrical interactions will
converge with mesh refinement. A fully three-dimensional grid is
used for the AtC solve so that spatial variations in the electric field
are accounted for in the wall-normal electric forces. Periodic
boundary conditions are applied in the wall-parallel directions to
the AtC FE solution to generate an accurate electric potential.
This approach of decomposing the total potential therefore
enables each method to be used to greatest effect.
The results of this calculation demonstrate the appropriate-

ness of using the AtC electric potential in directions in which
spatial symmetries are broken. In this case, an electric double
layer forms on each surface mitigated by the wall-normal electric
forces. As in the case of Qiao and Aluru, insufficient charge is

Figure 9. Schematic of the silicon nanochannel simulation. Water is
modeled using hydrogen atoms (red) bonded to oxygen atoms (blue).
Other atoms are sodium ions (orange), chlorine ions (light blue), and
silicon (gray). The FE mesh is overlaid and colored by the electric
potential.

Table 2. Interaction Potential, Potential Coefficients, And
References for Pairwise Interactions in the Silicon Nano-
channel Simulation

atom 1 atom 2 potential coefficients source

O O LJ ε = 0.006740, σ = 3.1650, rc = 10 28

O Na LJ ε = 0.005348, σ = 3.24085, rc = 10 15

O Cl LJ ε = 0.005348, σ = 3.77535, rc = 10 15

O Si Morse D0 = 0.0668, R = 1.3, r0 = 3.7, rc = 9 15

Na Na LJ ε = 0.004336, σ = 3.331, rc = 10 15

Na Cl LJ ε = 0.004336, σ = 3.8655, rc = 10 15

Na Si LJ ε = 0.0056043, σ = 2.9645, rc = 10 15

Cl Cl LJ ε = 0.004336, σ = 4.4, rc = 10 15

Cl Si LJ ε = 0.056043, σ = 3.499, rc = 10 15

Si Si SW see27 27
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included in the solution to fully screen the applied electric field.
Some ions form an adsorbed layer adjacent to the wall, while
others remain in solution but preferentially distributed based the
electric field, as shown in Figure 10. Both the ions and water

demonstrate layering effects based on the electric field and
nanoscale dimensions of the channel. Figure 11 illustrates how
the electric potential induced by the ions reflects this structure
with near wall extrema. The field is much smoother than the
ionic distributions because the element size is greater than the
layering size. Therefore short-range electrical interactions ac-
count for the ionic layering, while the long-range effects
determine the interaction between the species segregated on
opposite walls. Calculating this potential with sufficient fidelity
to accurately capture the long-range interactions is critical. To
demonstrate an appropriate mesh spacing exists, a further run
was performed using an eight-fold mesh refinement in the wall-
normal direction. The resulting potential, provided in
Figure 11b, now has multiple near-wall extrema due to the
layering. However, this structure is not needed for the long-
range interactions, and the observation that the overall poten-
tial drop and the field structure are unchanged verifies the
appropriateness of the original mesh. Finally, the resulting
velocity profile is presented in Figure 12, confirming the flow
is slower near the channel center as it is primarily driven by the
ions in the double layers near the walls. In a technological
application, this would be the relevant quantity determining
device performance.

Figure 10. Plane-averaged wall-normal density profiles of the species present in the nanochannel: (a) charged ions and (b) water molecules.

Figure 11. Plane-averaged wall-normal electric potential induced by ions in the nanochannel: (a) nominal mesh and (b) refined mesh.

Figure 12. Plane-averaged wall-normal velocity profile of the water
molecules.



1748 dx.doi.org/10.1021/ct100727g |J. Chem. Theory Comput. 2011, 7, 1736–1749

Journal of Chemical Theory and Computation ARTICLE

4. CONCLUSIONS AND FUTURE WORK

This work describes a method to apply consistent anisotropic
electric fields, including prescribed boundary conditions, to
molecular dynamics simulations. By using AtC coupling, the
electric potential can be solved on a FE mesh using source terms
arising from the atomistic charge distribution. The approach is a
significant improvement over current schemes for incorporating
long-range electrical interactions, which are restricted to periodic
domains. By breaking this symmetry, the AtC electric field
enables simulations of more technologically relevant configura-
tions with applied electric fields or potential surfaces.

The AtC coupling methodology in this work can be thought of
as a generalization of previousmethods, such as PPPM, to a wider
set of basis functions for representing the electric potential. By
choosing appropriate functions from this set, a framework has
been developed that does not rely upon periodic boundary
conditions to compute long-range electrical interactions. Three
core numerical techniques comprise the method. The first is
restriction of atomic charge information to a continuous density
fields represented on a FE mesh, similar to kernel estimation.
Next, the electric potential is solved on the FE mesh using a
Poisson equation with appropriate sources based on electro-
statics. Finally, the electric forces due to this potential are
computed on a per-atom basis and corrected based on resolved
short-range interactions. The FE potential solve allows for
standard fixed potential and fixed field boundary conditions. In
addition, approximate boundary conditions for charged surfaces
were also presented. Periodic boundaries are currently handled
through combining this approach with existing long-range elec-
tric field methods.

To demonstrate the correctness of this method, four example
simulations were performed. To verify the restriction of atomic
information and the Poisson solution, including Dirichlet and
Neumann boundary conditions, a simple block of charged atoms
was considered. Excellent agreement between the resulting electric
potentials with analytic solutions was obtained. Next, the method
was compared with the PPPM and Ewald sum techniques
implemented in LAMMPS using a charge neutral bar with blocks
of opposite charge separated by more than the Coulombic
interaction cutoff distance. All three methods computed the forces
between the charged blocks to four significant digits, showing the
accuracy of the atomic projection step. The case also demonstrated
reasonable mesh size guidelines. A final verification problem
examined a small box of fluid argon atoms, some charged, some
not, in the presence of a charged surface. DirectMD computations
were possible by retaining a very long cutoff radius for the
Coulombic interactions. Comparison with the proposed method
was possible by using approximate boundary conditions at the
charged surface as well as zero-field conditions on the other sides
of the box. Despite these approximations, good agreement was
demonstrated between the method for both the transient devel-
opment of the layer of charged argon near the surface and for the
steady-state ion density profiles.

While the previous simulations compared the proposedmethod
to existing analytical and numerical solutions, they did not examine
the technique in one of its intended applications. Therefore, flow
in a silicon nanochannel was modeled using the AtC method to
compute shear flow in a NaCl solution between oppositely
charged plates. This case demonstrates the steps that must be
taken to perform these simulations by incrementally building and
equilibrating the various components, such as silicon and water,

followed by applying separate models for the isotropic and
anisotropic components of the electric field. As expected, ions
congregated near oppositely charged walls, while a parallel electric
field accelerated the ions, causing a shear flow to develop. These
results show that information relevant to both scientific under-
standing and technological applications can be obtained using this
formulation.

As demonstrated by the various simulations, this technique
enables MD to be used to examine a new class of problems in
which spatial symmetries are not present, making periodic
boundary conditions inappropriate. The ability to prescribe
boundary conditions means that interactions with the environ-
ment can be included in an approximate manner. However,
defining physically appropriate boundary conditions for molec-
ular systems is challenging and depends on the type of environ-
ment. Future work will enhance the method by developing
appropriate boundary conditions for other types of physics,
e.g., conducting and insulating surfaces. Error analysis, based
on the FE mesh spacing, and the Coulombic cutoff radius will
also be considered to automate the mesh generation process.
Even without these features, the present method still represents
an important improvement in MD capabilities by enabling long-
range electric field effects to be incorporated in complex geome-
tries with a generalized set of boundary conditions.
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ABSTRACT: Charge equilibration models such as the electronegativity equalization method (EEM) and the split charge
equilibration (SQE) are extensively used in the literature for the efficient computation of accurate atomic charges in molecules.
However, there is no consensus on a generic set of optimal parameters, even when one only considers parameters calibrated against
atomic charges in organic molecules. In this work, the origin of the disagreement in the parameters is investigated by comparing and
analyzing six sets of parameters based on two sets of molecules and three calibration procedures. The resulting statistical analysis
clearly indicates that the conventional least-squares cost function based solely on atomic charges is in general ill-conditioned and not
capable of fixing all parameters in a charge-equilibration model. Methodological guidelines are formulated to improve the stability of
the parameters. Although in this case a simple interpretation of individual parameters is not possible, charge equilibration models
remain of great practical use for the computation of atomic charges.

I. INTRODUCTION

A thorough understanding and efficient computation of
molecular interactions is of fundamental importance in compu-
tational chemistry.1 Electrostatic interactions are typically the
strongest intermolecular interactions and therefore play a domi-
nant role in many important processes in extended molecular
systems such as drug-receptor interactions in proteins,2 host�
guest interactions in zeolites,3�5 reactions in solvents,6�8 and
so on.

Molecular electrostatics can to a large extent be rationalized in
terms of themolecular charge distribution condensed into the atoms
that compose the molecule, i.e., through the assignment of effective
atomic charges. Although the concept of charges on the atoms in the
molecule (AIM) is evident for most chemists, it is far less obvious to
define them in a quantum-mechanical context.9�11 AIMcharges can
be computed in amultitude ofways.One group ofmethods relies on
the introduction of AIM subspaces within the molecule. Many such
density or wave function partitioning schemes were proposed over
the past 60 years to dividemolecules into atomic parts, e.g.,Mulliken
population analysis (MPA),12 Lowdin population analysis,13 Hirsh-
feld partitioning,14 natural population analysis (NPA),15 Bader’s
AIM scheme,16 Hirshfeld-I partitioning,17 and so on. Besides this
class of methods, atomic charges can also be fitted to reproduce the
electrostatic potential around a molecule,18 with for example the
Merz�Kollman19 or RESP scheme.20 Nevertheless, a quantum
mechanically unique definition of the atom in themolecule, and thus
the atomic charge, remains problematic.9 At best, one can test and
assess a population scheme using as criteria its basis-set and
geometry independence, and its accuracy with respect to the
molecular electrostatic potential. Benchmark studies showed that
the Hirshfeld- I17 scheme performs well in this regard.21�23 Despite
its attractive features, both from the application and information

theoretical viewpoints, it is not feasible to compute Hirshfeld-I
charges on extended systems with many thousands of atoms. The
prerequisite for any type of charge population scheme is the
computation of the total electron density of the molecular system
with a reliable electronic structure method, which becomes prohi-
bitive for large systems, or even for smaller systems when the
molecular environment is included explicitly.

An alternative approach for the computation of effective
atomic charges is through charge equilibration models.24 These
models are derived from rigorous density functional theory but
are computationally much less demanding than full electronic
structure computations. As a consequence, they are sometimes
considered a kind of semiempirical density functional theory.25

Charge equilibration models allow an efficient computation of
the charge distribution in large molecular systems, while the
corresponding electronic structure computation requires an
enormous computational effort. This advantage of charge equili-
bration models enables many attractive applications, including
high-throughput screening of drug candidates due to the pos-
sibility of computing diverse molecular properties very
quickly.26,27 Moreover, charge equilibration models are a corner-
stone in advanced molecular mechanics developments such as
polarizable force fields28�30 and reactive force fields.31

Charge equilibration models have an intrinsic weakness: one
needs to determine many model parameters with ad hoc
calibration methods before one can actually apply charge equili-
bration models. Optimally, one could hope that the calibrated
parameters have a clear physical interpretation, i.e., that one can
find an ultimate set of parameters that both satisfy intuitive

Received: January 4, 2011
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expectations and reproduce a set of reference charges used for the
calibration.

Two important charge equilibration models have been pro-
posed in the literature: the electronegativity equalization
method32 (EEM) and the split charge equilibration (SQE)33

model. All of the model parameters in these models can be given
a physical meaning. Since charge equilibration is fundamentally
rooted in density functional theory, and the model parameters
are closely related to properties of atoms in a vacuum32 and
electrostatic properties of extended systems,34 one would expect
that the corresponding calibrated parameters can be given a
physical interpretation and are unique. Unfortunately, the EEM
parameter sets reported in the literature show large fluctuations.
A nonexhaustive overview of EEM parameters32,35�40 calibrated
for organic systems is given in Table 1. Even the electronegativity
and hardness parameters of carbon are scattered over ranges of
4.65�8.49 eV and 10.13�18.30 eV, respectively. As shown
below, part of the differences may be due to the use of different
electrostatic interaction models, e.g., point charge versus Gaussian
charge. This tabulation raises the concern that EEM parameters
may not have any physical interpretation, simply because no
consensus can be extracted from the sets of EEM parameters
in the literature. This is also problematic from the practical
perspective: which set of parameters is trustworthy for computa-
tional applications? A thorough analysis of the spread on the
parameters and its origin is required to re-establish the credibility
of charge equilibration models.

The primary objective of this work is therefore an in-depth
investigation of the reasons underlying the spread in the
reported EEM parameters, and a similar analysis for the SQE
model. As a side effect, many practical guidelines will be
formulated to improve the quality of calibrated charge equilibra-
tion parameters.

The paper is structured as follows: The EEM and SQEmodels
are introduced in section II. The next section, section III, first
reviews the conventional parameter calibration methods, which
are also used in this work to investigate the spread in the
calibrated parameters. Then, the various analysis techniques that

are introduced to understand the origin of the fluctuations in the
parameters are highlighted. In section IV, we discuss the results
of the parameter calibrations and analysis techniques. Finally,
section V summarizes the findings of this work and formulates
some guidelines for future EEM and SQE calibrations.

II. THEORETICAL CHARGE EQUILIBRATION MODELS

EEM. The EEM model describes charge equilibration in
molecular systems based on the effective atomic charges, their
electrostatic interaction, and additional local energy terms. It is
basically a second order expansion of the molecular energy in
terms of atomic partial charges and has the following general
mathematical form:

EEEM ¼ υTqþ 1
2
qTJq ð1Þ

In this expression, q is a column vector of lengthN containing the
effective atomic charges, υ is a column vector of length N
containing the first-order coefficients, and J is anN� N a matrix
containing the second-order coefficients.
The electronegativity equalization method32 (EEM) postu-

lates specific mathematical expressions for the elements J and υ
based on density functional theory. The diagonal elements of
matrix J are the atomic hardness parameters, ηi. The off-diagonal
elements model the electrostatic interactions between atom
pairs. In the original work of Mortier et al.,32 a simple point
charge model is used, leading to Jij = 1/rij for the off-diagonal
elements, where rij is the distance between atoms i and j. (Atomic
units are used throughout.) Smeared-charge electrostatic
interactions were introduced in subsequent papers by various
authors to account for the finite size of the atomic charge
distribution.28,35,36,41,42 A particular advantage of the smeared-
charge potentials is that one can introduce lower bounds for the
hardness parameters to guarantee a positive definite matrix J.36,43

The elements in the vector υ are the atomic electronegativity
parameters, χi. Although the electronegativity and hardness
parameters should correspond approximately to their gas-phase

Table 1. Non-Exhaustive Overview of EEM Parameters (in eV) Reported in the Literaturea

reference H C N O F S Cl Br

Mortier and Baekelandt (a): HF/STO-3G MPA χ 4.4 5.7 10.6 8.5

η 27.6 18.2 26.4 22.2

Rappe (b) χ 4.5280 5.343 6.899 8.741 10.874 6.928 8.564 7.790

η 13.8904 10.126 11.760 13.364 14.948 8.972 9.892 8.850

Menegon (c): PM3 CM1 χ 3.885 4.656 7.175 10.075

η 18.404 14.264 13.452 20.690

Bultinck (d): B3LYP/6-31G* MPA χ 1.0 5.25 8.80 14.75 15.0

η 35.9 18.0 18.78 28.68 39.54

Bultinck (d): B3LYP/6-31G* NPA χ 1.0 8.49 13.45 27.06 39.18

η 38.88 18.3 20.92 39.26 88.2

Verstraelen (e): METS, MP2/Aug-cc-pVDZ MPA χ 9.73 6.94 10.42 25.59 29.26 5.68 5.99 �3.84

η 19.50 12.65 19.85 40.05 39.91 9.87 32.08 33.64

Verstraelen (e): NETS, MP2/Aug-cc-pVDZ NPA χ 1.81 4.65 6.26 8.65 17.79 3.54 3.45 1.15

η 19.36 11.47 12.18 14.92 39.32 8.24 33.09 32.77

Verstraelen (e): HETS, MP2/Aug-cc-pVDZ Hirhsfeld-I χ 6.37 7.37 8.03 9.23 16.31 6.98 10.19 8.11

η 15.54 10.74 10.93 12.85 38.37 7.86 31.89 31.94
a (a) Refs 32, 39. (b) Ref 35. (c) Ref 40. (d) Refs 26, 37, 38. (e) Ref 36. The acronymsMETS, NETS, andHETS refer to calibrations of the EEMmodel as
discussed in this work, using Mulliken, natural, and Hirshfeld-I charges, respectively.
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values,32,44 they are in practice calibrated to quantummechanical
reference data (e.g., atomic charges from some AIM method or
the molecular electrostatic potential from a quantum chemical
calculation) for a large training set of molecules,26,36�38,45�48 as
further discussed in section III.
The equilibrium charge distribution is the vector of atomic

charges that minimizes the energy in eq 1 under a total charge
constraint. The conventional approach is to introduce a Lagrange
multiplier, λ, as follows:

~EEEM ¼ υTqþ 1
2
qTJq� λðdTq�QtotÞ ð2Þ

where d is a column vector withN elements, all equal to one. The
equations for the equilibrium charges require that the derivatives
of E~EEM toward the partial charges are zero and that the total
charge constraint is satisfied, which leads to a set of linear
equations. These equations are conveniently written in block
matrix notation:

where dotted lines do not only separate block matrices but also
vectors, as in [q l λ]T. These equations reveal that the electro-
negativity of all atoms, ∂EEEM/∂qi, must be equal to the Lagrange
multiplier. Hence, one often uses the term equalized electronega-
tivity or molecular electronegativity for the Lagrange multiplier,
and one refers to this method as the electronegativity equalization
method. In the remainder of the text, we will use the symbol χmol

instead of λ.
It is clear that the charges minimizing the energy E~EEM in eq 2

are invariant when changing all electronegativity parameters by
the same amount: χi f χi þ R. Therefore, the individual χi’s are
only determined up to an additive constant when only reference
charges are used for the calibration. The following extension of
the EEMmodel involving a charge bath is used in the calibration
process to avoid serious deviations from the physical atomic
electronegativities. A molecule is allowed to exchange charge
with a charge bath that has an electronegativity, χbath, equal to the
Mulliken electronegativity49 of the molecule as derived from the
quantum mechanical (QM) computation,

Eb ¼ υTqþ 1
2
qTJq� χbathðdTq�Q0Þ þ 1

2
ηbathðdTq�Q0Þ2

ð4Þ
where Q0 is the target value for the total charge of the molecule
and ηbath determines the strength of the restraint penalty. The
condition for a minimum is

υTqþ Jq ¼ χbathd� ηbathðdTq�Q0Þd ð5Þ
As one can see, the total charge constraint of the molecule, dTq�
Q0 = 0, can only be realized when the atomic equalized electro-
negativities (left side of eq 5) are all equal to the bath electro-
negativity. Otherwise, the molecule would exchange charge with
the bath. Conventional calibrationmethods try to reproduceQM
atomic charges and are therefore sensitive to errors in the total
charge as well. As a result, the optimized parameters will not
show deviations between the QM Mulliken electronegativity49

and the EEM equalized electronegativity. The hardness of the
charge bath is used to control the relative importance of a correct

equalized electronegativity and the correct total charge. In the
limit of a very high bath hardness, the restraint behaves like a
conventional constraint, and the cost function becomes again
insensitive to errors in the equalized electronegativity. In this
work, a bath hardness of 5 eV is used, which results in a weak
influence of the QMMulliken electronegativities in the calibra-
tion procedure. In previous works, where a strict charge
constraint is used during the calibration, the reference value
for the electronegativity parameters is not determined by the
training data. Instead, an arbitrary constraint on one of
the atomic electronegativities is imposed.37 We will demonstrate
in section IV that the charge-bath approach indeed fixes the
reference value for the atomic electronegativity parameters based
on QM data.
One drawback of the EEM is that the model systematically

overestimates the molecular polarizability of insulators in the
limit of large molecules. In the macroscopic limit, the polariz-
ability per unit volume of an insulator becomes constant, while
the EEM predicts a quadratic increase with system size.29,33,43,50

One pernicious consequence is that EEM predicts vanishing
multipole moments for large systems due to internal charge
redistribution.43 A solution is provided by the SQE model as
introduced in the next section.
SQE.The second model relies on the introduction of a new set

of variables, the so-called split-charges,33 pij, which are linearly
related to the effective charges as follows:

qi ¼ Qtot

N
þ ∑

j � i
pji ð6Þ

where the summation runs over all atoms j that are covalently
bonded to atom i. The symbol pji stands for the charge
transferred from atom j to atom i; therefore, pji = �pji. This
notation implicitly assumes that charge transfer is only possible
between fragments that are connected through covalent bonds,
which does not pose any difficulties for the molecules studied in
this paper. The total charge constraint is realized by treating Qtot

as a constant after the transformation, or by using Qtot as a
variable in the charge bath approach. In the case of molecular
ions, this approach assumes that the excess charge is distributed
equally over the entire molecule. Although one may obtain a
more accurate model by placing the excess charge in specific
atoms, this choice is the simplest possible and does not introduce
additional parameters.
For the remainder of the paper, it is convenient to introduce a

matrix notation for the split charges, which allows for a straight-
forward substitution of eq 6 into the energy expression in eq 1.
For each bond, we introduce an index k going from 1 to Ncov,
whereNcov is the total number of covalent bonds. For each bond
k that connects atom ik and jk, let tk = pjk,ik with jk < ik. This choice
eliminates the need for the constraint pij = �pij. The matrix
notation for eq 6 becomes

where T is the transfer matrix withN rows andNcov columns and
t is the column vector with Ncov split charges. Each column k of
matrix T contains only two nonzero elements corresponding to
the atoms jk and ik that are connected by bond k. By construction,
thefirst nonzero element of each column isþ1 and the second is�1.
For example, the matrixU of a water molecule, where the oxygen
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atom comes first, has the following form:

1 1 1=3
�1 0 1=3
0 �1 1=3

2
664

3
775

The split charge equilibration33 (SQE) is an improvement of
the EEM with an additional second-order term borrowed from
the atom�atom charge transfer (AACT) model29 to yield the
correct trend of the polarizability for large systems, and with an
extra first-order term to obtain an improved fitting of the
equilibrium charges. When the parameters in the extra terms
are set to zero, one retrieves the original EEM form. The
additional second order term, ∑k=1

Ncov κktk
2, is diagonal in the split

charges and represents a harmonic energy term for the charge
transferred through a chemical bond. The bond hardness param-
eter, κk, is a constant that depends on the type of bond. Bonds in
conductor-like systems have a low bond hardness, while bonds in
dielectric systems with low polarizability have a high bond
hardness.34 The linear term is a bond correction for the atomic
electronegativity parameters. For each bond k, the electronega-
tivity parameter of atom jk is increased by Δχjkik, and the
electronegativity parameter of ik is decreased by the same
amount. By construction, the correction parameters obey
Δχjkik =�Δχikjk. The parameter Δχjkik is a constant associated with
the type of bond between atoms ik and jk. It mainly influences the
charge distribution between bonded atoms and can be interpreted
as an ad hoc correction to the atomic electronegativity parameters
due to the direct molecular environment.
We must introduce a convention for the electronegativity

correction parameters, in analogy with the definition of tk, to
obtain a practical matrix notation for the SQE model. For every
bond k, we define ck = Δχjkik with jk < ik, which is now a set of
independent parameters. The vector with corrections to the
atomic electronegativity parameters is written as

υ0 ¼ Tc ð8Þ
where T is the transfer matrix and c is a vector of lengthNcov with
electronegativity correction parameters. In terms of the split
charges and the total charge, one can write the EEM energy
(eq 1) as

EEEM ¼ υTUuþ 1
2
uTUTJUu ð9Þ

The SQE energy,

ESQE ¼ ðυþ υ0ÞTUuþ 1
2
uTðUTJU þ J0Þu ð10Þ

has a comparable form but contains an additional linear and
quadratic term. The matrix J0 is a diagonal matrix with Ncov þ 1
rows and columns. The firstNcov diagonal elements are the bond
hardness parameters; the last diagonal element is zero.

III. COMPUTATIONAL METHODS

Parameter Calibration. The parameters in the EEM (ηi and
χi) and the SQE model (ηi, χi, κk and ck) must be calibrated with
respect to a set of training data in order to obtain a useful model.
In this process, one has to introduce atom and bond types and
associate unique parameters with atoms or bonds of the same
type. Several papers in the literature have used atomic charges,
based on QM computations for a set of organic molecules, as

reference data.26,32,37�39,51 One postulates an objective function
to measure the mismatch between the model charges and the
QM charges:

X ¼ ∑
M

m¼ 1
∑
Nm

i¼ 1
wm, iðqQM

m, i � qMODEL
m, i Þ2 ð11Þ

The first sum runs over the molecules in the set of training data
for which QM computations have been carried out. The second
sum runs over all atoms within molecule m. For each atom, the
difference between the QM atomic charge, qm,i

QM, and the charge
obtained with the equilibration model for a given set of param-
eters, qm,i

MODEL, is squared andmultiplied with a weightwm,i. In the
conventional treatment of the least-squares procedure,52 the
weights are related to the measurement error on the reference
data. In this context, the reference data consists of theoretical
numbers without measurement errors, and one must resort to ad
hoc schemes to define the weights.36,37 Through the model
charges, the cost function, X, becomes a function of the param-
eters. This cost can be minimized to find the parameters that
result in an optimal performance for the selected training set.
A local minimization of the cost function (eq 11) may lead to

multiple and disparate solutions for two reasons. Both may
explain the large variety of EEM parameters reported in the
literature. In the first place, due to the nonlinear dependence of
the model charges on the second-order parameters, the cost
function in eq 11 can in principle have multiple local minima.
However, even if one finds the global minimum, the cost function
may have (around the global minimum) a few directions of low
curvature, which implies that very different sets of parameters are
degenerate and thus equally good. The exact position of the
minimum of the cost function along those directions is sensitive
to small changes in the training data, and is therefore significantly
affected by the model-development choices like the selection of
molecules in the training set, the definition of atom types, and the
population scheme used to define the QM atomic charges. We
will investigate the relative importance of both mechanisms and
their impact on the interpretation of calibrated parameters.
The calibration procedure used in this work is largely based on

a previous EEM/SQE benchmark paper,36 and we refer to that
work for a detailed description. Our in-house code QFIT is used
for the calibration of the parameters. The implementation of
QFIT relies extensively on the MOLMOD library, which is also

Table 2. Main Characteristics of the Two Training Sets
(P27,37,38 and T36) Used for the Calibration of Charge Equi-
libration Parameters

set P set T

# molecules 166 500

# H atoms 1080 1899

# C atoms 714 1651

# N atoms 121 657

# O atoms 108 496

# F atoms 65 99

# S atoms 267

# Cl atoms 30 116

# Br atoms 44

# neutral 166 419

# positive 32

# negative 49
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the basis for other software projects such as ZEOBUILDER,53

MD-TRACKS,54 and TAMKIN.55 Below, we review the most
important aspects of the calibration for this paper.
Two different sets of molecules are used for the calibration. The

first set (P) consists of 166 organic molecules with elements H, C,
N, O, F, and Cl; it is based on the work of Bultinck et al.26,37,38 The
second set (T) contains 500 organic molecules comprising the
elements H, C, N, O, F, S, Cl, and Br and is taken from the
benchmark paper of Verstraelen et al.36 A summary with the main
characteristics of each set is given inTable 2. Lewis structures of each
molecule are given in the first section of the Supporting Information.
The geometry of eachmolecule is optimized at theMP2/CC-pVDZ
level, followed by a single point calculation of the wave function at
the MP2/Aug-CC-pVDZ level,56,57 using the Gaussian 0358 pro-
gram. Mulliken12 and Hirhsfeld-I17 charges are derived from the
MP2/Aug-CC-pVDZwave functions. For eachmolecule, the single
point computation is repeated on the same geometry with one
additional electron and one electron less to compute the molecular
electronegativity with the Mulliken definition,49 not to rely on
Koopmans’ theorem.59 The parameters are calibrated in six different
ways, using three different procedures applied to the sets P and T.
The first two procedures are based on the EEM and group
parameters per element, i.e., all atoms of a given element share
the same parameters. The first procedure employs Hirshfeld-I
charges as reference data, while the second uses Mulliken charges.
The third procedure is based on the SQE and combines the atomic
number and the number of bonds to define force-field atom (and
bond) types and further uses Hirshfeld-I charges. Previous work
showed that force-field atom types are only of fundamental
importance in the context of the SQEmodel.36,37 The three different
procedures are summarized in Table 3. The six combinations of
training set and calibration procedure are denoted in the remainder
of the text as P1, P2, P3, T1, T2, and T3. Note that T1, T2, and T3
correspond to calibrations HETS (Hirshfeld-I þ EEM þ trivial
atom types þ static cost function), METS (Mulliken þ EEM þ
trivial atom typesþ static cost function), and HSFS (Hirhsfeld-Iþ
SQEþ force field atom typesþ static cost function), respectively, in
the benchmark paper of Verstraelen et al.36 The parameters found in
this work are slightly improved because of improvements in the
conjugate gradient routine used to minimize the cost function. The
prevalent atomic elements and force-field atom (and bond) types in
both training sets are tabulated in the second section of the
Supporting Information.
During the calibration, a lower bound is imposed on all

second-order parameters to guarantee a positive definite matrix
J in eq 1 for all possible molecular geometries.43 The atoms in the
EEM and SQE model in this paper are treated as Gaussian
effective charge distributions. The distribution centered at the
atom has the form of an S-type Gaussian:

FiðrÞ ¼ qiðR2
i πÞ�3=2exp �jr� rij2

R2
i

 !
ð12Þ

where Ri is the radius of atom i and ri, its position. The atomic
radius parameters are based on the covalent radius of the atom.60

For hydrogen three times the covalent bond radius is used. For all
other atoms, 1.5 times the covalent bond radius is used. The
minimal value for the atomic hardness parameter is equal to the
self-interaction of the charge distribution of the atom divided
by qi

2:

ηi, min ¼ 1
q2i

Z
FiðrÞ Fiðr0Þ
jr� r0j dr dr0 ¼

ffiffiffi
2
π

r
1
Ri

ð13Þ

The radii and minimal values for the atomic hardness parameters
are tabulated in section 3 of the Supporting Information. The
bond hardness parameters must be larger than zero. With these
lower bounds, the hardness matrix is always positive definite.43

This is not only interesting from a physical point of view, as it
ensures that the energy function in eq 1 has a minimum. It also
renders the calibration of the parameters more tractable, as the
cost function in eq 11 diverges for parameters that make the
hardness matrix singular for one of the molecules in the training
set.61,62 The restriction of the parameters to positive definite
hardness matrices therefore confines the parameters to the
region where the cost function is well-behaved, which is bene-
ficial for the optimization of the parameters.
Parameter Scans.The minimum of the cost function in eq 11

does not necessarily correspond to a sharply determined point in
the multidimensional parameter space. The minimum may also
lie in an elongated valley wheremany disparate parameter vectors
lead to virtually the same (minimal) value of the cost function.
Elongated valleys imply a low local curvature of the cost function
at the position of the optimal parameters. Because the cost
function is multidimensional, this local curvature is characterized
by the Hessian, i.e., the symmetric matrix of second-order
derivatives with respect to the parameters. Eigenvectors of the
Hessian associated with relatively small eigenvalues correspond
to displacements of the optimal parameters that lead to a
relatively small increase in the cost function. The spectrum of
the Hessian, computed from finite differences of the analytical
first-order derivatives, is analyzed for all six calibrations in this
paper. In general one can use the condition number of the
Hessian, defined as the ratio of the highest over the lowest
eigenvalue of theHessian, to assess the presence of low-curvature
eigenvectors at the minimum of the cost function and the
resulting lack of robustness of the parameters toward changes
in the training data.
In order to assess the impact of parameter displacements along

a low eigenvector, we compute for a test molecule (3-chloro-
morpholine, see Figure 1) the AIM charges resulting from EEM
and SQE, equalized electronegativity, and global hardness for
different displacements of the optimal parameters along this low
eigenvector. Specifically, we consider a series of parameter vectors
along a line segment in the parameter space that is centered on the

Table 3. Summary of the Three Parameter Calibration
Procedures

procedure model atom types population scheme

1 EEM element Hirshfeld-I

2 EEM element Mulliken

3 SQE force field Hirshfeld-I

Figure 1. The chemical structure of 3-chloromorpholine.
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optimal parameters, is parallel to an eigenvector, and has a length of
20 eV. The points on this line segment are characterized by the
mathematical relation:

xscan, iðγÞ ¼ xopt þ γai ð14Þ
where xopt is the optimized parameter vector, ai is an eigenvector
associated with the scan, and γ is the line parameter going from
�10 eV to þ10 eV. This type of analysis is only discussed for the
calibrationP1, but the same trends are present in the other calibrations.
Influence of the Training Set. There is a long history in

computational chemistry of the use of low-frequency vibrational
modes in molecular systems to search for or explain conforma-
tional changes.63 For example, in biochemistry, one typically
expands the relative vector of Cartesian coordinates of two
protein conformers into the basis of lowest vibrational eigen-
modes of one of the conformers to investigate if extendedmotion
along these modes could lead to a transition of one conformer to
the other.64�67 We use a similar analysis technique to compare
two parameter vectors that are derived with the same procedure
but based on different training sets, e.g., to compare P1 with T1.
The difference between the two parameter vectors is expanded in
the basis of eigenvectors of the Hessian of either P1 or T1. This
allows one to compute, for each eigenvector, the percentage
contribution to the difference between two parameter vectors.
Because calibration T1 contains more atom types and hence
more parameters, we restrict the relative parameter vector to the
parameters that are present in both P1 and T1. Likewise, the
Hessian of T1 is reduced to those parameters present in P1 by
omitting the columns and rows that correspond to the para-
meters that are only present in T1.
Let the basis of eigenvectors be ai and let the parameter vectors

be xP1 and xT1; then, the percentage contribution to the
difference between two parameter vectors due to basis vector i,
Pcti, is defined as

Pcti ¼ ððxP1 � xT1Þ 3 aiÞ2

)xP1 � xT1 )2
� 100% ð15Þ

The same analysis is used to compare the parameters obtained
with P2 versus T2 and P3 versus T3.
Influence of the Charge Population Scheme. Strictly speak-

ing, there are no measurement errors on the QM atomic charges
since all data are obtained from theoretical computations. Never-
theless, we do not expect the QM atomic charges to be totally
robust with respect to the initial guess of the wave function,
limited convergence criteria, numerical errors, and so on. This
lack of robustness adds an unpredictable contribution to the
atomic charges, which we can treat as measurement errors. Such
errors on the training data will result in errors on the calibrated
model parameters. This error will also contribute to the deviation
between two parameters derived from different training sets. The
norm of the difference between the parameters of P1 and T1 can
be compared with the norm of the difference between parameters
of P2 and T2. Because procedures 1 and 2 only differ in the
choice of QM charge population scheme, the relative magnitude
of the two norms is an indication for the relative robustness of the
underlying population schemes.
Multiple Minima. In the present subsection, we introduce a

method to provide an indication for the absence of multiple
minima in the cost function of T1 when the second-order
parameters are restricted to the region where the hardness matrix
is guaranteed to be positive definite.

As argued before, AIM charges are contaminated to some
extent by numerical errors. Even in the absence of these
numerical errors, there will be a residual error between the
charges predicted by the EEM or the SQE and the QM training
data, simply because both equilibration models are approxima-
tions that cannot capture all features and trends in the QM
computations.
Assume that the numerical errors and the elusive trends in the

QM atomic charges can be modeled with a simple uncorrelated
Gaussian error that is completely responsible for the deviation
between the QMdata and themodel predictions. The variance of
this Gaussian noise is not known a priori. This assumption is only
an approximate description because elusive trends are not true
random noise. However, it provides a useful statistical model for
the errors between model and reference charges.
In the vicinity of the optimal parameters, we can approximate

our cost function by a generalized linear least-squares cost
function, except that our cost function (eq 11) contains weight
factors that replace the measurement errors that are typically
present in a χ2-type cost function.52 The propagation of errors
from the training data to the estimated parameters is mathema-
tically analogous, and therefore the inverse of the Hessian of our
cost function is a model for the covariance matrix of the
parameters,52 up to a constant factor because we do not know
the variance of the error on the training data a priori.
We validate this hypothesis, i.e., the relation between the

Hessian of the cost function and the uncertainty in the param-
eters, by studying the covariance of the parameter vectors
obtained from 100 distinct cross-validation calibrations for T1.
The difference between the 100 runs is the selection of the
molecules in the training set: for each case, a random represen-
tative subset of 400 molecules is taken from the full set of 500
molecules. The same subsets are used as for the cross-validation
in our EEM/SQE benchmark paper,36 and we refer to that work
for further details on the generation of the subsets. The covar-
iance matrix of the 100 parameter vectors and the Hessian of the
cost function in T1 can be compared in terms of eigenvalues and
corresponding eigenvectors. The same analysis is carried out for
T2, but not for T3. The latter calibration fits more than 100
parameters, which makes it impossible to estimate the covariance
of the parameters using 100 samples.
One can further test whether the parameter vectors obey the

multivariate normal distribution dictated by the Hessian of the
cost function. One applies an affine transformation to the 100
parameter vectors that brings the average to the origin and turns
the covariancematrix of the transformed parameter vectors into a
unit matrix. In this new coordinate system, the squared norm of
the parameter vectors should follow the χ2 distribution with the
number of degrees of freedom equal to the number of model
parameters.
A strict validation of our statistical model for the training data

is not the purpose of this analysis. We are rather interested in a
procedure to examine and invalidate the existence of multiple
minima for this type of cost function. The initial first-order
parameters are sampled between �50 and þ50 eV. The initial
second-order parameters are selected randomly between 5 and
50 eV above their lower bound. This should be sufficient to trigger
optimizations into different local minima if they would exist. The
tests for the statistical model of the parameter distribution must
fail dramatically if multiple minima are present in our cost
function. The spread of the 100 parameter vectors over multiple
minima cannot be predicted by the Hessian of the cost function
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of calibration T1. By consequence, if the tests do not fail, it is very
unlikely that multiple minima are present in the cost function of T1.
Parameter Correlations in EEM. In this subsection, we only

consider the EEM model for a more detailed analysis of the
statistical correlations between the atomic electronegativity and
hardness parameters. Consider at first instance a molecule in
which each atom has its own (ηi, χi) parameter pair. The
equations to determine the charges, qi, in this molecule are
given by

χi þ qiηi þ ∑
N

j¼ 1, j 6¼i

qjJij ¼ χmol and ∑
N

j¼ 1
qi ¼ Qtot ð16Þ

where Jij represents the electrostatic interaction between atoms i
and j, χmol is the equalized electronegativity, and Qtot is the total
charge. Once these equations are solved, one can change the
parameter χi of each atom and update the value of ηi according to

ηi ¼
χmol � χi � ∑

N

j¼ 1, j 6¼i

qjJij

qi
ð17Þ

without changing the equilibrium charges.37 If one substitutes
the QM atomic charges and the molecular electronegativity into
eq 17, one finds a linear relation for all possible optimal (ηi,χi)
parameter pairs associated with atom i. It was to be expected that
the optimal parameters are not unique, since there are twice as
many parameters as there are atomic charges to be reproduced.
The statistical correlations so far consider independent param-

eters for each atom in the entire set ofmolecules, while in practice
the same parameters are used for atoms with the same element
(or force-field atom type). Therefore, we introduce a graphical
representation for every element in scheme P1 to analyze the
statistical correlation data of all of the corresponding indepen-
dent atomic parameters. Given an element, we construct a plot in
the (ηi,χi) plane with the lines according to eq 17 for all atoms
alike in all of the molecules in the training set. When this bundle
of lines features an approximate common intersection point, we
expect that the calibrated P1 parameters for that pair to be close
to the intersection. In other words, a contour plot of the cost
function of P1 in the (ηi,χi) plane, keeping all other parameters
constant at their optimal value, should reveal a minimum in the
vicinity of the approximate intersection point of the bundle of
lines. When a bundle of lines is almost parallel for a given
element, the corresponding optimal (ηi,χi) parameter pair
should be ill-defined, and the contour plot should reveal an
elongated valley instead of a uniqueminimum. Note that our cost
function is designed to take also into account the electronega-
tivity of each molecule in the training set; otherwise one should
not expect any correspondence between the contour plots and
the lines defined by eq 17.

IV. RESULTS AND DISCUSSION

For ease of reference, results from the methods described in
the various subsections of section III, are discussed in the
corresponding subsections of section IV.
Parameter Calibration. In total, six calibrations were carried

out with a subsequent detailed analysis of the significance of the
parameters. The optimal parameters can be found in the
Supporting Information, section 4. Before analyzing the results,
we briefly review the main statistical properties of the calibrations.

The R2 and RMSE values in Table 4 immediately reveal the major
differences between the six calibrations. First of all: procedures 1 and
3 are superior in accuracy compared to procedure 2. The latter is
based on Mulliken charges, while the former two use Hirshfeld-I
charges. It is known thatMulliken charges are ill-behavedwhen large
basis sets with diffuse functions are used,12,15,68 while Hirshfeld-I
charges are much less basis set dependent.23 The R2 and RMSE
values confirm that Mulliken charges have a larger degree of
arbitrariness, which makes them more difficult to reproduce with
charge equilibration models. A second observation is that the SQE
(in procedure 3) is more accurate than the EEM (procedure 1).
Both observations are in line with earlier work.33,36 When compar-
ing results from training set P with those of T, the reference data
based on set P are easier to reproduce. This is related to the fact that
set P contains fewer molecules and that set T is generated with an
algorithm that tries to maximize the diversity of chemical functional
groups.
As discussed above, a high condition number is an indicator for

less robust parameters, i.e., parameters that are more sensitive to
irrelevant details in the training data. The optimal parameters are
ill-conditioned in all six cases. All of the condition numbers of the
Hessian are at about 5 or more orders of magnitude above the
minimal and ideal value, i.e., 1. The condition number is clearly
higher for calibration T3, and the Hessian is virtually singular in
case P3. This is partly due to the larger number of parameters in
the SQE model and to the introduction of multiple force-field
atom types for the same element. Also note that set P is designed
to be used for EEM calibrations without extensive use of force-
field atom types,26 while set T is specifically constructed with
force-field atom and bond types in mind.36 It is therefore
expected that set P does not contain sufficient information to
fix all of the parameters in procedure 3. This is also visible in the
actual parameters of P3, e.g., the electronegativity parameter of
atom typeN1 is 24.53 eV, which is excessively high. TheHessians
of T1, T2, and T3 are positive definite in this work, which was not
the case in the EEM/SQE benchmark paper.36 The conjugate
gradient optimizer used in this work is extended with a diagonal
preconditioner, which significantly improves the rate of conver-
gence compared to a conventional conjugate gradient optimizer.
Calibrations P2, T2, and P3 clearly have weaknesses and

should not be used for general applications. They are however
interesting for this paper, revealing the typical problems inherent
in calibrated EEM and SQE parameters.
Correlated Parameters in a Diatomic Molecule. It is in-

structive to show how the atomic charges are invariant to certain
changes in parameters when the SQE model is applied to a neutral
heteronuclear diatomic molecule. The charges are given by

q1 ¼ � q2 ¼ χ1 � χ2

η1 þ η2 þ k� 2
rij

ð18Þ

where the last term in the denominator is twice the electrostatic
interaction between the two atoms. As mentioned earlier, one can
replace the electrostatic term by other functional forms, which will
clearly affect the optimal values of the hardness parameters. There
are in total five parameters to fix only one unknown, leaving four
degrees of freedom in the parameters that cannot be fixed in a
calibration where charges are used as reference data. The following
degrees of freedom remain:
1 An arbitrary constant can be added to both electronegativity
parameters without changing the charge q1. This was already
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mentioned in section II, and this invariant is also present in
more general molecules.

2 One can also increase the electronegativity difference and
compensate for this by increasing the parameters in the
denominator of eq 18. This type of parameter correlation is
discussed at the end of section III and section IV when the
EEM model is applied to more general molecules.

3 The last two invariants consist of an increase (or decrease)
in one hardness parameter that is exactly compensated with
opposite changes in the other hardness parameters. In the
case of the EEM, such problems were not observed,
probably because the training sets contain a large set of
molecules to which this invariant does not simply apply.

Parameter Scans. Before we proceed with the eigenvector-
following analysis, we first examine the eigenvalue decomposi-
tion of the Hessian. The results for calibration P1 are depicted in
Figure 2. Similar plots for all other calibrations are included in the
Supporting Information, section 5. Note that the eigenvectors
could not be properly visualized for P3 and T3 due to the large
number of parameters. Figure 2b visualizes the eigenvectors as
follows. Each column in the figure corresponds to an eigenvector
of the Hessian of the cost function used in calibration P1, sorted
from low to high eigenvalue. Each row corresponds to a param-
eter in the P1 calibration. The cells are colored on the basis of
the absolute value of the corresponding coefficient of the
eigenvector: the darker the color, the larger the absolute value.
Figure 2 reveals the following two trends. First, the lowest two
eigenvectors of the Hessian indicate that the P1 cost function is

not sensitive to a linear combination of the (ηi,χi) parameter pair
of each halogen. To a lesser extent, the same problem is visible for
oxygen. Similar conclusions can be drawn from the Hessian of
T1. Second, the influence of the charge bath is visible in
eigenvector 3; i.e., the cost function is (weakly) sensitive to a
constant shift of all electronegativity parameters. If a strict total
charge constraint was used during the parametrization, this
eigenvector would have a corresponding eigenvalue of zero
because the cost function is then completely insensitive to the
reference value for the electronegativity parameters. Both ob-
servations also apply to the calibrations based on the Mulliken
charges, P2 and T2.
Figure 3 contains the results for two linear scans through the

parameter space in the context of calibration P1. The first scan
(Figure 3a and b) is taken along the eigenvector with the lowest-
but-one eigenvalue of the Hessian. The scan with the lowest
eigenvalue is not used because it mainly affects the fluorine
parameters, while there is no fluorine present in the test molecule
(3-chloromorpholine, see Figure 1). The second scan is similar
but based on the highest eigenvalue (Figure 3c and d). All 15
atomic charges (3a and c) and the molecular electronegativity
and hardness69,70 (3b and d) are computed for the test molecule
in both scans. The hatched region is excluded during the
calibration due to the lower bounds on the second-order param-
eters. In the red region, the hardness matrix of the test molecule
has at least one negative eigenvalue. The beginning, middle, and
end point of each scan and the eigenvectors are given in section 6
of the Supporting Information.

Table 4. Key Statistical Characteristics of Each Calibration (P1, T1, P2, T2, P3, and T3)a

quantity (a) R2 [%] (b) RMSE [e] (c) condition number (d) # parameters

training set P T P T P T P T

procedure 1 95.47 89.61 0.0646 0.1149 2.74� 105 4.15� 105 12 16

procedure 2 67.05 53.74 0.2674 0.3006 9.83� 105 8.09� 104 12 16

procedure 3 99.36 98.18 0.0242 0.0481 6.79� 106 70 135
a (a) The Pearson correlation coefficient between theQMandmodel charges, (b) the root-mean-square error (RMSE) betweenQMandmodel charges,
(c) the condition number of the Hessian of the cost function (defined as the ratio of the highest over the lowest eigenvalue of the Hessian), and (d) the
number of parameters in the charge equilibration model.

Figure 2. Graphical representation of the eigenvalues (a) and the eigenvectors (b) in calibration P1. Each column in part b corresponds to an
eigenvector, and each row corresponds to a parameter. The cells are colored on the basis of the absolute value of the corresponding matrix element: the
darker the color, the larger the absolute value.



1758 dx.doi.org/10.1021/ct200006e |J. Chem. Theory Comput. 2011, 7, 1750–1764

Journal of Chemical Theory and Computation ARTICLE

The first scan shows virtually no changes in atomic charges as
the parameter vector is displaced in the region that is allowed
during the calibration (see Figure 3a). Only when the parameters
lead to a hardness matrix that is almost singular do the charges
change significantly. At the edge of the red region, the hardness
matrix has one zero eigenvalue; the charges (and therefore also
the cost function) diverge.61,62 The molecular electronegativity
shows the same behavior as the charges: it is practically constant
except near the singularity in the hardness matrix. The molecular
hardness is more sensitive than the electronegativity. The weak
sensitivity of the charges along this eigenvector is a general
feature for many molecules in the training set, which explains the
low curvature of the cost function for this eigenvector.
The scan along the eigenvector with the largest eigenvalue

goes through three points where the hardness matrix becomes
singular (Figure 3d). At each of these three points, all computed
quantities diverge. The charges show stronger fluctuations. The
molecular electronegativity is sensitive, and the molecular hard-
ness is not. The fact that the cost function has the highest
curvature along this direction is solely due to high sensitivity of
the atomic partial charges for changes in parameters along this
direction.

The figures discussed above show that the parameter space is
full of transitions where one of the eigenvalues of the hardness
matrix (of one of the molecules in the training set) changes sign.
Each of these transitions takes place at a hypersurface in the
parameter space that separates feasible regions in which the
atomic charges remain finite. At the boundary of each feasible
region, the cost function diverges toward plus infinity, and
consequently, each region contains at least one local minimum.
However, there is only one feasible region for which all hardness
matrices in the training set are positive definite, which will be
denoted below as the positive definite feasible region. All other
feasible regions are called nonpositive definite.
The contour plot of the cost function P1 in Figure 4 shows the

multitude of feasible regions (for example, when ηH < ηH.min or
ηC <ηC.min). The region excluded during the calibration is darker
and separated by a thick dashed line from the allowed region.
From the practical point of view, one should avoid allowing the
calibration algorithm to converge to parameters that are locally
optimal in one of these tiny nonpositive definite feasible regions. It
is not just that it is difficult to find the feasible region with the
lowest minimum. The real problem is that one can always find a
molecular structure that has a singular hardness matrix for those

Figure 3. Evolution of the 15 atomic charges (parts a and c) and molecular electronegativity and hardness (blue and green respectively in parts b and d)
during two linear scans through the parameter space for a test molecule (3-chloromorpholine, see Figure 1). The optimal P1 parameter vector
corresponds to γ = 0 in each plot. In the top row (a,b) the scans are taken along the eigenvector of the P1Hessian with the lowest-but-one eigenvalue. In
the bottom row (c,d) the highest eigenvalue is used. The hatched region is excluded during the calibration due to the lower bounds on the second-order
parameters. In the red region, the hardness matrix of the test molecule is no longer positive definite.
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locally optimal parameters. Note that all nonpositive definite
feasible regions have at least one hardness parameter that is
below its lower bound. In the allowed region, only one local
minimum is visible, although this does not prove that there is

only one minimum in the positive definite feasible region when
all degrees of freedom are considered.
Influence of the Training Set. The parameters for calibra-

tions P1 and T1 are given in Table 5. They show that the same
calibration procedure applied to two different sets of training
data can lead to significant differences in the optimal parameters.
Similar differences are present when comparing P3 with T3 and
become even more pronounced in sets P2 and T2. This subsec-
tion relates such differences to the low eigenmodes of the
Hessian belonging to the cost functions used for the calibration.
The discussion and data in this subsection are based on calibra-
tions P1 and T1, but the same explanation is valid for the other
calibrations. The data for P2 versus T2 and P3 versus T3 are
given in the Supporting Information, section 7.
The comparison between P1 andT1 is troubled by the sulfur and

bromine parameters χS, ηS, χBr, and ηBr that are present in T1, but
absent in P1. Set P does not contain molecules with sulfur or
bromine. For this reason, the parameter vector of T1 is projected on
the parameter space of P1 by simply omitting the additional four
parameters. An analogous projection is applied to theHessian of T1;
i.e., all rows and columns corresponding to those four parameters
are deleted. After the projection operations, one can compute the
difference between the parameter vectors of P1 and T1 and expand
the difference on the basis of eigenvectors of theHessian of P1 or the
projected Hessian of T1. The same type of projection must be
carried out when comparing P2 with T2 or P3 with T3.
The results for the comparison of P1 and T1 are given in

Tables 5, 6, and 7. Table 5 also reports the difference between the

Figure 4. A contour plot of the cost function of P1 with two atomic hardness parameters as variables (ηC and ηH). All other parameters are kept at their
optimal values. The allowed region during the calibration comprises the top-right corner of the scan, bordered by the dashed line. The contours represent
iso-curves for the logarithm of the cost function.

Table 5. The Values of the Parameters Present in Both P1
and T1 and Their Differencesa

parameter P1 [eV] T1 [eV] difference [eV]

χH 5.583 7.019 �1.436

χC 6.263 8.002 �1.738

χN 6.847 8.610 �1.763

χO 8.173 9.699 �1.525

χF 8.625 11.150 �2.525

χS 7.510

χC1 6.602 8.426 �1.823

χBr 7.769

ηH 14.126 15.483 �1.357

ηC 10.743 10.718 0.025

ηN 10.887 10.877 0.010

ηO 13.068 12.724 0.344

ηF 17.235 21.199 �3.963

ηS 7.870

ηCl 11.266 15.291 �4.025

ηBr 18.933
aThe norm of the difference is 7.354 eV.
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parameters of P1 and T1. Note that the significant differences fall
into two categories: (i) all electronegativity parameters in T1 are
about 1.8 eV higher that those in P1; (ii) the parameters of the
halogens differ more than those of the other atoms. Tables 6 and
7 give the decomposition of the relative parameter vector in the
basis of the Hessian of P1 and the projected Hessian of T1,
respectively. The percentage contributions of the lowest three
eigenmodes in case P1 (Table 6) add up to 97%. In Table 7, the
first two eigenmodes only account for 69% of the difference, and
some higher modes also have a non-negligible contribution.
When comparing P2 with T2 or P3 with T3, the same pattern
is found: at least one of the two Hessians has low eigenmodes
that form a nearly complete basis for the differences between the
parameters. We conclude that cost functions based on training
set P or T essentially have the same ill-conditionedminimum, but
due to the subtle differences in the reference data, the exact
position of the optimal point is shifted along the directions of low
curvature on the cost function surface.

Influence of the Charge Population Scheme. The norm of
the difference between the parameters of P2 and T2 (83.164 eV)
is much larger than the norm of the difference between P1 and
T1 (7.354 eV). This means that the parameters obtained with
procedure 2 are much more sensitive to the selection of
molecules in the training set. The only difference between
procedures 1 and 2 is that 1 uses Hirhsfeld-I charges while 2 is
based on Mulliken charges. The lack of robustness of the
Mulliken charges when using large basis sets for the QM
computation, i.e., its sensitivity to irrelevant details in the wave
function,12,15,68 clearly causes two undesirable effects: (i) Mulli-
ken charges are difficult to reproduce with equilibration models
(as discussed above), and (ii) the position of optimal parameters
along the directions of low curvature of the cost function are
heavily scattered. In the context of generalized linear least squares
methods, one can show that the noise on the parameters is a
linear function of the noise on the training data.52 Because our
cost function can be locally approximated as a linear least squares
cost function, the same relation applies. Similar conclusions can
be drawn for any QM population scheme that is not fully robust.
For example, ESP fitted charges tend to be sensitive to the choice
of grid points, while the choice of grid points is irrelevant from
the physical perspective.18 Therefore, we expect that ESP-fitted
charges are, just like Mulliken charges, of little use for the
calibration of statistically sound EEM or SQE parameters.38

Multiple Minima. The cross-validation runs for T1 and T2
confirm the reliability of the calibration procedure. For each run,
RMSE and R2 values are computed to test how well the parameters
based on a selection of 400 (out of 500) molecules can reproduce the
data of the 100 remainingmolecules. In linewith previouswork,36 the
performance measures obtained in the cross-validation are very
comparable to the numbers obtained in Table 4. The remainder of
the discussion is limited to the results based on calibrationT1. Similar
data for calibration T2, leading to the same conclusions, are included
in the Supporting Information in section 8.
The sampling covariance matrix of the 100 parameter vectors

is closely related to the Hessian of the cost function. In principle,
our covariance estimate does not converge to the true covariance
of the parameters because each training subset of 400 molecules
shares at least 300 molecules with all other subsets. Therefore,
our current approach systematically underestimates the true
covariance. This is of little concern because the model for the
parameter covariance, based on the inverse of the Hessian of T1,
is only known up to a constant factor. In Figure 5a, the square
root of the sampling covariance eigenvalues are plotted in blue.
The first eigenmode corresponds to a spread of about 1 eV on the
parameters. The inverse of the square root of the Hessian
eigenvalues are plotted as red dots. Both data series follow the
same trend up to a constant factor, a first confirmation that
the Hessian of the cost function minimum can be used to explain
the fluctuations on the EEM parameters. The eigenvectors of the
covariance and the Hessian are compared in Figure 5b, which is a
visual representation of the overlap matrix of both sets of
eigenvectors. Each cell of the overlap matrix is colored according
to its absolute value: the darker the color, the larger the absolute
value. In the ideal picture, only the diagonal elements would be
100% black, while all off-diagonal elements would remain white.
Figure 5b reveals some contamination between eigenvectors
with similar eigenvalues, but the overall correspondence between
the two sets of eigenvectors is good.
The statistical explanation of the variation on the parameters

can be further validated by studying the distribution of the

Table 6. Decomposition of the Vector Representing the
Difference between the P1 and T1 Parameters in the Basis of
P1 Hessian Eigenvectorsa

index relative eigenvalue coefficient [eV] contribution [%]

1 3.646e�6 �4.619eþ0 39.44

2 6.341e�6 �4.117eþ0 31.35

3 6.807e�5 �3.788eþ0 26.52

4 3.053e�4 1.656e�1 0.05

5 1.017e�3 1.143eþ0 2.41

6 6.794e�3 �5.107e�2 0.00

7 1.098e�2 3.133e�1 0.18

8 2.499e�2 1.175e�1 0.03

9 4.695e�2 �5.788e�2 0.01

10 1.322e�1 3.197e�3 0.00

11 4.907e�1 �3.959e�2 0.00

12 1.000eþ0 �2.426e�2 0.00
aThe eigenvalues of the P1 Hessian are given relative to the highest
eigenvalue.

Table 7. Decomposition of the Vector Representing the
Difference between the P1 and T1 Parameters in the Basis of
Projected T1 Hessian Eigenvectorsa

index relative eigenvalue coefficient [eV] contribution [%]

1 4.636e�06 �4.470eþ00 36.95

2 1.283e�05 �4.162eþ00 32.02

3 1.213e�03 �2.614e�01 0.13

4 1.579e�03 1.401eþ00 3.63

5 3.437e�03 �2.227eþ00 9.17

6 3.970e�03 1.105eþ00 2.26

7 1.920e�02 �2.828eþ00 14.79

8 3.264e�02 �6.524e�01 0.79

9 6.963e�02 �3.314e�01 0.20

10 2.208e�01 �3.148e�02 0.00

11 3.544e�01 1.831e�01 0.06

12 1.000eþ00 �5.094e�02 0.00
aThe eigenvalues of the projected T1 Hessian are given relative to the
highest eigenvalue.
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distance of each parameter vector from the average. First, we
apply an affine transformation to the parameters such that the
average vector is zero and the covariance matrix becomes unity.
The squared norm of the parameter vectors in these normalized
coordinates should be distributed according to a χ2 distribution
with 16 degrees of freedom, i.e., the number of parameters in T1.
A comparison of the cumulative frequency plot with the exact
cumulative χ2 distribution is presented in Figure 6. Small
aberrations are found in the tails of the distribution, but there
is no indication that firm outliers are present.
Both tests point out that the Hessian of the cost function

explains the uncertainty on the parameters of T1. This is only
possible if all 100 parameter vectors essentially describe the same
minimum but are slightly displaced due to differences in the
training data. If the 100 parameter vectors would be due to truly
different minima in the cost function, one would not expect such

a good correspondence between the sampling covariance matrix
and the inverse of the Hessian of T1. Therefore, we conclude that
cost function T1 has only one minimum in the positive definite
feasible region. This justifies the use of a local minimization
algorithm for the calibration of the parameters instead of a
computationally more expensive global minimizer.
Finally, we must stress that this analysis can only work under

two important conditions. First, the calibration of the parameters
must be restricted to one feasible region, e.g., by imposing lower
bounds on the second-order parameters. Otherwise, one can find
at least oneminimum in the cost function for each feasible region.
Second, one must use a training set for the calibration and the
subsets for the cross-validation that contain sufficient informa-
tion to determine all parameters. If not, the covariance of the
parameters diverges.
Parameter Correlations in EEM. All results so far point out

that parameters in the EEM and SQE models are inherently
correlated to a high degree, even when the molecules in the
training sets are carefully selected to contain sufficient informa-
tion to estimate the parameters. In this subsection, we show that
correlated parameters are practically unavoidable with cost
functions that are based solely on atomic partial charges. The
results in this subsection are based on calibration P1.
Figure 7a and b contain lines defined in eq 17, for carbon and

fluorine atoms, respectively. The optimal parameters for carbon
and fluorine are indicated with a black cross. The corresponding
contour plots of the cost function in the same planes are shown in
Figure 7c and d, respectively. The same color scale is used as in
Figure 4. The plots for other elements (H, N, O, and Cl) are
given in section 9 of the Supporting Information. As discussed in
the methods, the optimal parameters for a given element should
coincide with the approximate crossing point of the bundle. This
is always the case, except for a constant shift of all of the
electronegativity parameters of about þ2 eV. Such a deviation
is to be expected since our cost function is only weakly sensitive
to the reference value for the electronegativity parameters. The
correlation between the line plots and the corresponding contour
plots is striking. Both the positions and the shapes of the minima in
the contour plots have a surprising direct linkwith the reference data.

Figure 5. Comparison of the covariance of the 100 parameter vectors from the cross-validation of calibration T1 with the inverse of the Hessian of the
cost function of T1. (a) The square roots of bothmatrices. Note the square root of a covariance eigenvalue can be interpreted as the standard deviation of
the parameters along the corresponding eigenvector. (b) Visual representation of the overlap matrix of the eigenvectors of covariance and the Hessian.
Each cell of the overlap matrix is colored on the basis of its absolute value: the darker the color, the larger the absolute value.

Figure 6. Comparison of the cumulative frequency distribution of the
squared norm of the 100 parameter vectors from the cross-validation of
T1 in normalized coordinates (blue) and the expected cumulative χ2

distribution with 16 degrees of freedom (green).
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This is not only useful to construct an initial guess for the
parameters. It also shows why the parameters of the halogens can
vary easily: all of the lines associated with fluorine (or chlorine)
have approximately the same slope, and hence there is no clear
intersection point. The slope of the lines is determined by the
charge on the corresponding atoms, see eq 17, which implies that
atoms with little variation in the partial charge are inherently
difficult to parametrize.37,38

Given these insights, one can think of potential improvements
in the calibration procedures. (i) One could define a weight wm,i
per element (or force-field atom type in the case of SQE) in the
cost function (eq 11) that is inversely proportional to the
variance on the atomic charges within the atom type.71 With
this choice, atom types whose charges show little variation in the
training set receive a much higher weight. This increases the
curvature of the cost function, i.e., its sensitivity, for parameters

that are otherwise underdetermined. In this paper, the weights
were still based on the prevalence of atomic elements or force-
field atom types.36 (ii) A second improvement is based on the
observation that the parameter correlations are alway found in
pairs, i.e., the hardness and electronegativity parameters of the
same element. One could use two separate cost functions: one to
determine the second-order parameters (e.g., based on linear
response data) and one for the linear parameters (e.g., based on
equilibrium charge distributions). This is of course only helpful
when both separate cost functions have a low condition number.
An alternative remedy is tested in the benchmark paper of
Verstraelen et al.:36 an additional term is added to the cost
function based on linear response data, which only depends on
second-order parameters. The reduced condition number of the
Hessian of such an extended cost function shows that this
approach leads to less dispersed parameters.

Figure 7. The lines for (a) carbon and (b) fluorine associated with theQMatomic charges in calibration P1. (See text for the definition of the lines.) The
position of the optimal parameters for each element is indicated with a black cross. Parts c and d contain the corresponding contour plots of the cost
function in the same planes, using the same ranges for χi and ηi. The color code for the contour plots is the same as in Figure 4.
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V. CONCLUSION

Three sets of parameters for the EEM and SQE models are
calibrated in this work using state-of-the art methods and resulted in
three practically useful calibrations (P1, T1, and T3). These three
sets of parameters are calibrated with Hirshfeld-I charges for a
sufficiently large set of molecules compared to the number of
parameters in the corresponding models. Three other calibrations
(P2, T2, and P3) are used to illustrate the typical problems that can
arise in the calibration of charge equilibration parameters. Despite
the careful calibration protocols, our analysis demonstrates that the
EEM and SQE parameters are still statistically ill-defined numbers
that have no absolute interpretation and can only be considered as
regression parameters. Irrelevant details in the training set can lead
to large fluctuations on the parameters, but cross-validation tests
confirm that these fluctuations do not affect the charge distribution
predicted by the EEM or SQE model.

Using a variety of analysis techniques, we investigated the two
potential issues that may lead to parameters that are not unique: (i)
the presence and nature of multiple minima in the cost function and
(ii) directions of low curvature in theminimumof the cost function.
Screened electrostatics combinedwith suitable and reasonable lower
limits on the second-order parameters restrict the calibration to a
single feasible region in the parameter space. Numerical tests
indicate that this region contains only one local minimum, which
leaves the lack of curvature of the cost function as the only potential
difficulty. The lack of curvature is present in all six calibrations in this
work and seems to be a general feature, which is not surprising given
the large number of parameters. In practice, thismeans that there is a
large hyper-ellipsoid in the parameter space that contains all of the
parameter vectors that are nearly optimal. Every effort to find the
true minimum in this ellipsoid is completely in vain, as its exact
position is very sensitive to irrelevant details in the training set. It is
therefore also impossible to give a physical interpretation to
individual parameters.

A certain amount of noise on the calibrated EEM and SQE
parameters is unavoidable, but several measures are proposed in the
paper to improve their robustness. It is compulsory to design a well-
balanced training set in which each atom (and bond) type is
sufficiently prevalent. On the basis of the training data, one should
construct a cost function that includes a maximum of information
from the training data. In addition to the atomic charges, our cost
function is also sensitive to the molecular electronegativity, and one
can further enrich the cost function with linear response data. One
should also try to reduce the noise in the training data; e.g., it is
advantageous to use Hirshfeld-I charges instead ofMulliken charges
because the former are less basis set dependent. We also expect that
the cost function will become better behaved when the weights
associated with the charges in the cost function are defined per
element (or atom type) such that they are inversely proportional to
the variance on the charge of all atoms within the same atom type.

Our investigation raises many issues in the calibration of EEM
and SQE parameters, and even more so in the direct interpreta-
tion of the calibrated parameters. We hope our analysis of the
calibration procedures will be a fruitful source of inspiration for
future work on charge equilibration models.
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ABSTRACT: The prediction of protein�ligand binding free energies is an important goal of computational biochemistry, yet
accuracy, reproducibility, and cost remain a problem. Nevertheless, these are essential requirements for computational methods to
become standard binding prediction tools in discovery pipelines. Here, we present the results of an extensive search for an optimal
method based on an ensemble of umbrella sampling all-atom molecular simulations tested on the phosphorylated tetrapeptide,
pYEEI, binding to the SH2 domain, resulting in an accurate and converged binding free energy of�9.0( 0.5 kcal/mol (compared
to an experimental value of�8.0( 0.1 kcal/mol). We find that a minimum of 300 ns of sampling is required for every prediction, a
target easily achievable using new generation accelerated MD codes. Convergence is obtained by using an ensemble of simulations
per window, each starting from different initial conformations, and by optimizing window-width, orthogonal restraints, reaction
coordinate harmonic potentials, and window-sample time. The use of uncorrelated initial conformations in neighboring windows is
important for correctly sampling conformational transitions from the unbound to bound states that affect significantly the precision
of the calculations. This methodology thus provides a general recipe for reproducible and practical computations of binding free
energies for a class of semirigid protein�ligand systems, within the limit of the accuracy of the force field used.

1. INTRODUCTION

Achieving a standard, reliable, and accurate protocol for the
quantitative determination of protein�ligand binding affinities
has remained one of the pivotal problems in computational
biochemistry; its attainment is set to yield a tremendous gain in
the basic understanding of molecular biological processes.
Attempts to compute binding affinities have been made since
near the inception of computational biomolecular modeling, and
several notable methods involving molecular dynamics (MD)
simulations have arisen.1,2 The underpinning problem circum-
vented by all of these methods is that unbiased equilibrium-based
free ligand binding using an all-atom model (including solvent),
although computationally possible in certain cases, is much more
expensive than the present calculations. Another route is there-
fore employed in arriving at a quantitative determination of the
binding free energy.

At the high-throughput end, empirically tuned methods such
as linear interaction energy (LIE) methods3�5 are used with the
forfeit of compromising some accuracy. One major strategy is to
use implicit solvent MD,6 which drastically reduces the computa-
tional cost, sometimes at the expense of neglecting crucial
structural water mediated interactions.7 Such continuum solvent
methods are often used in conjunction with thermodynamic
cycle methods, such as the molecular mechanics Poisson�
Boltzmann/Generalized-Born solvent accessible surface area
(MMPB/GBSA) methods,2,8�13 that indirectly compute the
binding free energy in solution by separation of the solvation
and in vacuo interaction components of the free energy. Other
more accurate and computationally intensive methods involving
“alchemical”mutations, such as free energy perturbation (FEP)14�16

and thermodynamic integration (TI),17�19 have been traditionally

employed for—but not limited to—calculating relative binding
free energies between related protein�ligand combinations,
being able to calculate absolute binding free energies.20 The
latter, however, has a much greater computational cost.

Methods involving the biased sampling along a set of pre-
selected reaction coordinates that follow physically meaningful
binding pathways have also found a measure of success. These
include metadynamics,21,22 adaptive force bias,23 the Jarzynski
method,24,25 and umbrella sampling26,27 among others. For
example, metadynamics approaches have been used to determine
peptidic binding of highly flexible target proteins,28 while biased
umbrella sampling methods have shown that accurate binding
free energies are indeed possible once conformational (rotational
and translational) restraints are properly sampled.29�33 The
overriding problem with such methods is that they require
extensive knowledge of the specific system, in order to apply
the relevant biases; they are thus costly in human resources,
requiring informed and manual selection of appropriate re-
straints in the configurational space, and are thus not scalable
in a standard way to the high-throughput domain. Recently, an
unbiased umbrella sampling method was reported using only a
one-dimensional potential of mean force (PMF) calculation34

and the weighted histogram analysis method (WHAM).35

Although only modestly precise when applied to the benzami-
dine�trypsin system, the method does away with conforma-
tional biasing and applies only generic restraints, orthogonal to
the direction of binding. Furthermore, the ease of implementa-
tion of this method makes further evaluation of it an attractive

Received: January 26, 2011
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prospect for being an optimal method for high-throughput
binding free energy determination, provided that the fundamen-
tal problem of sufficient sampling can be overcome.

The current age of micro- to millisecondMD brings with it the
ability to test the hypothesis that current MD force fields are
accurate enough to reproducibly attain accurate binding free
energies, given enough sampling. Aggregate sampling across such
time scales has been implemented by several groups,36�41

primarily with respect to conformational dynamics and protein
folding, and lends itself naturally to distributed computing
initiatives.42 Furthermore, the recent advances in programmable
GPU technology43�45 have facilitated several initiatives, like
ACEMD,44 a new generation fast MD code exclusively running
on GPUs, and GPUGRID, a distributed computing project46 for
molecular dynamics simulations. Using this resource, we have
previously shown that extensive sampling (over 19 μs of aggre-
gate sampling) using the 1D-PMF method for a larger-ligand
system than the benzamidine-trypsin, results in accurate binding
free energies compared with experimental results,46 while with
the optimization reported here, only 300 ns are necessary.

In this paper, we investigate whether such a method can be
made robust, convergent, and reproducible, while optimizing the
protocol to minimize the amount of required computational cost
and crucially retaining the accuracy of the result. To allow an
optimal comparison to other methods29 and our earlier inves-
tigations,47 the method is applied to the Src homology 2 (SH2)
domain binding to the phosphorylated tetrapeptide pYEEI. SH2
domains are noncatalytic domains48 composed of approximately
100 amino acids,49 involved in a large variety of tyrosine�kinase
signal transduction pathways,50�52 and bind short peptidic
sequences containing phosphorylated tyrosine residues.53,54

Furthermore, many pathological conditions, such as autoim-
mune diseases, cancer, and asthma, can be associated with the
incorrect function of SH2-mediated processes, making them an
attractive target for structure-based drug design.55�57 This
ubiquitous role in cell function and regulation48,50 imposes con-
ditions of high affinity and specificity for a range of peptides,58,63

making them an excellent template for differentiating various
computational methodologies,29,47,64

Here, we first reimplement our extensive 1D-PMF sampling
protocol used previously,46 analyzing its convergent properties.
Second, we adapt the 1D-PMF protocol through a sequence of
optimizations. These include window-width and thus corre-
sponding harmonic restraint variation, the use of ensemble
trajectory sampling, which has been shown to be advantageous
over single trajectory sampling in other methods,13 and the use of
multiple initial conditions. At each stage, the computational cost
is reduced or the corresponding accuracy and convergence
increased. As the sampling required to achieve convergence is
related to the conformational freedom and thus the size of the
system, the protocol that emerges from this optimization is
capable of producing accurate and reproducible binding free
energies up to the given size of the system implemented here.
This result would allow a vast array of ligand�protein binding
free energies up to the given molecular weight to be accurately
and rapidly determined through high-throughput molecular
simulation.

2. MATERIALS AND METHODS

2.1. System Preparation. The input model is based on the
bound crystallographic structure of the complex of the human

p56lck domain and the peptide phosphotyrosine-Glu-Glu-Ile
(pYEEI; PDB: 1LKK) using the CHARMM2765 force field.
The phosphotyrosine residue was assumed to be in its charged
form Y-PO3

2� as experimentally determined.60 Neutral acety-
lated N-terminus (ACE) and amidated C-terminus (CT2)
residues were used to cap the peptide. The complex was solvated
in a TIP3P66 water box with a boundary at least 12 Å from the
system in the x and y directions and at 52 Å in the z direction,
giving a box size of 65 � 62 � 93 Å3, the z axis being larger to
allow for the generation of several US initial configurations with
the ligand at different distances from the protein (Figure 1a).
The ionic strength was set to 0.15 M Naþ and Cl� and the

system charge neutralized. The final system comprised 38 655
atoms. The reaction coordinate z was set to be orthogonal to the
plane formed by the binding interface of the complex; the protein
was then rotated manually during system preparation with the
aim of providing a large water reservoir in the direction of the
ligand displacement.
The system was minimized and relaxed under NPT conditions

at 1 atm and 298 K using a time step of 2 fs, a cutoff of 9 Å, with
rigid bonds and PME for long-range electrostatics with a grid of
64� 64� 96. During minimization and equilibration, the heavy
protein atoms were restrained by a 10 kcal/mol/Å2 spring
constant. Two rounds of velocity reinitialization for 2 ps were
performed under NVT conditions. The magnitude of the re-
straining spring constant was then reduced to 1 kcal/mol/Å2

during 10 ps of NVT before the barostat was switched on at 1 atm
for a further 10 ps of NPT simulation. A final 40 ps of
NPT simulation was conducted with a restraint constant of
0.05 kcal/mol/Å2. Finally, the volume was allowed to relax for
10 ns under NPT conditions. During this run, only CR atoms of
the complex were restrained with a 1 kcal/mol/Å2 constant in
order to prevent reorientation.46

Production simulations were run using ACEMD44 over GPU-
GRID.net46 with the same parameters used for the relaxation but
a time step of 4 fs due to the use of the hydrogen mass repartition
scheme67 implemented in ACEMD. This elegant method67 uses
the mathematical property that individual atom masses do not

Figure 1. (a) Schematic representation of a system for the calculation of
free-energy of binding. “P” and “L” are for protein and ligand, respec-
tively. (b) Schematic visualization of the initial configurations for the US
of the SH2 domain/pYEEI ligand complex (PDB: 1LKK) in the
water box.
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appear explicitly in the equilibrium distribution; therefore chang-
ing them only affects the transport properties of the system
marginally but not the equilibrium distribution.44

2.2. Initial Conformation Generation. The umbrella sam-
pling (US) method requires the prior generation of initial
conformations for each window of the production sampling.
Window-centered initial conformations corresponding to the
entire range of the reaction coordinate were generated via
preliminary MD simulations in which the ligand was displaced
by 25 Å along the z direction toward the bulk from z = 0 Å to
z = 25 Å by applying a linear force F =� kd(z � vt) to all of its
carbon atoms, where kd = 10 kcal/mol/Å2 and v = 5 Å/ns. A
second biasing restraint of k = 0.1 kcal/mol/Å2 was applied to the
center of mass of the ligand to restrain to the xy plane (with
respect to the initial bound position of the ligand). A harmonic
restraint of k = 1 kcal/mol/Å2 was applied to every CR atom
residing in an R-helix or β-sheet of the protein further than 9 Å
from the ligand. This prevented rotation and translation of the
protein during ligand separation while preserving the flexibility of
the binding pocket. Snapshots of the system coordinates
(Figure 1b) were saved at constant intervals. Two sets of initial
conformations were generated using this method. The first set
(denoted IC1 hereafter) employed a single preliminary MD run,
generating a single initial conformation for each window from
that run. The second set (denoted IC2 hereafter) employed a
total of 10 preliminaryMD simulations, thus generating 10 initial
conformations for each window. Initial conformations were then
chosen by window-sequential selection across the set of 10
preliminary runs, thus ensuring that neighboring initial confor-
mations were from different runs. Initial conformations derived
from the same preliminary run thus had a 10-window spacing
within the set.
2.3. Umbrella Sampling Optimization. A number of um-

brella sampling (US) simulations were performed, each varying a
protocol parameter, namely, window width (Δw) and, corre-
spondingly, the number of windows, sample time per indepen-
dent simulation per window (t), orthogonal restraints kxy, force
constant for the harmonic window potential kz, the ensemble size
or number of independent simulations (Nr), and finally whether
the initial starting conformation set was IC1 or IC2 (IC). The
reaction coordinate always extended from z = 0Å to z = 25Åwith
the bound configuration at position z = 0 Å used as a reference.
The parameter sets for the full range of simulations performed
here together with the total corresponding sampling time (ttot)
are listed in Table 1. All initial US windows were submitted to
GPUGRID.net for execution of the US protocol. Each US
window simulation was divided into several successive steps,
with each step being 4 ns of duration. Each step was run as a
separate GPUGRID work unit (WU), where each WU corre-
sponded to about 6 h of continued computation for a typical
GPUGRID volunteer computer, while ACEMD on a top GPU

like a GTX480 would perform 50 ns/day for this system.
Preliminary runs to generate initial conformations were per-
formed locally. The rationale for the different simulations is
explained below.
Set 1 corresponded to the implementation of a previous

exhaustive sampling simulation, reported previously,46 using a
small window width of 0.1 Å (381 windows) and a sampling time
up to 50 ns per window. Initial conformations were generated
from a single preliminary MD run (IC1).
Set 2 corresponded to the optimization procedure for the force

constants for the harmonic potentials both for restraining diffu-
sion in the xy plane (kxy) and for the US potential (kz). It
employed a set of three US simulations each of up to 80 ns/
window for a combination of 10 different permutations of kxy and
kz listed in Table 1 and using a larger window width of 0.5 Å
(51 windows). The optimal parameter set (OPS) was deter-
mined as kxy = 1 kcal/mol/Å2 and kz = 0.5 kcal/mol/Å2

(Figure 3). The initial conformation set was IC2.
Set 3 corresponded to the ensemble sampling procedure using

the OPS. This entailed an ensemble of 10 identical US simula-
tions for which the PMF and subsequent binding free energy
were calculated in order to determine the convergence properties
of the method. Initial conformations were generated as for set 2
(IC2).
Set 4 corresponded to the study of the effect of using a less

varied initial conformation set across neighboring windows. A set
of 10 identical US simulations were performed, similar to set 3
but using initial conformations generated in a more simple
manner, from a single preliminary MD simulation (IC1).
2.4. Free-Energy Calculation. The PMF over the reaction

coordinate for each replica was reconstructed using WHAM35

with a convergence tolerance of 10�4. From the PMF, the
standard free energy of binding was computed using the expres-
sion given in34

ΔG� ¼ ΔWR � kBT ln
lbAu,R
V�

� �
þΔGR ð1Þ

whereΔWR is the PMF depth, kB is the Boltzmann constant, T is
the temperature, lb =

R
bound exp(�WR(z)/kbT) dz is the integral

of the PMF over the bound length,Au,R = 2πkBT/kxy is the area in
the x and y directions of the unbound ligand, V� = 1661 Å3 is the
standard volume, and ΔGR is the free energy to remove the
orthogonal restraints (on x and y) when the ligand is bound.ΔGR

is obtained via a free energy perturbation approach from the
exponential average.34

In order to assess convergence, the sampling time per window
used to construct the PMF and thus the free energy for each
replica was increased up to the maximum sampling time across
the 51 windows. The convergence of each replica with an

Table 1. Umbrella Sampling Simulation Parameter Variationa

ID Nr Nw Δw (Å) t (ns) kxy (kcal/(mol 3Å
2) kz (kcal/mol 3Å

2) IC ttot (μs)

set 146 1 381 0.1 50 0.1 10 IC1 19

set 2 10� 3 51 0.5 80 0.1, 1 0.5, 1, 2.5, 5, 10 IC2 122.4

set 3 10 51 0.5 20 1 0.5 IC2 10.2

set 4 10 51 0.5 20 1 0.5 IC1 10.2
a Nr, number of complete US replicas; Nw, number of windows per US replica; Δw, US window width; t, simulation time per US window; kxy, force
constant for orthogonal restraints; kz, force constant for US restraints; IC, source of initial conformations; ttot, total aggregate simulation time.
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increase in time was then charted as well as the corresponding
mean and standard deviation.

3. RESULTS AND DISCUSSION

We begin by analyzing the exhaustive umbrella sampling (US)
method reported previously,46 called set 1 here. Optimization of
the method requires us to obtain convergent and accurate results
with the minimum sampling time and proceeds via alteration of
window width and a corresponding systematic parameter search
with respect to harmonic restraint values (set 2). Convergence is
investigated by employing an ensemble of simulations and
analyzing across an increasing sampling time per window
(set 3) and compared against a similar ensemble with the choice
of using less varied initial conformations (set 4).
3.1. Exhaustive Umbrella Sampling.An exhaustive umbrella

sampling method utilizing 19 μs aggregate sampling was used to
determine the free energy of binding of SH2 to pYEEI (set 146 in
Table 1, 1 run). The PMF depth (see Figure 2) is ΔWR =
�10.8 kcal/mol, with a small variation for different times in the
US runs. The bound distance is lb = 0.93 Å, and the area explored
by the ligand in the xy plane Au,R = 37.07 Å2. The free energy to
remove the constraints have a negligible contribution ΔGR =
�0.0124 kcal/mol due to the low restraint applied. The standard
free energy of binding for the pYEEI ligand is computed from
eq 1 as ΔG� = � 8.5 kcal/mol, which compares with a reported
experimental value of �8.0 kcal/mol.61

Construction of the PMF over the entire data set thus results
in a single value for free energy without specification of the error.
In order to compute the error, it is first instructive to determine
the amount of sampling time per window required to stabilize the
free energy. Computing the PMF for increasing sample time
within each window (Figure 2), we see that convergence is
achieved after approximately 50 ns with a value of�8.5 kcal/mol.
This first indicates that the sampling can be reduced to 12 μs by
considering a shorter (25 Å) reaction coordinate. However, it
also indicates that a long equilibration time is necessary using an
approach with a single simulation per window. An associated

error is then determined by discretizing the postequilibration
region into 5 ns blocks and computing the block average (as done
in previous studies34). This results in a binding free energy of
ΔG� =� 8.5 ( 0.5 kcal/mol and compares well with a reported
experimental value of�8.0 kcal/mol.61 However, the accuracy of
the above result comes at a substantial sampling cost (19 μs); it is
thus desirable to lower these costs by optimizing the method.
3.2. Determining the Optimal Parameter Set (OPS). The

first optimization strategy is to reduce the number of windows by
increasing the window width to 0.5 Å. However, alteration of
window width requires further optimization of harmonic re-
straints, in particular, that of the umbrella sampling potential
(kz). To determine the optimal choice of kxy and kz, an ensemble
of three umbrella sampling simulations for every window is
performed for each of 10 permutations of kxy and kz (set 2 in
Table 1, 30 runs).
It is clear from Figure 3a and b that a stabilized PMF is

exhibited for various selections of kxy and kz. For example, for
kxy = 0.1 kcal/mol/Å2 and kz = 1 kcal/mol/Å2 (blue lines in
Figure 3a), each of the three members of the ensemble show
unchanging PMF values after 60 ns but vary among themselves
over a range of 2.5 kcal/mol.
We have shown thus far that binding free energies attained

using single runs exhibit stable PMFs with respect to themselves
at 50 ns. However, convergence requires that multiple replicas of
the same run converge to the same value. Here, even for 80 ns of
sampling per window, no harmonic constraint permutation yields
convergent results between the three members of its correspond-
ing ensemble, except that of kxy = 1 kcal/mol/Å2 and kz =
0.5 kcal/mol/Å2 (green lines in Figure 3a). This set converges to
within 0.5 kcal/mol within 50 ns of sampling per window at the
given window width of 0.5 Å, establishing it as the optimal
parameter set (OPS). After 50 ns of sampling, the OPS thus
attains an accurate binding free energy of �9.0 ( 0.5 kcal/mol,
within 1 kcal/mol of experiment.
The chosen OPS exhibits the best convergence but only for an

ensemble of three. While sufficient to discriminate it from the
other parameter sets, the convergence properties of the absolute
binding free energy can be investigated better using a larger
ensemble.
3.3. Convergence and Sampling Properties of theOptimal

Parameter Set. Here, we perform a larger ensemble of simula-
tions using the OPS (set 3 in Table 1, 10 runs) and analyze the
corresponding convergence properties with an increase in sam-
ple time per window. We also investigate whether using less
varied initial conformations across the US profile confers any
difference to the accuracy or convergence properties of the
binding free energy. This entails a second ensemble of similar
size and sampling time (set 4 in Table 1, 10 runs).
The mean binding free energy across the ensemble set as a

function of sample time is analyzed (Figure 4) for each. The free
energy for set 3 exhibits convergence at 6 ns with a free energy of
�9.0( 0.9 kcal/mol and convergence to within 0.4 kcal/mol at
20 ns. By contrast, set 4 does not exhibit true convergence, even
up to 20 ns, even though it yields a flattened mean binding free
energy of�8.7( 1 kcal/mol. This is because, unlike for set 3, the
error does not diminish significantly with increased sampling.
Examination of the convergence of each single US run with
increasing sample time (see Supporting Information) shows that
while all single runs converge to the same value for set 3, they do
not for set 4. Instead, single runs stabilize on a particular binding

Figure 2. Reconstructed potential of mean force of the SH2 domain/
pYEEI ligand complex along the reaction coordinate, calculated from
381 completed US configurations of 50 ns each. The PMF is recon-
structed over increasing sample time windows along the US trajectories
showing the long relaxation time of the US simulations. The reference
ΔWR value (PMF depth) computed from the last PMF is 10.8 kcal/mol,
producing a standard free energy of binding of �8.5 ( 0.5 kcal/mol,
accounting for the standard volume and biasing factors. The experi-
mental value for this system is�8.0 kcal/mol. Simulation is termed set 1.
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free energy, and this results in the error not diminishing for the
latter while it does for the former.
The above analysis draws us to conclude that, provided

convergence is demonstrated through an ensemble of runs, a
single run using the OPS and an aggregate sampling time of 300 ns
is sufficient to provide a result to within 1 kcal/mol accuracy and
precision to within 1 kcal/mol and 1 μs to within the same
accuracy but a tighter convergence of within 0.5 kcal/mol.
However, it is important to note that such an aggregate time
scale also requires a sufficient relaxation time to be met within
each window; in this case, relaxation leads to convergence of the
binding free energy within 6 ns of sample time per window.
Furthermore, the analysis also demonstrates that the choice of

initial conformations plays a significant role in the attainment of
convergence. More specifically, it is the sensitivity to the correla-
tion between the initial conformations along a single profile of
US windows that affects the convergence of the binding free
energy. Furthermore, deriving initial conformations from a single
preliminary MD run would require marginally less computation;
however, the loss of convergence due to the correlated nature of
the initial conformations prevents such a choice being optimal.
3.4. Structural Correlates of Differential Sampling. Con-

vergent sampling depends on the flexibility of the ligand and the
protein across the reaction coordinate. Very flexible ligands/
proteins or those capable of accessing multiple distinct confor-
mations increase the convergence time because it requires sam-
pling across all the relevant conformational degrees of freedom.

The flexibility of both the protein and the ligand is thus assessed
in terms of root mean squared fluctuations (RMSF) relative to
the average structure in each window of the reaction coordinate
(Figure 5).
In Figure 5, it is shown that the ligand is more rigid closer to

the surface of the protein (RMSF∼0.6 Å) and more flexible in
the unbound state (RMSF∼1.2 Å). The protein shows similar
flexibility upon binding (RMSF∼1.3 Å) with the ligand to that
when unbound. There is a sharp transition in flexibility in
the ligand RMSF between 4.5 and 5.5 Å along the reac-
tion coordinate, while the ligand transits from being bound
at 4.5 Å to more flexible and unbound over a short distance
of 1 Å.

Figure 3. Harmonic constraint optimization over a range of kz = 0.5, 1, 2.5, 5, 10 kcal/mol/Å2 for kxy = 0.1 (left) and kxy = 1 kcal/mol/Å2 (right).
Simulation is termed set 2.

Figure 4. Comparison of two ensembles of 10 US simulations, one
where each simulation was started from a different initial conformation
per window (red), termed set 3, and the other where each simulation
was started from a single initial conformation per window (black),
termed set 4.

Figure 5. Backbone flexibility in terms of root mean squared fluctua-
tions (RMSF) relative to the average structure in each window of the
reaction coordinate. (a) The ligand is more rigid closer to the surface of
the protein (RMSF ∼0.6 Å) and more flexible in the unbound state
(RMSF∼1.2 Å). A sharp transition in flexibility is seen between 4.5 and
5.5 Å along the reaction coordinate. Within a 1 Å distance, the ligand
transits from being rigidly bound to being flexible and unbound. (b) The
protein, instead, shows similar flexibility (RMSF ∼1.3 Å) between its
bound and unbound conformations.
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The sensitivity of convergence to the correlation between
initial conformations is investigated in more detail and the
structural correlates pertaining to the variation of binding free
energies for correlated PMF profiles determined. First, the PMF
profiles (Figure 6a) of all individual US runs belonging to set 4
(black lines) show greater variability than the converged PMF
profile range of set 3 (red band). It is this variation that causes the
3 kcal/mol deviation between the highest and the lowest value
for the free energy. Crucially, significant variation with respect to
the convergence band commences across windows centered at
4.5, 5, and 5.5 Å, corresponding to the sharp transition region
exhibited in ligand flexibility, suggesting that it is in this region
where orientational and conformational degrees of freedom play
a more important role.
Three profiles from set 4, corresponding to the binding free

energies of �6.7 kcal/mol, �9.2 kcal/mol, and �10.4 kcal/mol
from individual simulations denoted r1, r2 and r3, respectively,
are investigated more closely on the basis that the first under-
estimates the free energy, the second lies within the convergence
band, and the third overestimates the free energy. An examina-
tion of the integrated normalized probability distribution of the
ligand center of mass across the windows centered at 4.5 Å, 5 Å,
and 5.5 Å (Figure 6b) shows substantially different sampling
compared to set 3 (red). While the converged ensemble samples

a trimodal distribution consisting of a sharp peak at 0 Å, and two
shallower peaks at 2.5 and 3.5 Å, respectively, the three individual
simulations r1, r2, and r3 each predominantly simulate a different
mode from each other. Each one, however, corresponds to a
mode within the trimodal distribution of set 3. This confirms that
the region with window centers between z = 4.5 Å and z = 5.5 Å
thus corresponds to a sensitive transition region between bound
and unbound states of pY for the two protocols.
The three sampling peaks exhibited along the reaction co-

ordinate (Figure 6b) correspond to three distinct structural
conformations (Figure 6c and d), which are all sampled correctly
in the converged simulations but incorrectly in the individual
runs. The most bound conformation (I), at z = 0 Å, consists of an
extremely tight hydrogen bond network (six hydrogen bonds)
between the phosphotyrosine (pY) of the ligand and the R154,
S156, E157, and S158 residues in SH2. This is due to the
favorable conformation of the flexible loop between residues
156 and 162 of SH2 (cyan). The second conformation (II), at
z = 2.5 Å, corresponds to a slight retraction of the loop coupled
with the increased separation of the ligand and results in the loss
of two hydrogen bonds with S158. The third conformation (III)
at z = 3.5 Å corresponds to a more significant retraction of the
flexible loop region losing all of its hydrogen bonds with pY; only
a single hydrogen bond is maintained with R154. The individual

Figure 6. (a) PMF of all members of the set 4 ensemble (black lines) against the PMF range of set 3 (red band). Notable individual members
corresponding to excessive, accurate, and underestimated binding free energies are denoted r1, r2, and r3, respectively. (b) Integrated probability
distribution of r1, r2, and r3 for the differential sampling region exhibited in the PMF across windows centered at 4.5, 5, and 5.5 Å. The aggregate
distribution of set 3 is also shown (red) as well as the theoretical distribution for a system acting only under the restraining potential (gray). (c) Principal
structural correlates, corresponding to the three sampling peaks in b, showing pY interaction with R184, S156, E157, and S158 of SH2. The differential
conformation of the flexible loop region (cyan) corresponds to the degree of hydrogen bonding exhibited. (d) Surface representation of the
corresponding conformations.
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run r1 thus oversamples the most bound conformation, increasing
the PMF at that point and resulting in an excessive binding free
energy. Conversely, r3 oversamples the more unbound conforma-
tion, flattening the PMF at that point and eventually resulting in a
smaller free energy. Finally, r2 oversamples conformation II, which
compensates the loss in bound-conformation samplingwith a loss in
more unbound sampling and results in a PMF change within the
convergence band, leading to an accurate binding free energy.
The above analysis shows that the accuracy of the binding free

energy calculation can be significantly affected by differently
sampled structural events that occur in each window, especially in
windows that correspond to sharp transitions in ligand flexibility
and/or binding that have their root in discrete structural events
such as hydrogen bonding. While both stably bound and un-
bound states are easier to sample correctly by several approaches,
convergence is more profoundly tested in the transition region
between the two. However, it is not only the occurrence of such
events in each window that matters but the overall integration
across a number of relevant neighboring windows. The use of
correlated initial conformations increases the chance of main-
taining insufficient sampling across a set of neighboring windows
resulting in an incorrect shift in PMF depth (r1 and r3), which is
then propagated along the reaction coordinate. Even though this
can occur for uncorrelated neighboring windows too, the latter
exhibit far more sampling across windows, resulting in a tighter
convergence of the PMF.

4. CONCLUSIONS

In this work, we show that it is possible to determine accurate,
reproducible, and scalable absolute protein�ligand binding free
energies using molecular dynamics simulations, at least for the
specific case used here. Our optimized protocol employs a simply
biased 1D-PMF umbrella sampling method applied using an
ensemble of simulations, initiated from uncorrelated initial con-
formations across neighboring windows and an optimal parameter
set (OPS) describing orthogonal restraints, a force constant for the
sampling potential, window width, and sampling time per window.

Applied to the SH2 domain binding to the pYEEI ligand, we
obtain an absolute binding free energy of�9.0( 0.5 kcal/mol, in
good agreement with experimental results (1 kcal/mol deviation),
demonstrating the accuracy of the method. The minimum
aggregate sampling time to compute an accurate result is 300 ns
with theOPS, a significant improvement over the 19 μs aggregate
sampling of a previous method.

Our methodology is also demonstrated to be reproducible; that
is, ensemble-based repetition of the calculation shows convergence
to within 1 kcal/mol among independent simulations for the above-
mentioned aggregate sampling time. Furthermore, we show that it is
correct sampling of sensitive bound�unbound transition regions,
corresponding to various phosphotyrosine interactions in the bind-
ing groove, that determine the convergence of the result. Structural
correlates of differential sampling account for the discrepancies
between different methodologies, and the optimal methodology
presented here overcomes such sensitivities.

The protocol reported concerns the calculation of the PMF for
systems where there is a direct path from the bulk to the
binding site, thus making it amenable to the 1D-PMF method.
Calculations for more complex binding processes that involve
multiple reaction coordinates and/or significant protein�ligand
conformational changes upon binding are beyond the remit of
the method. Within the remit, however, as the protocol reported

here does away with system specific conformational restraints
and the corresponding human choices of system construct, it is
readily scalable to a large number of protein�ligand systems.
There may be limits of transferability for the parameters opti-
mized in this system when applied to other systems. A priori, it is
difficult to determine whether certain classes of systems will
exhibit transferable parameters, but it is likely that flexibility,
ligand size, and binding pathway will play an important role.
Cases where the protein is very flexible,68 much more so than the
SH2 domain, may cause a problem because the umbrella
sampling would need to sample correctly all of the conforma-
tions. This was possible here where the conformational fluctua-
tion was limited to a loop of the SH2 domain by properly
sampling the initial conformations of the umbrella sampling. The
same problem of conformational sampling applies for very
flexible ligands. Also, if the exit pathway of the ligand is very
narrow, care has to be used in the selection of the exit direction.
In summary, we would expect this methodology and parameter
set to work for semirigid proteins (small loop movements) and
semirigid ligands with an easy access pathway to the binding site.
In the case where these parameters may not be directly transfer-
able (free energy of binding very different from the experimental
value), we believe that a good approach is to enhance the creation
of initial configurations for the umbrella sampling before under-
going any deep optimization study. Once the limit of this
protocol is reached, additional optimization methods like
Hamiltonian replica exchange69 would need to be considered.
Finally, as the accuracy and precision obtained is, in this case, very
high, it supports the accuracy of the force field for the given
ligand. However, ligand force field accuracy is not the general
case, which means that the extensive and convergent sampling
provided by this methodology may allow the validation and
improvement of force field accuracy for different ligands.
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ABSTRACT: High quality molecular mechanics force fields of proteins are key for the quantitative interpretation of experimental
data and the predictive understanding of protein function based on computer simulations. A strategy is presented for the
optimization of protein force fields based on full-length proteins in their native environment that is guided by experimental NMR
chemical shifts and residual dipolar couplings (RDCs). An energy-based reweighting approach is applied to a long molecular
dynamics trajectory, performed with a parent force field, to efficiently screen a large number of trial force fields. The force field that
yields the best agreement with the experimental data is then used as the new parent force field, and the procedure is repeated until no
further improvement is obtained. This method is demonstrated for the optimization of the backbonej,ψ dihedral angle potential of
the Amber ff99SB force field using six trial proteins and another 17 proteins for cross-validation using 13C chemical shifts with and
without backbone RDCs. Thej,ψ dihedral angle potential is systematically improved by the inclusion of correlation effects through
the addition of up to 24 bivariate Gaussian functions of variable height, width, and tilt angle. The resulting force fields, termed
ff99SB_jψ(g24;CS) and ff99SB_jψ(g8;CS,RDC), perform significantly better than their parent force field in terms of both NMR
data reproduction and Cartesian coordinate root-mean-square deviations between the MD trajectories and the X-ray crystal
structures. The strategy introduced here represents a powerful addition to force field optimization approaches by overcoming
shortcomings of methods that are solely based on quantum-chemical calculations of small molecules and protein fragments in the
gas phase.

’ INTRODUCTION

Molecular dynamics (MD) simulations of biomolecules play
an important complementary role with respect to experiments.
In principle, computer simulations can provide a complete time-
resolved single-molecule picture of a protein’s behavior in atomic
detail. On the other hand, experimental studies are invariably
incomplete since certain properties are hard to measure. In
recent years, MD has been increasing in popularity in the study
of protein behavior enabled by the continuing exponential
increase in computational power1 that allows the simulation of
both larger systems and longer time scales and due to progress in
the quality of the underlying molecular mechanics force fields.2,3

Indeed, critical assessment of protein force fields has greatly
benefited from the ability to sample conformational space of
proteins more thoroughly.4 Still, there remains much room for
further improvement to enable increasingly accurate in silico
studies of protein properties and function. Currently, MD
simulations into the hundreds of nanoseconds regime are
becoming routine, which permit a fully quantitative comparison
between computation and certain types of experiments, such as
heteronuclear NMR spin relaxation.4,5 Other NMR parameters,
such as chemical shifts, scalar J couplings, and residual dipolar
couplings (RDCs), reflect a wider range of time scales from
picoseconds to milliseconds, covering motional regimes on
which many biologically important events occur. In order to
validate force fields on the full range of time scales, the use of
longer simulations represents a natural choice.6�8

The development of better force fields is a complex task that is
both labor-intensive and time-consuming. Essentially, all modern

force fields have been parametrized on the basis of both extensive
quantum-chemical calculations and experimental data.2,9�27 The
complexity associated with the fitting of a large number (well
over 100) of force field parameters is reflected in different
parametrization philosophies for different force fields. A com-
mon approach is the fitting of force field parameters to gas-phase
quantum-chemical calculations and experimental data of small
molecules, including amino acid analogs and small peptides, in
terms of average conformation, vibrational spectra, solvation free
energies, and relative energies of different conformations. The
fine-tuning of the CHARMM force field in the final step through
MD simulations of protein crystals is an exception.3

Not only can NMR data of full-length proteins in their native
environment be used to cross-validate MD trajectories, but these
data can also serve to directly improve the molecular mechanics
force field itself. Using an energy-based reweighting scheme, we
recently demonstrated this strategy by improving the backbone
dihedral angle potential of the Amber ff99SB2,28 force field using
experimental NMR chemical shift data from a set of proteins.29 The
force field was improved through modification of the coefficients
of a fourth order Fourier series expansion in the backbone
dihedral angles. Here, we present an alternative strategy that
uses a set of bivariate Gaussian functions that are added to the
backbone dihedral angle potential to optimize agreement with
respect to both protein 13C chemical shifts and backbone RDCs
measured in multiple alignment media.

Received: February 9, 2011
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’METHODS

Iterative Reweighting Strategy.The computational strategy
used in this work is outlined in Figure 1. It starts with the back-
calculation of experimental parameters, such as chemical shifts
and RDCs, for each snapshot of the MD trajectory based on the
parent force field (Vold) of one or several protein systems, which
are stored for subsequent analysis. We use here CR, Cβ, and C0
chemical shifts predicted for each MD snapshot using the
program SHIFTS30,31 as well as RDCs (see below). Time- and
ensemble-averaged chemical shifts are calculated with equal
weights, pold(i) = 1/N, for all N snapshots and compared with
the experimental chemical shifts by means of the root-mean-
square deviation (RMSD) in units of parts per million. We then
reweight a parent trajectory performed with the original force
field Vold for a new test force field Vnew by using Boltzmann’s
relationship:

pnewðiÞ ¼ poldðiÞ e�VnewðiÞ=kT=e�VoldðiÞ=kT ð1Þ
where pold(i) and pnew(i) are the relative weights and Vold(i) and
Vnew(i) are the potential energies of snapshot i for the old and
new force field, respectively, k is Boltzmann’s constant, and T is
the simulation temperature that is kept constant. The force field
is then optimized iteratively as follows. For each new trial force
field Vnew, the new weights pnew(i) are used to compute new
NMR parameters. The optimized force field is the one that
minimizes the overall discrepancy between the back-calculated
and experimental parameters. In previous work,29 we applied
downhill simplex minimization for optimization. In order to
search force field space more comprehensively, we use here a
Monte Carlo simulated annealing method followed by simplex
minimization.
Energy-based reweighting is a well-known tool in biomolecu-

lar simulations,32 whose utility for force field optimization has
only been demonstrated recently.29 Because reweighting does

not create new conformations, its effectiveness critically depends
on the overlap of the parent trajectory with the reweighted
trajectory. We therefore use a collectivity parameter33

k ¼ 100%
N

exp½ � ∑
N

i¼ 1
pnew ðiÞ log pnewðiÞ� ð2Þ

where pnew(i) are the normalized populations of eq 1. κ = 100%
indicates that all snapshots in the parent trajectory contribute
equally to the reweighted trajectory, whereas a collectivity
parameter near zero means that very few snapshots dominate
the reweighted trajectory. The latter situation is undesirable, as it
leads to a statistically poor representation of the native ensemble.
Throughout this work, we require that κ > 50% to ensure that the
parent and the reweighted trajectories significantly overlap. Since
this requirement limits the allowed range of changes between
the new and the parent force field, the above reweighting pro-
cedure is iteratively repeated (Figure 1) until no further im-
provement is achieved.
Local Reweighting Method. As every protein possesses a

large number of degrees of freedom, even a moderately large
change of a single force field term can produce a change in the
potential energy that amounts to minimal overlap between the
parent and the new trajectory (low κ value). To overcome this
issue, we employ a local residue-based reweighting scheme. For
the evaluation of the ensemble-averaged chemical shift of atom j
from the reweighted trajectory, rescaled energy changes ΔEj =
∑k=1
Nres exp(�rkj/r0)ΔEkj are used where ΔEkj is the dihedral angle

energy difference between the parent and trial force field of
residue kwith their CR atoms separated by the distance rkj,Nres is
the number of residues, and r0 is set to 9 Å. This assumes that the
effect of residue k on the local structure of atom j decreases with
increasing distance. MD simulations with the new force field are
then carried out to verify its performance.
Chemical Shift RMSD Calculations. The new predicted

ensemble averaged chemical shifts Æδmæ are calculated as

δmh i ¼
∑
N

i¼ 1
pnewðiÞ δmðiÞ

∑
N

i¼ 1
pnewðiÞ

ð3Þ

where δm(i) is the chemical shift of a given nucleus m predicted
for snapshot i. The root-mean-square deviation (RMSD) be-
tween predicted chemical shifts Æδmæ and experimental chemical
shifts δm,exp is given by

RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nnuclei
∑

Nnuclei

m¼ 1
ð δmh i � δm, expÞ2

s
ð4Þ

in units of parts per million (ppm) whereNnuclei is the number of
nuclei of each type, CR, Cβ, or C0. Total RMSDs are obtained by
averaging of the RMSDs of the different types of nuclei. All
experimental chemical shifts were taken from the BioMagRes
Bank34 with the databank entry codes given in column 1 of Table 2.
Residual Dipolar Coupling Calculations. RDCs represent

another type of NMR parameter, which reflects protein structure
and dynamics in a way that is complementary to chemical
shifts.35�38 RDCs are observed as cross-peak splittings due to
weak alignment of the proteins in an anisotropic environment.
The simple geometric dependence of RDCs on protein structure
makes them suitable for the rigorous assessment of the quality of

Figure 1. Schematic presentation of the iterative optimization proce-
dure of protein molecular mechanics force fields using experimental data
(in the present work, NMR chemical shifts or RDCs) of intact full-length
proteins as input.
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MD trajectories.39,40 For the same reason, force-field optimiza-
tion based on RDC information is attractive. However, extension
of the residue-based local reweighting method from chemical
shifts to RDCs is not straightforward because back-calculation of
RDCs involves fitting of an alignment tensor by singular value
decomposition,39,41 which simultaneously involves all RDCs
across a protein. In analogy to the local chemical shift reweighting
(see above), we assign a relative weight exp(�r/r0) to each
individual RDC in the global fitting when RDCs of internuclear
vectors that belong to one particular residue are back-calculated
from the MD trajectory where r is the distance between the CR
atoms of the two residues and r0 is set to 9 Å. The agreement
between back-calculated RDCs, Di,back, and experimental values,
Di,exp (i = 1, ..., NRDC), is then expressed by the Q value:39

Q ¼
∑

NRDC

i¼ 1
ðDi, back �Di, expÞ2

∑
NRDC

i¼ 1
D2
i, exp

2
664

3
775
1=2

ð5Þ

Q values obtained for different alignments are linearly averaged,
resulting in ÆQæ. One limitation associated with force field
optimization using RDCs only is that high-quality experimental
data for proteins with known high-resolution 3D structures are
presently available for only a few systems, which poses the risk of
overfitting. Therefore, we combine RDCs with chemical shifts
where the optimization target for force field improvement is the
weighted sum of the average chemical shift RMSD and the
average RDC-derived ÆQæ, with weights of 1.0 and 2.5 for
chemical shifts and RDCs, respectively.
Bivariate Gaussian Potential Dihedral Angle Energy

Terms. In the course of force field optimization, backbone
dihedral angle terms are often optimized in the final step because
they do not directly affect the interaction between amino acids
and between amino acids and explicit water. In our previous
work,29 we limited ourselves to the modification of individual
backbone dihedral angle energy terms. Here, we explicitly
include non-amino acid specific backbone dihedral angle cross
terms involving j = C0�N�CR�Cβ and ψ = Cβ�CR�C0�N
(except for glycines) with the goal of further improving the force
field quality. Cross terms betweenj andψ, which are part of the
CMAP correction of the CHARMM 22 force field,3,42 have
previously not been used in the Amber family of force fields. To
keep the number of fitting parameters in our reweighting scheme
reasonably small, we allow the addition of eight bivariate
Gaussian potential energy terms (GPETs) to the 2D backbone
dihedral angle energy surface where each GPET is defined as

ΔV ¼ f 3 expf � aðj� dÞ2 � bðj� dÞðψ� eÞ � cðψ� eÞ2g
ð6Þ

where the parameters a, b, c, d, e, and f defining the center, widths,
tilt angle, and height of each GPET are used as fitting parameters.
Initially, three GPETs are placed in the R-helical region of j,ψ
space, three GPETs are placed in the β-strand region, and two
GPETs are placed in the RR regions. The half widths (standard
deviations) of all GPETs are originally set to 10� along both
j and ψ, and all heights are set to zero. With each additional
round of optimization, a new set of eight GPETs is added to the
existing ones.
Protein Systems for Force Field Optimization and Valida-

tion. Protein GB3 (PDB code 1IGD) together with a pool of

22 proteins with variable sizes and topologies used previously29

were selected for this study. GB3 is added because of its extensive
set of backbone RDCs. All of these proteins were determined by
X-ray crystallography (except for the NMR structure 2EA9) with
a resolution of 2.1 Å or better, except for 1HIK and 3ILE. All
NMR chemical shifts data are directly taken from the BMRB
database.34 The chemical shifts of GB1 were obtained from S.
Grzesiek, and the ones of GB3 are taken from the examples
provided with CS-ROSETTA.43 Six proteins (1UBQ, 1IGD,
1HIK, 1ENH, 1SMX, and 1QZM) were selected as trial proteins
in our force field optimization based on chemical shifts, while all
others were used for validation. A comprehensive set of experi-
mental backbone N�HN residual dipolar couplings measured in
23 different alignment media for ubiquitin44 and a set of back-
bone N�HN, N�CR, CR�C0, and CR�HN RDCsmeasured in
five different alignment media for GB345 have been reported in
the literature. Backbone N�HN RDCs in two different align-
ment media for GB1 were taken from the BMRB. Three proteins
(1UBQ, 1IGD, and 1PGA) were selected for force field optimi-
zation based on RDCs.
To test the dynamics properties of the proteins under the new

force field, NMR relaxation backbone N�HN S2 order
parameters46,47 of the three proteins, ubiquitin (1UBQ), lyso-
zyme (6LYT), and interleukin-4 (1HIK), are back-calculated and
compared with experimental results using the iRED48 approach
(without correction for zero-point vibrations49).
Unfolded Peptide System. To test the new force field on

unfolded and intrinsically disordered polypeptides, the Ala3
peptide was simulated at 300 K for 1 μs in explicit water, and
back-calculated vicinal scalar J-coupling constants were com-
pared with experimental results. Both termini of the Ala3 peptide
are protonated to be consistent with experimental conditions
(pH 2).50 Hence, the peptide has a net charge of þe, which is
balanced by the addition of a Cl� ion during the simulation.
Because the charge distribution for the protonated, uncapped
C-terminus of Ala3 is not available in the literature, charges of the
carboxyl group were taken from the side-chain of protonated Glu
in the Amber ff99SB force field, and the charge of the C-terminal
CR atom was adjusted to ensure a total peptide charge ofþe. We
find that the details of the charge model of the C-terminus can
have a significant influence on the structural propensity of this
short peptide during the MD simulation.
As in previous work, the deviation between simulations and

experiments is calculated as51

χ2 ¼ NJcoup
�1 ∑

NJcoup

i¼ 1
ðÆJiæsim � Ji, expÞ2=σ2

i ð7Þ

whereNJcoup is the total number of J couplings, ÆJiæsim is the average
coupling constant back-calculated from theMD trajectory, and Ji,exp
is the corresponding experimental value. The coupling constants
used here are 3J(HN,HR), 3J(HN,C0), 3J(HR,C0), 3J(C0,C0),
3J(HN,Cβ), 1J(N,CR), 2J(N,CR), and 3J(HN,CR). The 1J(N,CR)
coupling of the C-terminal residue was not included in eq 7 due
to its strong sensitivity to the precise charges and their distribu-
tion in the C-terminus. The corresponding Karplus parameters,
the experimental values, and errors σi included in eq 7 were
directly taken from the literature.50�52

MD Simulations. All MD simulations were performed using
the Gromacs 4.5 package53�56 with its built-in support of
dihedral angle cross terms. Backbone cross terms were added
to the Gromacs topology file manually, after it was generated by
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Gromacs’ PDB2GMX module. All protein MD simulations (i.e.,
both parent trajectories and validation trajectories) were run for
100 ns at 300 K using the TIP3P water model. The simulation of
the Ala3 peptide was run for 1 μs. The proteins as well as the
peptide are uncapped. The integration time step was set to 2 fs
with all bond lengths involving hydrogen atoms constrained by
the SETTLE algorithm. Electrostatic interactions were cut off at
10 Å, and the long-range electrostatic interactions were calcu-
lated using the PME algorithm with 1.2 Å spacing. van der Waals
interactions were cut off at 8 Å. The initial protein structures
listed in Table 2 were taken from the Protein Data Bank.57 The
corresponding PDB codes are listed in the first columnof Table 2.
Standard minimization and heating procedures described
previously58 were applied before the final production runs at a
constant temperature and pressure (NPT ensemble) of 300 K
and 1 atm, respectively.

’RESULTS

Force Field Optimization Using Chemical Shifts. Applica-
tion of the reweighting strategy depicted in Figure 1 to the six
trial proteins using only NMR chemical shift information leads to
a significant drop in the chemical shift RMSD. Subsequent
application of the modified force field to the validation set
indicates that the force field has indeed improved. Further
improvement is achieved by two additional rounds of optimiza-
tion, but a fourth iteration did not yield any further improvement.
The chemical shift RMSDs obtained from the reweighted
trajectories as well as from new sets of MD runs are summarized
in Table 1 for the first three rounds of optimization. The force
field obtained after three rounds is named ff99SB_jψ(g24;CS),
where ff99SB indicates the parent force field, jψ stands for
“backbone dihedral potential”, g24 stands for the 24 Gaussian
potential functions added, and CS stands for chemical shift
information as input for refinement. (According to this terminol-
ogy, the force field ff99SBnmr129 becomes ff99SB_jψ(f32;CS),
where f32 stands for the 32 Fourier series coefficients.)
The modification made to the backbone dihedral j,ψ energy

surface from the new ff99SB_jψ(g24;CS) force field is shown in
Figure 2A. The new force field fine-tunes the energy surface both
in theR-helical and β-strand basins andmakes the left-handedR-
region (RL) more stable. In the R-helical basin (RR), the new
force field renders conformations centered around (j,ψ) =
(�50�, �50�) more stable, while it slightly destabilizes con-
formations centered around (j,ψ) = (�50�, �25�). In the
β-strand basin, the new force field stabilizes both β-sheet
conformations and polyproline II conformations while adding
a small barrier between them.

Next, the new force field is validated with the 17 proteins that
were excluded during optimization. As shown in Figure 3A, the
average improvement found for the validation protein set is
similar to that of the six trial proteins, which provides evidence
that the new backbone dihedral cross term is (i) not the result of
overfitting and (ii) is transferable to a broad range of globular
proteins of variable topology and size, as illustrated in Figure 3D.
It is noted that the overall improvement is larger than that
obtained for ff99SBnmr1 (see Figure 4).29 The only exception is
protein 2RNJ, whose structure was determined by NMR. A
comparison of the performance of ff99SB and its optimized
variants is provided in Table 2.
Besides the accurate reproduction of chemical shifts, a favor-

able protein force field is expected to stabilize native state protein
structure. This property of ff99SB_jψ(g24;CS) is assessed here
on the basis of average backbone RMSDs (excluding flexible N-
and C-termini) of 100 ns MD trajectories with respect to initial
PDB structures. A comparison of these results with the corre-
sponding results obtained for ff99SB are shown in Figure 5A.

Table 1. Average Chemical Shift RMSDs (ppm) for the Six Trial Proteins after Each Round of Optimization for Both Reweighted
Trajectories (“reweighted”) As Well As New MD Simulations (“new”)

round 1 round 2 round 3

PDB 99SB reweighted MD new MD reweighted MD new MD reweighted MD new MD

1UBQ 3.14 3.04 3.06 2.99 3.02 2.98 2.99

1IGD 3.43 3.39 3.43 3.41 3.39 3.38 3.36

1ENH 3.86 3.78 3.83 3.74 3.62 3.61 3.73

1HIK 3.30 3.17 3.09 3.08 3.23 3.21 3.26

1SMX 3.98 3.80 3.70 3.66 3.78 3.77 3.64

1QZM 2.13 1.97 2.02 1.96 1.91 1.87 1.93

Figure 2. Optimization results following the scheme of Figure 1 for
backbone j,ψ dihedral angle potential modifications using CR, Cβ, and
C0 chemical shifts of six proteins (1UBQ, 1IGD, 1ENH, 1HIK, 1QZM,
and 1SMX) (A) without RDCs (force field ff99SB_jψ(g24;CS)) and
(B) with RDCs of three proteins (1UBQ, 1IGD, and 1PGA) as input
(force field ff99SB_jψ(g8;CS,RDC)).
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The new force field ff99SB_jψ(g24;CS) leads to a significantly
reduced average RMSD: for 13 out of the 23 proteins, it yields an
RMSD that is lower than for ff99SB, whereas only six proteins
show a weak opposite trend.
The force field can be cross-validated also by RDC data, as

such data were not used during optimization. For ubiquitin, the
average Q value (excluding the flexible C-terminal residues
72�76) improves from ÆQæ = 0.27 for ff99SB to ÆQæ = 0.22 for
ff99SB_jψ(g24;CS), confirming the improved performance of
the new force field. Considering that dipolar couplings and NMR
chemical shifts reflect protein geometry and fluctuations in highly
complementary ways, this underscores that the new force field
more accurately captures structural-dynamic properties of this
protein. For GB3, back-calculation of the RDCs yields Q values

for ff99SB_jψ(g24;CS) (ff99SB) of 0.14 (0.12), 0.22 (0.21),
0.12 (0.11), and 0.23 (0.22) for CR�C0, C0�N, CR�HR, and
N�HN couplings, respectively. The newQ values are just slightly
higher than the ones of ff99SB and on average are still very low.
Similarly, back-calculated RDCs for GB1 yield a Q value of 0.14,
which is only slightly larger than the original one of ff99SB, which
is 0.12. Hence, the performance of the new force field is
successful, as reflected by the low Q values when reproducing
these RDCs.
Not only do modifications of force fields alter the distribution

of conformer populations, but they can also affect the dynamics
properties of proteins. NMR relaxation data, particularly S2 order
parameters, are very well-suited to evaluate the performance of
the force field for protein dynamics on pico- to nanosecond time
scales. Backbone N�HN S2 order parameters are calculated for
ubiquitin59 (1UBQ), lysozyme60 (6LYT), and interleukin-461

(1HIK) for both ff99SB and ff99SB_jψ(g24;CS) using iRED,48

with a detailed comparison shown in Figure 6. The overall level of
agreement is almost identical for the two force fields, although
relatively minor differences can be found for specific regions.
Combined Force Field Optimization Using Chemical

Shifts and RDCs. Chemical shift and RDC information can be
directly combined in the scheme of Figure 1 for the optimization
of force fields. After one round of optimization with chemical
shifts of the six proteins used above and RDCs of the three
proteins with a total of eight bivariate Gaussian corrections, a
modifiedj,ψ energy surface is obtained, termed ff99SB_jψ(g8;
CS,RDC), which is shown in Figure 2B. A second round of
optimization did not yield further improvement. The changes
are similar to the ones in Figure 2A, except that ff99SB_jψ(g8;

Figure 3. Test of the performance of the new force fields (A) ff99SB_jψ(g24;CS) and (B) ff99SB_jψ(g8;CS,RDC) using the combined CR, Cβ, and
C0 chemical shift RMSD from 100 nsMD trajectories of 23 proteins shown in C andD. The average chemical shift RMSDs (eq 3) are compared with the
ones obtained for the parent force field ff99SB. The circles belong to the six proteins used during optimization, and the 17 squares belong to proteins used
only for validation. Proteins below the diagonal show improved performance with the new force field. Ribbonmodels of (C) six trial proteins and (D) 17
validation proteins together with PDB codes (R-helices are in red and β-strands in blue).

Figure 4. Comparison of the performance of the new force field
ff99SB_jψ(g24;CS) and ff99SBnmr129 (i.e., ff99SB_jψ(f32;CS)) in
terms of the combined CR, Cβ, and C0 chemical shift RMSD of the 23
proteins depicted in Figure 3C,D.
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CS,RDC) slightly destabilizes the RL region. Under the new
force field, the Q values of two proteins and chemical shifts
RMSDs of four proteins drop significantly while the chemical
shifts RMSDs of the remaining two proteins are essentially
unchanged (Table 3a and b). (It is noted that the Q values
obtained with local reweighting cannot be directly compared
with Q values obtained from MD.)
Validation results with chemical shifts of proteins, not in-

cluded during optimization, are given in Figure 3B and Table 2.
They demonstrate the improvement of the new force field over
ff99SB and a performance that is comparable to that of
ff99SB_jψ(g24;CS). The protein stability test (Figure 5B)
shows backbone RMSDs similar to ff99SB_jψ(g8;CS,RDC)
and ff99SB. Backbone N�HN S2 order parameters calculated for
ubiquitin (1UBQ), lysozyme (6LYT), and interleukin-4 (1HIK)
are displayed in Figure 6. The overall quality of the agreement is
remarkably high, similar to the trajectories obtained with
ff99SB_jψ(g24;CS) and ff99SB.
Force Field Validation for Ala3 Peptide. Modification of

backbone dihedral angle terms is expected to significantly affect
also the properties of intrinsically disordered proteins and short
peptides, as these systems are less stabilized by other interactions
such as intramolecular hydrogen bonds and hydrophobic inter-
actions. Experimental J-coupling constants50 of the Ala�Ala�Ala
peptide are utilized to evaluate the three force fields. The χ2

values (eq 7) obtained for a 1 μs trajectory of Ala3 are 1.69, 1.55,
and 1.88 for ff99SB, ff99SB_jψ(g24;CS), and ff99SB_jψ(g8;
CS,RDC), respectively. A plot of the comparison between
experimental and predicted J-scalar coupling constants in Figure 7
shows that for essentially all couplings the predictions fall within
the experimental error bar, consistent with the low χ2 values.

Considering this fact, together with the uncertainties of the
associated Karplus parameters used for J-coupling back-calcula-
tion, the agreement is very good. This result demonstrates that
the new force fields adequately represent the free energy balance
between the different secondary structural basins.

’DISCUSSION

The availability of better force fields is not only beneficial for
computational chemists and biophysicists. Experimental struc-
tural biologists, in particular, protein X-ray crystallographers and
NMR spectroscopists, have a longstanding tradition in using
computer simulations of proteins that include energy restraints
derived from experimental data to refine protein structures.
Recently, an increasing number of experimental biochemists
are using MD simulations as “in silico experiments” without
experimental restraints, to interpret their experimental data from
a variety of sources, including calorimetry, small-angle X-ray
scattering, magnetic resonance, and optical spectroscopy.62�68

Taken together, these demands make the development of more
accurate biomolecular force fields a timely task.

Traditionally, force field parametrizations have been primarily
based on quantum-chemical energy calculations of peptide
fragments in a vacuum.2,14,16 Despite the success of this approach
in the past, the potential for further force field improvements
using ever higher level quantum-chemical calculations and larger
basis sets is unclear. An accurate representation of protein
interactions in a vacuum does not guarantee that the energetics
are correctly reproduced when the protein is placed in its native
environment (water, ions, lipid bilayers, etc.). This obstacle can
be overcome, in principle, by optimizing the force field directly

Table 2. Comparison of the Performance of the ff99SB Force Field and Its Variants for the Prediction of 13C Chemical Shifts,
Expressed As RMSDs (eq 4), for Six Trial Proteins and 17 Validation Proteins

PDB code resolution (Å) BMRB code ff99SB ff99SB_jψ(g24;CS) ff99SB_jψ(g8;CS,RDC) ff99SBnmr1 (ff99SB_jψ(f32;CS))

1UBQa 1.8 6475 1.04 1.00 0.99 1.01

1IGDa 1.1 n/a 1.14 1.12 1.14 n/a

1ENHa 2.1 15536 1.28 1.24 1.26 1.21

1HIKa 2.6 4094 1.10 1.09 1.11 1.04

1SMXa 1.8 6122 1.33 1.21 1.23 1.24

1QZMa 1.9 5107 1.07 0.96 0.95 0.97

1PGA 2.1 n/a 1.20 1.07 1.04 1.07

6LYT 1.9 4562 1.49 1.41 1.46 1.42

1G68 2.0 6838 1.44 1.38 1.41 1.44

1MHN 1.8 4899 1.18 1.23 1.15 1.22

2EA9 2.1 15088 1.51 1.50 1.51 1.56

2RNJ NMR 11024 1.55 1.54 1.47 1.26

2ESK 1.4 6277 1.32 1.33 1.34 1.33

3CSG 1.8 4986 1.47 1.44 1.46 1.47

2FY6 1.9 6709 1.34 1.27 1.29 1.26

1GVJ 1.5 5991 1.41 1.36 1.35 1.37

3C4S 1.7 15604 1.32 1.24 1.27 1.27

3H8K 1.8 6711 1.31 1.27 1.25 1.25

3ILE 2.9 16325 1.23 1.13 1.25 1.23

1FPO 1.8 15541 1.13 1.08 1.12 1.12

2A4D 1.7 7219 1.44 1.22 1.27 1.30

2O0Q 1.8 15281 1.42 1.43 1.44 1.40

2O5F 1.9 5570 1.57 1.46 1.47 1.49
aThese proteins were used during force field optimization, while all others were strictly used for validation purposes only.
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against experimental data of full-length proteins in the native
environment.

This approach, which is pursued in this work using NMR data
of intact globular proteins, permits by means of superposition of
multiple bivariate Gaussian correction terms versatile and spe-
cific modifications of positions, shapes, and correlations of the
favorable and unfavorable energy regions in j,ψ space. On
the other hand, it is unlikely that the method changes the relative
average weights between distinct regions, because during the
simulation of a globular protein it is quite rare that a residue visits
both R and β regions. Hence, free energy differences between
these regions are mostly inconsequential for the back-calculation
of NMR data of globular proteins. The global balance between
theR-helical and β-strand basins in the optimization of backbone
dihedral angle terms is best achieved18 using experimental data of
(partially) unfolded systems.

In our previous work,29 the backbone dihedral angle potential
was modified through adjustment of the Fourier series coeffi-
cients truncated at the fourth order. The truncation at relatively
low order was imposed by practical considerations to keep the
number of fitting parameters manageable. However, it gives each
Fourier component, as well as any of their superpositions, a
significant nonlocal character and thereby has the tendency to
introduce unwanted “wiggles” in the j,ψ energy map. For the
present work, we therefore decided to allow a “basis set” of
potential energy correction terms in the form of bivariate
Gaussian functions that, depending on the widths, can have both
a local as well as a more global character.

The chosen length of the protein MD trajectories, which has
been set to 100 ns, strikes a balance between computational
affordability and convergence. In previous work, the comparison
between experimental 13C carbon chemical shifts and predicted
ones from amicrosecondMD simulation of ubiquitin showed the
onset of convergence around 100 ns.69Moreover, the use of six to

eight proteins during optimization, as opposed to four proteins
used previously, further enhances the stability of the force field
parameter fitting. Chemical shifts represent the most abundant
experimental NMR parameter of proteins. Their predictions
from a given structural model (or ensemble) have dramatically
improved over the past decade, but they are still not fully quanti-
tative. This explains, at least in part, the observed RMSD offset
observed even when the force field optimization protocol has
converged. RDCs provide a complementary source of structural
and dynamics information, and they are well suited for the
optimization task at hand. However, the number of RDC sets
reported in the literature for proteins for which a well-resolved
X-ray crystal structure is available is still very sparse. Therefore,
RDCs of only three proteins were included during optimization.
The resulting force field ff99SB_jψ(g8;CS,RDC) performs
similarly well to the one optimized with chemical shift data only.
The average backbone RDC Q value of ubiquitin of a free MD
simulation using this force field now drops to 0.19, which is only
slightly higher than Qfree reported in an RDC optimized accel-
eratedMD simulation.70 As high-quality RDC sets of more proteins
with known X-ray crystal structures are becoming available, their
utility for force-field optimization holds significant promise.

Our optimization protocol can be further expanded to in-
corporate other NMR data, including T1, T2, and nuclear

Figure 5. Test of the performance of the new force fields (A)
ff99SB_jψ(g24;CS) and (B) ff99SB_jψ(g8;CS,RDC) relative to
ff99SB by comparing the average Cartesian coordinate backbone RMSD
of the 100 ns validationMD simulations with respect to the X-ray crystal
structures. The circles belong to the six proteins used during optimiza-
tion, and the squares belong to the 17 proteins used only for validation.

Figure 6. Comparison of the new force fields for the calculation of
NMR N�HN S2 order parameters of (A) ubiquitin, (B) interleukin-4,
and (C) lysozyme. The S2 values were computed by iRED from 100 ns
MD trajectories with averaging done over (A) 4, (B) 6, and (C) 8 ns time
windows. Black lines belong to experimental values. Red circles, green
diamonds, and blue triangles belong to ff99SB, ff99SB_ψj(g24;CS),
and ff99SB_ψj(g8;CS,RDC), respectively.
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Overhauser enhancement (NOE) spin-relaxation parameters of
15N spins,71 13C spins,72 and 2H spin relaxation parameters73 of
13C-D groups and partially deuterated 13CDH2-methyl moieties
of methyl-bearing side chains.74,75 These parameters can be
expressed in terms of model-free S2 order parameters and
intramolecular correlations times τ in the pico- to nanosecond
range, which can be used to actively guide force field improve-
ments using methods similar to the ones presented here.
Although we focused here onNMR data, obviously our approach
can be combined with other types of experimental data too. The
average Cartesian coordinate RMSD between the MD trajectory
and the high-resolution X-ray structure has been found to
correlate well with the quality of the force field. Although in
Figure 5 this information serves for cross-validation purposes
only, it can also be used to actively guide force field improve-
ments. In this case, one should either simulate proteins in their
full crystalline environment76 or exclude during optimization
those atoms that are significantly affected by crystal packing.77

Hence, the Cartesian RMSD of selected sets of atoms can be
employed as a metric to assess and improve force fields. Mean-
while, crystallographic B factors, which report on both dynamics
and static disorder in protein crystals, represent another measure
that is worth exploring for force field validation and refinement.

The present work focuses on backbone dihedral angles,
although the extension to side chain dihedral angles is rather
straightforward. Most side-chain potentials have not been up-
dated for well over a decade. A recent quantum chemical study
showed that amino acid specific potentials for ILDN residues can
provide improvements.78 Although NMR parameters of side-
chains are less abundant than for the backbone, side-chain
assignments (and thus chemical shifts) are becoming available
for an increasing number of proteins and, thus, can be used in full
analogy to backbone chemical shifts. Our optimization protocol
can be also applied to force field terms other than backbone
dihedral angle terms, such as Coulomb interactions, van der
Waals interactions, and explicit hydrogen-bonding potentials.
The latter terms were used in the early phase of force field
development,11 subsequently abolished, and have been revisited
more recently.79,80 Similarly, it should be possible to further
improve the parametrization of explicit water models to better
reflect structural, dynamic, and thermodynamic properties of
protein solutes in their native solvent. Finally, with the imminent
advent of polarizable force fields81�84 for biomacromolecules,
the optimization approach presented here should find useful
application in this emerging field.

’CONCLUSION

MD simulations have been limited in the past by the accuracy
of force fields and limited sampling of conformational space.85

While sampling improves with every new generation of computer
hardware, the development of better force fields has been a
relatively slow, labor-intensive task mostly based on small
molecules and protein fragments in a vacuum. However, the
performance of a force field when applied to an entire protein in
explicit solvent is more than the sum of its isolated parts. The
work presented here shows how the confluence of efficient
optimization protocols and protein structural and NMR data-
bases make the development of force fields on intact full-length
proteins feasible and computationally tractable. These advances
enable a plethora of opportunities to render current molecular
mechanics force fields increasingly quantitative, which remains a
key prerequisite for the predictive understanding of biomolecular
properties and function.
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ABSTRACT:We have performed a near complete analysis of the conformational space in terms of minima and transition structures
for four small peptide models with a force field energy function. There is a clear trend that minima having a large difference in
structure, as measured by the distance in torsional space, are rarely connected by a single transition structure. There is a similar trend
that activation energies for conformational transitions correlate with structure differences, such that small conformational changes
occur with low energy barriers and vice versa. This suggests that a systematic search for low energy conformational transition
structures should focus on pairs of minima that are structurally similar. Eigenvectors from diagonalization of force constant matrices
at minima are better at describing conformational transitions than vibrational normal modes, as verified both by overlaps with
geometry difference vectors and results from biased molecular dynamics simulations.

’ INTRODUCTION

Parameterized force field energy functions are at the core of all
biomolecular simulations and determine the ultimate accuracy of
the results.1 The purpose of a molecular dynamics (MD) or
Monte Carlo simulation is to sample the phase space, which for
biomolecules is determined primarily by the torsional degrees of
freedom. The force fields’ ability to accurately represent the
conformational space near minima and connecting transition
structures (TSs) is thus an essential component for providing
accurate simulation results. Commonly used force fields like
MM2,2 MM3,3 MMFF,4 AMBER,5,6 OPLS,7 and CHARMM278

have been parametrized to reproduce the conformationalminima
for a set of small reference systems, but we envision that the next
generation of force fields will require parametrization against a
much larger training set of not only conformational minima but
also connecting TSs.9�15 It is experimentally difficult to obtain
such reference data, but it is relatively easy to generate quite accurate
results by using electronic structure calculations.

The conformational minima on a given potential energy
surface (PES) can be located by a random or systematic genera-
tion of many trial structures followed by minimization,16 but
more sophisticated global search methods are also available.17 A
brute force approach will for small systems enable the location of
all minima. However, locating all connecting TSs is more
difficult, and it is virtually impossible to establish that all TSs
have been found. Several groups have developed methods aimed
at establishing transition networks corresponding to a tabulation
of minima and connecting saddle points.18 Saddle points are
typically located by attempted uphill walking from a minimum19

or by using a chain-of-state method for each pair of minima.20

The question of whether a given pair of minima is connected by a
first order saddle point is of general interest, as it is unlikely that
all pairs of minima are connected by a TS, and the fraction of
minima pairs connected by a TS will decrease with increasing
system size. In the present study, we investigate the conforma-
tional space of four peptide models by locating all minima and a
large fraction of all of the connecting TSs by using a combination

of three TS search algorithms, of which one has the potential to
locate all TSs. These data allow us to probe whether it is possible
to deduce the existence of a TS connecting two conformations,
using only information from the two minima, the efficiency of
various algorithms for locating such TSs, and whether normal
mode directions can be used to guide TS searches or bias MD
simulations to achieve conformational transitions. For large
systems, a complete enumeration of minima and saddle points
is infeasible and unnecessary, and the focus is instead on an
adequate sampling of the relevant phase space. Small systems
with a well characterized energy surface, however, provide a
platform for calibrating different methods for sampling the
phase space.

All of the results have been generated using the OPLS force
field, and other methods may generate a PES with a different to-
pology, but the conclusions regarding connections between min-
ima and TSs and associated properties should remain gener-
ally valid.

’COMPUTATIONAL DETAILS

All force field calculations have been carried out using the
Tinker21 and Macromodel22 programs and the OPLS23 force
fields using a dielectric constant of 1.0. Vibrational analyses have
been performed in natural internal coordinates24 using a locally
modified version of the Gamess-US program package.25 Internal
coordinates offer a significant advantage over Cartesian coordi-
nates for describing conformational transitions, as these primarily
correspond to changes in torsional coordinates. Following a low-
frequency normal mode in internal coordinates effectively only
changes the torsional coordinates, while following the same
normal mode in Cartesian coordinates also significantly changes
bond lengths and angles.

The vibrational analysis corresponds to diagonalizing the force
constant matrix in mass-weighted coordinates, which can be

Received: March 8, 2011
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either Cartesian or internal coordinates, and these eigenvectors
are orthogonal. Transforming the eigenvectors from mass-
weighted coordinates to non-mass-weighted coordinates, or
from internal to Cartesian coordinates, destroys the orthogon-
ality. In order to facilitate the data analysis, it is advantageous to
reorthogonalize the transformed eigenvectors, which has been
done by a frequency-weighted L€owdin procedure. In a traditional
nonweighted L€owdin orthogonalization, a set of vectors is trans-
formed by S�1/2, where S is the overlap matrix between the
nonorthogonal vectors, and this ensures the least change of all of
the vectors. As we are primarily interested in the low frequency
modes, we have employed a frequency-weighted version26 where
the transformation matrix is given byW(WSW)�1/2, andW is a
diagonal matrix containing the weights wi = exp(�υi/1000)
based on the frequency υi (in cm�1). This ensures that the low
frequency modes are changed as little as possible by the
orthogonalization. For glycine, a typical overlap between modes
before and after orthogonalization is 0.7.

Transition structure optimizations have been done using three
different methods: quadratic synchronous transit (QST), grow-
ing string (GS), and scaled hypersphere search (SHS). The QST
method27 searches for a saddle point between two minima by a
sequence of minimizations and maximizations using a quadratic
interpolation between the two end points until a low energy
intermediate geometry is located.

The GS method28 is a version of the nudged elastic band
method29 where the points on the string connecting the two
minima are placed sequentially and optimized before additional
points are added. Both the QST and GS methods provide only a
guess for the TS, which is refined using a Newton�Raphson
algorithm. The combination of a nudged elastic band and a
Newton�Raphson-based algorithm for locating saddle points
has been used extensively by Wales and co-workers.30 The
images along the initial reaction path are usually generated by
interpolation between the two end-points,31 and if used as a
black-box method, it is only able to locate one connecting saddle
point between each pair of minima.

The SHS32 method searches for TSs by performing a series of
constrained optimizations on hyperspheres with increasing radii
and the center at a single minimum, where the initial search
direction is generated by perturbing along Hessian eigenvectors.
The SHS has been claimed to be able to locate essentially all TSs
on a given PES,33 although numerical issues may prevent this in
practice. To our knowledge, the present work is the first
application of the SHS method for locating conformational
TSs on a force field energy surface. The nature of all minima
and TSs has been confirmed by diagonalization of the Hessian
matrix as having zero or one negative eigenvalue, respectively.

MD simulations have been done in Cartesian coordinates at a
temperature of 310 K using the NAMD program.34 The bias
force is taken as a normal mode in internal coordinates, and since
the conversion from internal to Cartesian coordinates is non-
linear, this necessitates a look-up table approach. Prior to a sim-
ulation, a table is constructed which links geometries along the
bias normal mode in internal and Cartesian coordinates. At a
given point in the simulation, the geometry change relative to the
starting minimum along the bias normal mode is calculated in
internal coordinates, and the bias force is the tangent direction in
Cartesian coordinates, calculated as a finite difference from the
tabulated values. The magnitude of the biasing force needs to be
large enough for the bias to have effect but small enough that the
temperature of the system does not increase significantly. This

depends on the frequency of the given mode and thus has to be
determined for each mode, which has been done by running test
simulations with different force magnitude settings. In cases where
the frequency is relatively high, the required magnitude of force is
sufficiently large that the temperature of the systemhas to bedamped
additionally, which is done by increasing the Langevin damping
coefficient for the system. The escape from the starting minimum is
detected by collecting structures every 10th femtosecond and
subsequently minimizing them in order to determine to which basin
they belong. The first structure not equal to the starting minimum is
the one listed in Table 3 along with the time for the transition.

’RESULTS AND DISCUSSION

We have selected the glycine, alanine, serine, and cysteine amino
acids as our trial set of systems, with side chains corresponding toH,
CH3, CH2OH, and CH2SH, respectively. Acetyl and N-methyl
groups were added to the N- and C-termini to mimic the environ-
ment in longer peptide chains. The notation for the torsion angles is
depicted in Figure 1. Conformations for peptides are commonly
discussed in terms of a Ramachandran map with the backbone j
and ψ angles as the variables, where a positive sign indicates a
clockwise rotation. The side chain and peptide bond torsional angles
are labeled χi and ωi, respectively.

Conformational minima have been located by an exhaustive
Monte Carlo search. The OPLS PES for glycine contains nine
minima, described in Table 1, as well as mirror images of eight of
these. The minima are labeled according to energy such that EQ1 is
the global minimum. On the basis of the configuration of the two
peptide bonds, the minima can be separated into four groups. EQ1,
EQ2, and EQ6 all have a trans configuration of both bonds and
belong to a class labeled TT, and this is the configuration commonly
found in peptides and proteins. The trans,cis class (TC) only
consists of EQ3 while the cis,trans class (CT) contains EQ4 and
EQ5. The structures with cis,cis configurations (CC) have the
highest relative energies and include EQ7, EQ8, and EQ9. It should
be noted that EQ9 is a very shallow minimum with a transition
barrier to the mirror image of EQ8 of only 0.004 kJ/mol.

Figure 1. Notation for torsional angles.

Table 1. Calculated Relative Energies and Torsional Angles
for Minima for Ace-Gly-NHMe

EQi class Erel(kJ/mol) ω1 j ψ ω2

1 TT 0.0 �175.8 124.9 �143.0 �179.9

2 TT 3.6 176.4 109.7 �60.4 179.6

3 TC 13.3 �174.6 127.3 �157.5 0.2

4 CT 14.0 0.3 115.7 �11.2 179.7

5 CT 22.6 4.9 126.6 �145.2 180.0

6 TT 26.1 �180.0 0.0 0.0 180.0

7 CC 34.8 5.5 128.2 �161.4 �0.5

8 CC 43.9 �1.0 �119.9 �78.7 �1.4

9 CC 64.0 12.6 28.3 65.4 0.9
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MP2 calculations for the TT class suggest that only EQ1 and
EQ2 are genuine minima, while different force fields disagree on
the existence of EQ6.10 With the employed OPLS force field,
EQ6 is a weakly defined minimum with a barrier of only 1.6 kJ/mol
for transition to EQ2.

The three TS search algorithms located a total of 66 unique
TSs on the PES for glycine. TSs corresponding to methyl rota-
tions are not included in these 66 TSs and are not part of the
analysis. Graphical representations of a number of two-dimen-
sional projections of the PES were examined to verify the
existence of the found TSs, and these plots allowed us to locate
an additional six TSs. Four of these correspond to transitions
where two different TSs connect the same two minima, corre-
sponding to short and long reaction pathways depending on the
direction of rotation around the torsional angles. The four man-
ually found TSs all belong to the long pathways and in all cases
have the three search-algorithm located TSs corresponding to
the short pathway. An additional two TSs were constructed by
mirroring two already located TSs. On the basis of our analyses of
two-dimensional projections of the PES, we believe that the 74
located TSs (Table S1, Supporting Information) represent all of
the first order saddle point on the PES, although this is difficult to
prove rigorously.

The three search methods display different performances. The
GS algorithm locates only 16 TSs. The QST finds 42 TSs, while
SHS is capable of locating 49 TSs. That is, none of the methods
are able to locate all TSs even when all minima are known. The
energy barriers for the found transitions are in the range of
0.004�122 kJ/mol, and all three methods locate TSs corre-
sponding to both low and high energy transitions. None of the
methods are particularly better than the others at locating the low
energy TSs, which usually are the most interesting. While the
SHS method in principle should be able to locate all TSs,33 the
numerical issues regarding the detection of branching points is
quite delicate, and the present work suggests that there is still
room for improvements.

Out of the 136 possible TSs connecting the 17 minima
(including mirror images, assuming only one TS exists between
each pair of minima), we have located 50, which indicates that
approximately only one-third of the possible TSs exist for this
system. In 24 cases, there are two different TSs connecting the
same two minima, and including these higher energy dual-TSs
accounts for a total of 74 TSs. The corresponding values for only
the nine symmetry unique minima are 36 possible TSs, of which
we have located 17 unique. The QST and SHS algorithms locate
15 and 14 of these TSs, respectively, while GS only finds
eight TSs.

TheQST algorithm only optimizes a single structure and is the
computationally cheapest method. The GS algorithm performs a
sequential optimization of an increasing number of structures
(up to 21 in the present cases) and requires approximately two
orders of magnitude more computer time. The SHS algorithm
requires second derivatives and performs a sequence of con-
strained optimizations along a set of normal modes and is,
further, one order of magnitude more expensive computation-
ally. For the present small systems and simple energy function,
the computational times vary from less than 1 s to minutes for
each saddle point search.

Wales and co-workers have advocated the combination of a
nudged elastic band and a Newton�Raphson-based algorithm
for locating saddle points.30 In our case, the GS variant of the
nudged elastic band algorithm is the method displaying the

poorest performance, but other implementations and/or use of
other coordinates may display better performance. Dual TSs,
however, cannot be located by methods relying on interpolating
between the two minima but can be located by the SHS algo-
rithm.

In terms of potential energy, the 32 TSs having both the lowest
absolute energies and the lowest activation energies all belong to
transitions within each of the four classes, meaning that only the
j and ψ torsional angles change significantly. The remaining 42
TSs all correspond to transitions between classes. In the TT, CT,
and CC classes, the lowest transition corresponds to a rotation
dominated by theψ angle. This indicates that the rotation barrier
for this torsion is lower than for j, ω1, and ω2, respectively. As
expected, the data also show that rotation around the j angle is
softer than rotation around either of the peptide bonds. Nine
pairs of minima (including mirror images) are connected by two
different TSs, corresponding to rotation in the two possible
directions. The shortest pathway in all cases has the lowest
energy barrier. Not surprisingly, the three TS search methods are
much better at locating the TS corresponding to the shortest
pathway than the longer one.

The alanine system has 27 minima, shown in Table 2, and the
conformational space is spanned by the same four torsional
angles as for the glycine system. The PES for glycine contains
seven well-defined minima (EQ1, EQ2, EQ3, EQ4, EQ5, EQ7,
EQ8), and minima similar to all of these can be found on the PES
for alanine. The introduction of the side chain methyl group

Table 2. Calculated Relative Energies and Torsional Angles
for Minima for Ace-Ala-NHMe

EQi Erel(kJ/mol) class ω1 j ψ ω2

1 0.0 TT �179.4 �79.4 61.6 179.9

2 4.1 TT 177.8 �152.0 158.3 179.8

3 10.4 TT 175.9 75.4 �48.9 179.8

4 12.8 TT �177.8 �133.8 40.7 �179.6

5 16.1 CT �2.8 �83.8 �6.1 179.8

6 18.8 TC 178.2 �151.1 151.7 �1.4

7 20.9 TC 175.5 �90.9 122.3 �3.2

8 21.3 CT �1.2 �138.3 22.1 �179.5

9 25.1 CT �1.6 �148.9 155.5 179.9

10 25.8 TT 176.1 �159.0 �49.6 178.9

11 28.0 CT �2.5 82.3 6.7 �179.9

12 29.2 CT �2.8 �88.8 137.0 �179.9

13 38.9 CC �1.6 �148.5 150.3 �0.9

14 42.1 CC �2.7 �88.5 141.4 0.1

15 44.0 CC �2.0 �142.9 64.7 1.6

16 46.1 CT �3.1 83.4 160.1 179.9

17 46.7 TC 176.9 �152.3 �44.8 �5.8

18 46.4 TC 179.9 �70.9 �33.2 �5.0

19 48.1 CC �3.6 �71.5 �36.5 �3.5

20 51.2 TC �178.3 98.8 �97.3 2.4

21 51.2 TC �179.5 102.9 �67.4 �0.7

22 53.1 CC �1.0 �145.5 �42.6 �5.3

23 54.2 TC �174.6 93.8 162.4 �0.7

24 55.9 TC 178.0 71.8 43.4 4.8

25 56.7 CC �1.3 74.6 52.1 2.7

26 61.2 CC �1.8 85.2 143.8 �1.0

27 80.0 CC �2.8 95.5 �121.0 1.0
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causes some of the glycine energy minima to split up into two
distinct minima for alanine. The presence of the methyl side
chain introduces additional electrostatic and van der Waals
interactions that results in a number of alanine minima which
do not have a glycine equivalent.

MP2 calculations for the TT class suggest that there are seven
minima,10 while the presently employedOPLS force field has five
minima. These five structures are in agreement with the OPLS
free energy surface obtained by metadynamics simulations.35

The combination of the QST, GS, and SHSmethods located a
total of 97 TSs (excluding methyl group rotations) on the PES
for alanine (Table S2, Supporting Information), of which 15 are
dual TSs. On the basis of the results for the glycine system, we
expect that there may be a few additional TSs which have not
been found by the three automated methods, of which some
represents additional dual TSs. Out of the 351 possible TSs
connecting the 27 minima, the results thus suggest that only
approximately one-fourth actually exist. In analogy with the
glycine system, the 40 lowest energy TSs only connect con-
formations with a given subclass defined by two amide bonds. In
terms of activation energy, the 44 lowest energy TSs correspond
to transitions inside a given class, while the rest are transitions
between subclasses. Out of the possible 10 TSs within the TT
subclass, we have found seven.36

The serine system has 202 minima, and we have located a total
of 1108 TSs, while the cysteine system has 227 minima, and we
have found 1251 TSs (Tables S3�S6, Supporting Information).
On the basis of the results for glycine, we expect that these
represent a large fraction of all of the possible TSs, and the
numbers can be compared to the combinatorially possible 20 301
and 25 651 TSs for the two systems, respectively; i.e., only ∼5%
of the possible TSs actually exist. Within the TT subclass, the

number of minima for the two systems is 26 and 35, which can be
compared to 39 and 47 found at the MP2 level of theory.10

Within this subclass, there are 325 and 595 possible TSs, respec-
tively, and we have located 73 and 103.

For serine, the 497 lowest energy TSs all belong to transitions
within each of the four classes, while the 671 TSs with lowest
activation energies correspond to in-class transitions. The results
for cysteine are similar: 584 lowest TSs if sorted by energy and
762 lowest TSs if sorted by activation energy. For both serine and
cysteine, the TSs with a higher energy correspond to a mixture of
transitions inside and between the classes.
Existence of Transition Structures. It seems intuitively

reasonable that the probability of finding a TS between a pair
of minima is higher for a pair of structurally similar minima than
for a pair of structurally very different minima. To probe this
hypothesis, we have calculated the torsional root-mean-square
(RMS) deviation for all pairs of minima for all four systems and
compared these values with the ratio between found and com-
binatorially possible TSs. In this analysis, the mirror images of the
minima for glycine were not included. For glycine and alanine,
the torsional RMS is calculated from the four backbone angles
(ω1, j, ψ, ω2). For serine and cysteine, the side chain torsions
(χ1, χ2) are also included in the analyses. As can be seen from
Figure 2 (note the logarithmic scale), there is a high possibility of
finding a TS if the torsional RMS for the pair of minima is <50�.
The likelihood of finding a TS between the two minima falls
significantly if the torsional RMS is greater than 80�, and this is
especially clear for the cysteine and serine systems.
Figure 3 shows the connection between the torsional RMS

deviation between two minima and the activation energy calcu-
lated relative to the lowest energyminimum. As expected, there is
a general correlation between the two, such that transitions

Figure 2. Comparison between the number of possible TSs and those actually located as a function of torsional RMS difference between the two
connected minima.
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involving large structural changes occur by TSs having relatively
large activation energies.
The results shown in Figure 2 suggest that large structural

changes rarely occur in a single step but rather as a sequence of
transitions involving smaller changes. Figure 3 shows that tran-
sitions involving large structural changes that do occur in a single
step tend to have high activation energies and are therefore less
important from a dynamical point of view. The combination of
these results suggests that a search for low energy conformational
TSs can be focused on pairs of minima that are structurally
similar. For the present systems, a torsional RMS less than∼80�
would appear as a reasonable criterion, but such a threshold value
is likely to be dependent on the system size.
Use ofNormalModes for Predicting Transition Structures.

The eigenvectors from diagonalization of the force constant
matrix contain information about the curvature of the PES, where
the eigenvector associated with the lowest eigenvalue points in
the direction where the energy increases least. If the force con-
stant matrix is mass-weighted before diagonalization, the eigen-
vectors are the vibrational normal modes. It is commonly as-
sumed that the direction of the low-frequency normal modes
leads to low-energy TSs, and this is used for example in the
eigenvector-following method for locating saddle points.37 In the
following, we will denote the eigenvectors from diagonalization
of the force constant matrix as f-vectors and the eigenvectors
from diagonalization of the mass-weighted force constant matrix
as g-vectors.
While vibrational analysis traditionally is performed in Carte-

sian coordinates, it is for the present applicationmore convenient
to use internal coordinates24 since the conformational space is
effectively spanned only by the torsional coordinates. The
f-vectors in internal coordinates are orthogonal, but this is not
the case for the g-vectors. In order to facilitate the analysis, we

have orthogonalized the g-vectors by a frequency-weighted
L€owdin procedure, where the orthogonalization is carried out
such that the low-frequency normal modes are perturbed as little
as possible.26

The reaction path can be approximated either as a difference
vector in internal coordinates between the two minima (ΔREQ)
or as a difference vector between the minimum and the TS
(ΔRTS). For each system, we have calculated the overlap
between these two reaction paths and the normal modes, both
f- and g-vectors, for each of the two minima. The normal modes
can be ordered either according to energy (frequency) or by the
largest overlap with the reaction path. The average number of
modes required to obtain an 80% overlap with the reaction path
for the four test systems is given in Table 3. Transitions cor-
responding to methyl rotation have, as previously mentioned,
been neglected, and all overlaps with modes corresponding to
methyl rotation have been set to 0.
Table 3 shows that 5�6 of the lowest energy f-vectors are

required to represent 80% of the reaction path, while only 2�3
vectors are required if the vectors are arranged according to
overlap. This is understandable, as two vectors representing
terminal methyl group rotations are among the low energy ones,
and these make no contributions to the reaction path. The
g-vectors, which are the vibrational normal modes, show the
same trend, but significantly more modes are required to
represent 80% of the reaction path. These results suggest that
using the direction of f-vectors as a search bias will generally be
more the efficient than using the g-vectors, at least for the present
small systems.
To probe whether low energy modes point in the direction of

low energyTSs, Figure 4 shows the correlation between the number
of modes needed to obtain at least an 80% overlap with ΔREQ and
the activation energy. The f-vectors provide a reasonable correlation,

Figure 3. Correlation between activation energy (kJ/mol) and torsional RMS difference (degrees) between the two connecting minima.
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with correlation coefficients of ∼0.64, while a much lower correla-
tion is found for the g-vectors. This suggests that using non-mass-
weighted normal modes (Hessian eigenvectors) may be more
efficient than using vibrational normal modes to guide a search
for low energy TSs.
Using Normal Modes to Bias MD Simulations. Isin et al.

have recently used vibrational normal modes to bias MD sim-
ulations in order to simulate conformational transitions that
otherwise would be too slow to be computationally feasible.38

The correlation between geometry changes and normal modes in
Table 3, and the corresponding correlation with activation
energies in Figure 4, suggests that eigenvectors from diagonaliza-
tion of the force constant matrix may have advantages over
vibrational normal modes for biasing MD simulations for the

present systems. In order to test this, we have performed a series
of MD simulations on the glycine system with bias forces along
the six lowest normal modes. Starting from the global minimum,
we run 1000 simulations for 10 ps each and analyze the tra-
jectories as described in the Computational Details to obtain sta-
tistics for which other minima the molecule escapes to during the
simulation. The potential energy surface around EQ1 in terms of
the j and ψ angles is depicted in Figure 5, with the directions of
f-vectors 3 and 4 and g-vectors 1 and 3 indicated.
The results of MD simulations starting from EQ1 can be seen

in Table 4, where the percentage of changes to a given minimum
is listed along with the average time for the transition. When no
bias is applied, the majority of conformational changes is from
EQ1 to EQ2, while a smaller fraction of the transitions are from

Figure 4. Correlation between the activation energy for a transition (kJ/mol) and the number of modes required to represent at least 80% of the
reaction vector.

Table 4. MD Simulations Starting from EQ1 Biased with the Six Lowest Normal Modes in Form of f- and g-Vectorsa

f-vectors g-vectors

no bias 1 2 3 4 5 6 1 2 3 4 5 6

EQ1* 5.9 6.4 6.3 43.5 68.6 5.5 41.0 5.6 18.7 7.3 6.7 7.1

EQ2 43.5 41.7 42.1 8.1 31.1 36.3 97.5 7.2 42.2 33.0 40.3 42.0 40.7

EQ4 7.7

EQ5 48.4

no change 51.1 51.9 51.6 48.3 1.3 2.5 52.0 52.2 48.2 52.4 52.0 52.2

time (ps) 4.8 4.8 4.9 4.3 1.4 1.0 1.2 4.3 4.9 4.9 4.6 4.7 4.8
aThe numbers refer to the percentage of simulations where a conformational change fromEQ1 to EQi is observed. Transitions that occur in less than 1%
of the simulations are not included. The time is the average time before a transition occurs. EQ1* indicates the mirror image of EQ1.

Table 3. Average Number of Modes Required to Obtain at Least 80% Overlap with the Transition Vector ΔREQ or ΔRTS

ΔREQ ΔRTS

sorted by energy sorted by overlap sorted by overlap sorted by energy

f g f g f g f g

Gly 5.1 11.0 2.3 5.2 5.0 10.8 2.6 5.8

Ala 5.3 11.0 2.4 5.4 6.0 12.4 3.2 6.6

Ser 5.5 12.5 2.3 5.9 6.9 13.9 3.8 7.3

Cys 5.6 12.4 2.3 5.9 6.6 12.8 3.4 6.8
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EQ1 to the mirror image of EQ1 (denoted as EQ1*). This is in
line with activation energies of 3.9 and 13.5 kJ/mol for the two
transitions (Table S1, Supporting Information). The use of
either of the two f-vectors with lowest frequencies as a bias does
not change this distribution significantly, which is not a surprising
since these two vectors mainly correspond to the rotation of the
terminal methyl groups. When f-vector 3 or 4 is used as a bias, the
result is a better sampling of the EQ1 to EQ1* transition, whereas
using f-vector 6 as a bias almost exclusively induces EQ1 to EQ2
transitions. The use of f-vector 5 leads to sampling of two new
transitions, namely, EQ1 to EQ4 and EQ1 to EQ5, i.e. transitions
corresponding to a rotation of one of the amide bonds. Using
f-vectors 4, 5, and 6 as bias reduce the percentage of simulations
where no conformational change is observed to e2.5%. This is
also reflected in the average transition times shown in the last row
of Table 4. Without an applied bias, the average time before a
conformational change occurs is ∼5 ps, which is reduced to ∼1
ps when f-vectors 4, 5, or 6 are applied as a bias. The f-vectors 3, 4,
and 5 all have reasonable overlaps (27�77%) with ΔREQ for the
transitions that they enhance. For f-vector 6, however, the
overlap with ΔREQ between EQ1 and EQ2 is almost 0%. The
observed effect of using this vector as a bias is therefore most
likely due to the increase in system energy. Of the six g-vectors
used as a bias in this test, only the lowest normal mode leads to
significant changes and increases the sampling of the EQ1 to
EQ1* transition. None of the g-vectors reduce the percentage of
simulations where no conformational change is observed sig-
nificantly. These results thus support the conclusion from
Figure 4 that f-vectors have advantages over g-vectors for biasing
MD simulations for these systems.

’SUMMARY

The present study has performed a near exhaustive search for
conformational minima and transition structures for four small

peptide systems using a force field energy function. Analysis of
the results suggests that large structural changes rarely occur in a
single step, and if they do, they are associated with a relatively
large energy barrier. This indicates that a systematic search for
low energy conformational transition structures should focus on
pairs of minima that are structurally similar, for example,
quantified by their torsional angles. None of the three employed
algorithms are able to selectively locate low energy transition
structures. The number of possible transition structures increases
quadratically with the number of minima, but for the present
systems, the actual relationship is close to linear, with typically 5
times as many transition structures as minima.

An analysis of overlaps with geometry vectors describing
structural changes and molecular dynamics simulations indicates
that eigenvectors obtained by diagonalization of the force con-
stant matrix for minima are better at describing directions for
low-energy conformational transitions than vibrational normal
modes for these systems. Most of the conformational changes
correspond to rotation around one or a few torsional angles, and
the superiority of the force constant eigenvectors can be ratio-
nalized by the observation that these vectors primarily corre-
spond to pure rotation around only one or two torsional angles.
Vibrational normal modes, on the other hand, are spread out over
more atoms and often involve both rotation and bending degrees
of freedom. Large-scale conformational changes in proteins are
often global domain movements, which typically require rotation
around several torsions, and vibrational normal modes may here
be better descriptors.
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ABSTRACT: A strategy is proposed to include the missing charge penetration energy term directly into a force field using a sum
over pairwise electrostatic energies between spherical atoms as originally suggested by Spackman. This important contribution to
the intermolecular potential can be further refined to reproduce the accurate electrostatic energy between monomers in a dimer by
allowing for the radial contraction�expansion of atomic charge densities. The other components of a force field (exchange-
repulsion and dispersion) are parametrized to reproduce the accurate data calculated by symmetry-adapted perturbation theory
(SAPT). As a proof-of-concept, we have derived the force field parameters suitable for modeling intermolecular interactions
between polycyclic aromatic hydrocarbons (PAH). It is shown that it is possible to have a balanced force field suitable for molecular
simulations of large molecules avoiding error cancellation to a large extent.

1. INTRODUCTION

Constructing a reliable potential energy surface, which de-
scribes the energy of an assembly ofmolecules as a function of the
atomic positions, is still a challenging problem. In particular, the
intermolecular forces are primarily responsible for aggregation of
molecules in the condensed phase.1�3 Due to the size of the
system, however, high-quality fully ab initio calculations are
computationally very demanding, even more so when dynamics
is to be studied (see, for example, refs 4 and 5). The force field
methods are therefore indispensable for elucidating the proper-
ties of large aggregates of molecules. To be useful, parametrized
force fields should be able to treat both intra- and intermolecular
interactions accurately and reliably.

Large conjugated π systems, such as polycyclic aromatic
hydrocarbons (PAH) and their derivatives (used as dyes), present
notorious difficulties for modelers. A particular arrangement of
monomers in an aggregate is ruled by a subtle interplay between
electrostatic forces and dispersion interactions between extended
aromatic π systems. Furthermore, the accurate structure and
dynamics of this class of molecules within their crystalline
environment are of primary importance for their optoelectronic
properties (absorption, energy, and charge transport), needed for
use in, for example, organic solar cells.6 Due to the extensive
π-conjugation with highly anisotropic charge distribution, the
accurate description of intermolecular energies is extremely
difficult, and literature force fields are too generic to be useful.

Quantum mechanical electronic structure calculations are
helping to improve upon our understanding of the forces acting
between molecules. The theory of intermolecular interactions7,8

is now widely used to shed light on the particular forces
responsible for aggregation of molecules in the condensed phase.
Energy decomposition analysis (EDA) pioneered by Morokuma
has been refined to such an extent (for a review, see ref 9) that it
can be used as a reference for deriving all necessary contributions
to the intermolecular interaction energy assuming additivity of
the force field terms, such as electrostatic, exchange-repulsion,
induction, and dispersion (see, for example, ref 10). On the other

hand, intermolecular perturbation theory has emerged as a very
powerful tool for the developing of model potentials.11 Recent
developments within the Symmetry Adapted Perturbation The-
ory (SAPT) enable highly accurate studies of intermolecular
interactions at a level comparable to state-of-the-art methods
such as coupled-cluster theory, CCSD(T), but with much
reduced computational effort.12�21 The efficient imple-
mentations22,23,18 of this theory24 allow for a deeper under-
standing of different contributions to the intermolecular inter-
actions, thus giving a more detailed picture in comparison with
the supermolecular approach, where only the total interaction
energy is available as reference data. There exist several attempts
in the literature to parametrize the intermolecular force fields on
the basis of intermolecular perturbation theory (including
SAPT) data.25�28,12,29�33

The reliability of a force field is based on its ability to
reproduce some reference total intermolecular potential with
good accuracy. In other words, it should describe the repulsion�
attraction forces in a broad range of intermolecular distances and
orientations in a balanced way. That this is not always the case for
standard force fields can be illustrated with the help of the
benzene dimer.With the highly accurate data calculated by SAPT
for this dimer at hand, the interaction energy, being a sum of
physically significant contributions, can be directly compared
with the corresponding force field terms. This comparison
indicates that standard force fields do not always capture the
subtle balance between the two important contributions, namely,
electrostatic and van der Waals terms (for some recent studies,
see refs 16, 33�42). This is mainly due to the fact that the
parameters of the majority of (empirical) force fields were
optimized to reproduce the total interaction energy and/or
thermodynamic data in the condensed phase. To make this point
even more clear, we have calculated separate contributions to the
total intermolecular potential for the benzene dimers using two

Received: March 17, 2011



1792 dx.doi.org/10.1021/ct200185h |J. Chem. Theory Comput. 2011, 7, 1791–1803

Journal of Chemical Theory and Computation ARTICLE

different orientations (sandwich and T-shaped), as depicted in
Figure 1. The results are shown graphically in Figures 2 and 3.

We have chosen three different force fields where the electro-
static interactions are described by point charges (OPLS-AA43),
bond dipoles (MM344,45), or atomic multipoles up to quadru-
poles (AMOEBA46), as implemented in the TINKER program
package.47 van der Waals interactions are represented in these
force fields with three different functional forms as well: Lennard-
Jones (OPLS-AA), modified Buckingham (MM3), and Buffered-
14-7 (AMOEBA). We note that, in contrast to OPLS-AA and
MM3, the AMOEBA force field is a polarizable one capable of
including nonpairwise-additive many body effects in the force
field via induced dipoles. The reference energies are taken from
ab initio SAPT(DFT) calculations.48 An examination of Figures 2
and 3 shows that for both configurations of the benzene dimer
the electrostatic energy is substantially underestimated (below 4
and 5 Å for the sandwich and T-shape dimers, respectively),
which is entirely due to a neglect of the charge penetration effects
not accounted for by the force field. At the same time, van der
Waals interactions are underestimated for the sandwich dimer in

all three types of force fields (below 4 Å), whereas for the
T-shaped dimer, the reference data, calculated as a sum of
exchange�repulsion and dispersion contributions (see below),
closely match the values from the OPLS-AA force field where the
corresponding points (see Figure 3, center) almost coincide with
their reference counterparts. If we look now at the total energy, it
is evident that none of these force fields is able to describe both
configurations equally well. As can be seen, OPLS-AA and MM3
are the best choices for treating sandwich and T-shaped dimers,
respectively. They show poor results, however, for the other
configuration, which is of course an unpleasant situation.

In this contribution, we seek a force field for PAHs which can
treat all configurations equally well. Moreover, it is our objective
to include more physics in the force field and not just simply
reoptimize the parameters on the basis of the calculated overall
intermolecular energy. Our preliminary tests using highly accu-
rate total intermolecular interaction energies available in the
literature for the benzene dimer49 clearly indicate that it is not
sufficient to reparameterize the van der Waals parameters utiliz-
ing simple functional forms used in current force fields, but
incorporating the right physics of the electrostatic interactions is
essential for simulations in the condensed phase (see below). To
accomplish this task in a balanced way, both the electrostatic and
van der Waals terms should be improved simultaneously. In
contrast to some previous studies, our approach is based on the
explicit inclusion of the short-range term due to charge penetra-
tion. In the present work, this term is treated separately from
other short-range contributions (exchange-repulsion), as sug-
gested recently by Spackman.50 It also differs from other
approaches, such as damping the long-range (multipolar) part
of the electrostatic energy.51,52 It mimics to some extent a more
computationally expensive representation of electrostatic inter-
actions with the Gaussian Multipole Model53,54 and is similar in
spirit to a recent work fromWang andTruhlar.32 The importance

Figure 2. Electrostatic (left), van der Waals (center), and the total interaction energy (right) for the sandwich configuration of the benzene dimer (in
kcal/mol). Shift is the distance (in Å) between the two benzene rings (see Figure 1). The reference data are taken from van der Avoird et al.48 Lines are
drawn to guide the eye.

Figure 3. Electrostatic (left), van der Waals (center), and the total interaction energy (right) for the T-shaped configuration of the benzene dimer (in
kcal/mol). Shift is the distance (in Å) between the center-of-mass of the two benzene rings (see Figure 1). The reference data are taken from van der
Avoird et al.48 Lines are drawn to guide the eye.

Figure 1. Sandwich (left) and T-shaped (right) configurations of the
benzene dimer (carbon and hydrogen atoms are shown in black and
white, respectively).
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of charge penetration effects has been recognized in many
previous studies, and various approaches have been proposed
to include these effects with varying degrees of success (see, for
example, refs 53, 55, and 56).

As a reference, we will use highly accurate results from SAPT
calculated for a number of small aromatic dimers (benzene,
naphthalene, anthracene) to develop the intermolecular force
field suitable for molecular simulation of PAHs.

2. FORCE FIELD DEFINITION

In the present work, we use as a reference the results calculated
with SAPT utilizing a density-functional theory (DFT) repre-
sentation of the monomers taken from the work of van der
Avoird et al.48 (benzene), Podeszwa and Szalewicz57

(naphthalene, anthracene, and pyrene), and Podeszwa
(coronene).58 Within the SAPT methodology, the total interac-
tion energy is represented as a sum of several terms: electrostatic
and exchange�repulsion (first-order), induction (polarization),
exchange�induction, dispersion, and exchange�dispersion
(second order) together with induction and exchange�induction
terms of the third and higher orders. As a counterpart of van der
Waals interactions in the force field, we use the sum of three
terms calculated by SAPT: exchange�repulsion, dispersion, and
exchange�dispersion terms, whereas the sum of induction and
exchange�induction (second order) energies is used to repre-
sent the induction energy to be compared with the induction
(polarization) energy from a polarizable force field.

It has been established that an anisotropic charge distribution
is difficult (if not impossible) to describe with the widely used
point charge models but should include higher multipoles as well
(see, for example, refs 11, 59, 60). In this work, we represent the
long-range part of the electrostatic energy with atom-centered
multipoles up to quadrupoles as implemented in the TINKER
program package (AMOEBA force field).47 Atomic multipoles
were calculated with the Distributed Multipole Analysis (GDMA)
program61,62 from wave functions calculated using the Gaussian
program package.63 The hybrid density functional, B3LYP,64�66

together with the augmented correlation consistent basis sets,
aug-cc-pVXZ (X = D, T),67 was employed for all atoms if not
stated otherwise. The monomers were kept rigid at the geome-
tries used in the SAPT calculations (see above). If not available,
the electrostatic interaction energies between monomers
(perylene) were calculated with the SPDF program.68 Since
distributed multipoles in TINKER are restricted to quadrupoles,
we use a locally modified version of the program written by
Kisiel69 to include all contributions up to hexadecapole�
hexadecapole interactions for testing and validation purposes.

In this work, charge penetration is explicitly included in order
to account for short-range quantum effects that are not ac-
counted for by the classical multipolar expansion valid only at
long range. Recently, Spackman50 showed that it is possible to
estimate this short-range contribution to the exact electrostatic
energy by using a sum of classical Coulomb interaction between
spherical atomic charge densities (so-called promolecular
densities). In this case, the Coulombic energy between any two
atoms separated by a distance R is calculated by the formula

EabðRÞ ¼ ZaZb

R
�
Z ¥

�¥

ZaFbðr2Þ
jRa � r2j dr2 �

Z ¥

�¥

ZbFaðr1Þ
jRb � r1j dr1

þ
Z Z ¥

�¥

Faðr1ÞFbðr2Þ
jr1 � r2j dr1 dr2 ð1Þ

It can be readily shown50 that for spherical charge distributions,
F(r), this expression can be reduced to a one-dimensional
integration in reciprocal space (in atomic units):

EabðRÞ ¼ 2
π

Z ¥

0
½Za � faðsÞ�½Zb � fbðsÞ�sinðsRÞsR

ds ð2Þ

where Za is the nuclear charge of atom a, fa(s) is the atomic
scattering factor for atom a as a function of the scattering vector s
(= 4π sin θ/λ) defined in terms of the spherical atomic electron
density, F(r), by the expression (e.g., for atom a)

faðsÞ ¼ 4π
Z ¥

0
FaðrÞ

sinðsrÞ
sr

dr ð3Þ

The atomic scattering factors are obtained analytically from the
atomic ground-state wave functions usually expanded with a
linear combination of Slater-type functions. Several compilations
of the atomic ground-state wave functions are available in the
literature from Clementi and Roetti,70 Bunge et al.,71 and Su and
Coppens.72 In our work, we used closed-form expressions for the
Fourier�Bessel transform of Slater-type functions developed by
Su and Coppens.73 For a recent implementation of Spackman’s
original ideas, see ref 74. As Spackman has noted, a contraction of
the charge density of the hydrogen atom (Slater exponent) is
needed to reproduce the reference electrostatic energies of a
number of dimers with hydrogen bonds. The question now
remains: how can one estimate the value of this contraction (or
expansion)? It turns out that it can be done rather straightfor-
wardly by rewriting the last equation in the following form:75

EabðRÞ ¼ 2
π

Z ¥

0
½Za � faðs=kaÞ�½Zb � fbðs=kbÞ�sinðsRÞsR

ds ð4Þ

where the radial dependence of the spherical charge densities of
atoms a and b is modified by expansion�contraction parameters
(“kappa”), ka and kb, respectively. A similar approach has been
used in the refinement of the spherical pseudoatom charge
densities based on accurate X-ray diffraction data.75 Therefore,
we extend the approach of Spackman by allowing for the radial
contraction (k > 1) or expansion (k < 1) for spherical atomic
densities. The integral in eq 4 was evaluated numerically as
suggested by Spackman50 (see also refs 22 and 24 therein) using
routines from ref 76.

For the pairwise additive van der Waals (vdW) interactions,
we have adopted the buffered 14�7 functional form77 used in the
AMOEBA force field (for details, see ref 46). It is, however,
necessary to adjust the vdWparameters appropriately,50 since the
electrostatic part of the force field is modified by adding the
short-range interactions as described above. In this work, we
reoptimize the vdW parameters (two for each atom class) using
this particular function, but in principle, any functional form can
be used instead.

Induction (polarization) is the interaction of an induced
dipole on one fragment with the permanent dipole on another
fragment, expressed in terms of the dipole polarizability. The
efficacy of truncating the polarizability expansion at the first
(dipole) term is due to the treatment of this term in a distributed
manner. In the AMOEBA force field, the molecular polarizability
is expressed as a sum over atomic isotropic dipole polarizabil-
ities. Iterating the dipole-induced dipole interaction to self-
consistency captures many body effects. We adopted the para-
meters (atomic isotropic polarizabilities and damping factor) from
the AMOEBA force field,46 i.e., 1.750 for carbon and 0.696 Å3 for
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hydrogen in aromatic rings. There is an indication, however, that
the aromatic carbon bridging two aromatic rings (i.e., all its
neighbors are carbons) should have a somewhat larger
polarizability.78 In principle, all parameters for the dipole induc-
tion model used in AMOEBA can be reoptimized to reproduce
the induction energy (quenched by the exchange-induction
contribution) calculated by SAPT as well. Furthermore, the
static molecular polarizability tensors calculated with the default
parameters for a number of polycyclic aromatic molecules are in
accord with the exact values (see below), confirming the results
from ref 46. The influence of the polarization energy for the
benzene dimers can be appreciated from Figure 4, where the total
energies calculated with and without (switched off) the polariza-
tion term are compared with their reference counterparts.48 In
TINKER, two options for the incorporation of the polarization
term in the force field are available so that one can select between
the use of direct and mutual dipole polarization. In the former
approach (“direct”), an iterative calculation is avoided by using
only the permanent electric field in computation of induced
dipoles, whereas in the latter (“mutual”) one an iteration of the
induced dipoles to self-consistency is performed.

Despite the limited number of dimer configurations used,
Figure 4 clearly shows that for benzene dimers the noniterative
approach to the dipole polarization (“direct”) can be a good
approximation of a more elaborate iterative one (“mutual”). It
can be seen that at shorter intermonomer distances the deviation
from the SAPT calculated total intermolecular energies (Eref) can
be quite large. We also note that the simulated (AMOEBA) total
energy underestimates (overestimates) their reference counter-
parts for the sandwich (T-shaped) configuration, regardless of
the polarization model used in the force field.

3. PARAMETRIZATION STRATEGY

To fit the various parameters, we have implemented the short-
range contribution to the electrostatic energy as described by
Spackman50 within the TINKER program package.47 The ex-
pansion-contraction parameters for all symmetrically nonequi-
valent atoms (eq 4) were optimized with the genetic algorithm
PIKAIA,79 used successfully by one of the present authors (M.T.)
to parametrize the intramolecular force field for metal�organic
frameworks (for details, see ref 80). As a fitness function, we use
the root-mean-square deviation (rmsd = ((∑i=1

N (Eref
i � Emodel

i )2)/
N)1/2, where N is the number of dimer configurations) between
the exact electrostatic energies calculated by SAPT for the dimer
configurations and the sum of the long-range part (distributed

multipoles) and the short-range part represented by a sum of
Coulombic interactions between spherical atoms. For compar-
ison, the atomic scattering factors in eq 4 are calculated from the
analytic atomic wave functions taken from three different sources
mentioned above.70�72 Since the results are very similar for all
three compilations, only the results based on the data from Su
andCoppens,72 obtained using a nonlinear least-squares fitting of
numerical relativistic atomic wave functions by a linear combina-
tion of Slater-type functions, will be discussed. The atomic
multipoles are calculated from wave functions obtained at the
B3LYP/aug-cc-pVDZ level of theory. This level of theory is
found to be adequate for our purposes, confirming the results of
Volkov et al.81 However, to be consistent with the large basis set
used in the SAPT calculations,48,57 we employed here a larger
aug-cc-pVTZ basis set for benzene, naphthalene, and anthracene
as well. To get meaningful expansion�contraction parameters,
the dimer configurations were selected with some care. For
example, the T-shaped dimer configurations are found to be
important for the refinement of the k parameter for hydrogen in
benzene and polycyclic aromatics.

For the vdWpart of the force field, we reparametrize the values
of the atom size (in Å) and homoatomic well depth (in kcal/
mol), whereas a reduction factor for hydrogen atoms was kept
unchanged. As a fitness function for the genetic algorithm, the
RMSD between the SAPT data (as a sum of exchange�repul-
sion, dispersion, and exchange�dispersion terms) and the vdW
part of the force field is used. In principle, the exchange-repulsion
and dispersion (quenched by the exchange�dispersion term)
contributions can be refined independently, but this would
require a more substantial modification of the TINKER code.

The reference energies for naphthalene (35 configurations),
anthracene (32 configurations), and pyrene (44 configurations)

Figure 4. The difference in the total interaction energy for the sandwich (left) and T-shaped (right) configurations of the benzene dimer (in kcal/mol)
with andwithout the polarization term included. Shift is the distance (in Å) between the two benzene rings (see Figure 1). The “direct” dipole polarization
avoids an iterative calculation by using only the permanent electric field in computation of induced dipoles, whereas in the “mutual” polarization one
iterates the induced dipoles to self-consistency. The reference data are taken from van der Avoird et al.48 Dashed lines are drawn to guide the eye.

Figure 5. Scatter plots of electrostatic energies (left) and their differ-
ences (right) calculated for 500 benzene dimer configurations (in kcal/
mol). The reference data are taken from van der Avoird et al.48
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dimers are taken from ref 57. The coronene dimer is probably the
largest system calculated with SAPT (56 configurations).58 In
addition, highly accurate correlated calculations of the intermole-
cular potential surface in the coronene dimer have been published
recently by Janowski et al.4 For pyrene and coronene dimers, no
T-shaped configurations were calculated using SAPT despite the
recent finding that this arrangement for coronene might energe-
tically compete with the stacked parallel orientations.82,4

The geometries of the monomers (see Figure 6) were
optimized by Podeszwa et al.57,58 using the B3LYP/6-31G(d)
level of theory and were kept fixed in their dimer calculations.

4. RESULTS AND DISCUSSION

Electrostatic Energy. First, we turn to the benzene dimer. van
der Avoird et al.48 have calculated SAPT interaction energies and
the corresponding physically meaningful contributions for a large
number of dimer configurations (∼500), which we use here as
our reference. The scatter plot shown in Figure 5 compares the
electrostatic energies calculated by the force field with the
optimized expansion�contraction parameters for the carbon
and hydrogen atoms (Emodel) against the reference SAPT data
(Eref). During the refinement, all reference energy values are
weighted equally (unit weights). The optimized k value for the
carbon atom (1.002) is very close to 1. The value of 1.45 obtained
for the hydrogen atom is somewhat larger than that used by
Spackman (1.24). The indicated contraction of the electron
density of the hydrogen atom makes sense since, being attached

to an aromatic carbon atom, it is positively charged. Interestingly,
our value is very close to an average value (1.40) recommended
by Coppens et al.75 for the radial contraction of H in their
spherical-atom X-ray refinements. The RMS deviation for the
whole set of benzene dimers is only 0.47 kcal/mol. An examina-
tion of Figure 5 shows that the differences between the reference
electrostatic energies and their force field counterparts are within
1 kcal/mol for the majority of dimer configurations. This
validates the present approach used for the electrostatics. The
mean difference (= 1/N ∑i=1

N [Eref
i � Emodel

i ]) of �0.07 kcal/mol
signals that the simulated (force field) energies reproduce the
reference data without a systematic error. It follows from
Figures 2 and 3 that for the sandwich and T-shaped benzene
dimer the new force field is in considerably closer agreement with
the SAPT reference data as compared to the other force fields,
reproducing the right physics of the electrostatic interactions
especially at shorter intermolecular distances.
The k values optimized for the benzene dimer are readily

transferable to other PAHs. This is evident from the data
presented in Table 1. It can be seen that the overall reproduction
(measured by RMSD) of the electrostatic interaction energies for
dimers of larger PAHs is quite satisfactory when the values
optimized for the benzene dimer (labeled as “benzene”) are used
and that even small changes in the k parameters (mainly for
carbon) can improve the fit significantly (labeled as “opt”). We
note that for larger PAHs one can refine the k parameters for all
symmetrically nonequivalent carbon atoms, which would defi-
nitely improve the fit even further, and we found that this is
indeed the case. But to keep our model as simple as possible
(with less parameters), we decided to optimize only one k
parameter for all aromatic carbons. The values used by Spackman
are given for comparison. Figure 7 shows scatter plots of
electrostatic energies for naphthalene, anthracene, pyrene, and
coronene dimers calculated using the optimized k parameters
(labeled as “opt” in Table 1) against the SAPT reference data.
Remarkably, with only two expansion�contraction parameters
(for C and H), the agreement between the calculated electro-
static energies and their reference counterparts is fairly good over
a wide range of energy values.
The significance of the short-range contributions to the

electrostatic interaction energy even for relatively nonpolar
PAHs can be appreciated from the data in Table 2 below. As
an example, we took the perylene dimer (sandwich config-
uration) and calculated the accurate electrostatic energy by
integration over the unperturbed charge densities of the
monomers68 (labeled as “true”) as a function of the intermono-
mer distance (see Figure 8). The geometry of the perylene
molecule was taken from the database of PAHs83 (optimized at
the B3LYP/6-31þG(d) level of theory). The point charges
(labeled as “charges”) were obtained by the fit to the electrostatic
potential (ESP), as is usually routinely done. To this end, we use
the Merz�Kollman sampling scheme84 with ca. 2100 grid points

Figure 6. Molecular structure of selected PAHs (from left to right): naphthalene, anthracene, pyrene, perylene, and coronene (carbon and hydrogen
atoms are shown in black and white, respectively).

Table 1. Expansion�Contraction (j) Parameters for Carbon
and Hydrogen in Several PAHs

k (C) k (H) RMSD (kcal/mol)

naphthalene (35 config.)

Spackman 1.0 1.24 1.8

benzene 1.002 1.45 0.7

opt 1.012 1.42 0.3

anthracene (32 config.)

Spackman 1.0 1.24 3.1

benzene 1.002 1.45 1.5

opt 1.018 1.41 0.4

pyrene (44 config.)

Spackman 1.0 1.24 5.0

benzene 1.002 1.45 4.1

opt 1.024 1.4 (fixed) 0.6

coronene (56 config.)

Spackman 1.0 1.24 4.4

benzene 1.002 1.45 3.7

opt 1.022 1.4 (fixed) 1.4
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per atom with a RMS deviation of 0.71 kcal/mol.63 The long-
range contribution to the electrostatic energy is then represented
either with these point charges or with the atomically distributed
multipoles62 (labeled as “DMA”) at three different levels
(quadrupole, octupole, and hexadecapole). For example, at the
hexadecapole level, all interactions up to hexadecapole�
hexadecapole ones between all atoms belonging to the two
different monomers are included. It should be also noted that
the ESP calculated for the same set of grid points as used in the fit
of point charges above is reproduced by distributed multipoles
truncated at the quadrupolar level with a RMS deviation of
0.85 kcal/mol. Both the point charges from the fit and the atomic
multipoles systematically overestimate (more negative on
average) the reference ESP data (B3LYP/aug-cc-pVDZ//
B3LYP/6-31þG(d)) with the mean difference of 0.2 kcal/mol.
A number of important conclusions can be drawn from these

data. First, it can be clearly seen that at the intermonomer
distances below 4 Å, both the point charge model and the atomic
multipole model severely underestimate the electrostatic inter-
action in the dimer (compare with the last column of Table 2).
We note that the average intermonomer distance in the crystal
structure of the so-called R-form of perylene (the four perylene

molecules in the unit cell are grouped in pairs about centers of
symmetry) is found to be around 3.46 Å.85 Thus, an approxima-
tion of the electrostatic energy either with point charges or with
multipoles is inadequate. These models become valid above ca.
5 Å (see three last rows in Table 2). It can be seen that the charge
penetration contribution to the electrostatic interaction for the
perylene dimer is significant especially at intermonomer dis-
tances < 3.5 Å. This short-range contribution evaluated recently
by Jenness et al.86 for the water�acene series is much smaller in
magnitude and is comparable with the long-range contribution
due to atomic multipoles (up to quadrupoles on all carbon
atoms). Second, we note that the multipole model truncated at
the quadrupolar level would already do a good job in describing
the long-range contribution to the electrostatic energy (in
comparison with a much more computationally demanding
hexadecapolar level). Finally, we see that the missing part
(labeled as the “k model”), calculated as the sum over spherical
atomic density interactions using the optimized expan-
sion�contraction (k) parameters, is quite substantial. Com-
bined with the multipole approximation for the long-range part
(represented by the atomic multipoles up to and including
quadrupoles), it recovers the total intermolecular electrostatic
energy in the perylene dimers (10 sandwich configurations) with
an RMS deviation of only 0.36 kcal/mol and a mean difference of
�0.2 kcal/mol. Thus, with the optimized k parameters at hand
and assuming their transferability between chemically similar
atoms, we can now estimate quite accurately the intermolecular
electrostatic energy in the clusters of larger PAH molecules
within seconds. For comparison, the numerical evaluation of the
exact Coulomb integral for the perylene dimer (wave functions
from B3LYP/aug-cc-pVDZ) using a serial version of the SPDF
program81 used here takes ca. 10 h on 1 CPU (Linux OS, x86_64
AMD, 2.933 GHz, 4 GB RAM).
Induction Energy. In principle, the quality of the polarization

energy component of the AMOEBA force field46 used here can

Figure 8. Sandwich configuration of the perylene dimer.

Figure 7. Scatter plots of electrostatic energies for selected dimers of PAHs (in kcal/mol). From left to right: naphthalene (35 configurations),
anthracene (32 configurations), pyrene (44 configurations), and coronene (56 configurations). The reference data are taken from Podeszwa et al.57,58

Table 2. Short- and Long-Range Contributions to the Total
Electrostatic Interaction Energy for the Perylene Dimer (in
kcal/mol)a

DMAc

distance,

Å chargesb quadrupole octupole hexadecapole

kappa

modeld “true”e

3.0 5.02 7.88 6.07 7.70 �49.84 �42.16

3.2 4.10 5.78 4.60 5.49 �26.93 �20.83

3.4 3.39 4.42 3.61 4.13 �14.57 �9.87

3.6 2.84 3.50 2.93 3.24 �7.69 �4.35

3.8 2.41 2.85 2.43 2.63 �4.02 �1.62

4.0 2.06 2.38 2.06 2.19 �2.17 �0.30

4.5 1.44 1.63 1.44 1.50 �0.42 0.66

5.0 1.06 1.19 1.07 1.10 0.03 0.72

5.5 0.80 0.90 0.82 0.84 �0.05 0.64

6.0 0.62 0.71 0.64 0.66 0.004 0.53
aB3LYP/aug-cc-pVDZ//B3LYP/6-31þG(d). The geometry of the
monomer is taken from ref 83. b From ESP fit: Merz�Kollman sampling
(∼2100 points per atom); RMS= 0.71 kcal/mol. cDistributedmultipole
analysis using three different ranks of multipoles. d Sum over spherical
atomic density Coulomb interactions using k(C) = 1.01 and k(H) = 1.4.
eNumerical evaluation of the exact Coulomb integral over unperturbed
charge densities of monomers.
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be judged from a direct comparison with the sum of induction
and exchange�induction energies calculated using SAPT. How-
ever, this particular component is very difficult to obtain accu-
rately in SAPT since third and higher order contributions might
be significant as well (see, for example, refs 87�89). The
reference data for the benzene dimer we used included third
order contributions to the induction energy, and in Figure 9 we
compare this data with the induction energy obtained with the
standard AMOEBA parameters for a number of sandwich and
T-shaped configurations. Overall, for nonpolar molecules, we
expect the induction energy to be small in absolute terms
compared to other contributions. We note that for the benzene
dimer configurations shown in Figure 9, the AMOEBA over-
estimates (underestimates) the reference values of induction
energy at smaller intermonomer separations for the sandwich
(T-shaped) dimer configurations. For naphthalene, only second
order contributions were included in the SAPT calculations.57 As
can be seen from Figure 10, the AMOEBA force field system-
atically underestimates the induction energy for some represen-
tative configurations, especially so for the T-shaped ones.
To check the reliability of the AMOEBA parameters, we can,

in addition, compare the static molecular polarizability tensors
(R) calculated at different levels of theory with those obtained
from the AMOEBA force field by iterating the induced dipoles to
self-consistency, as implemented in TINKER. Table 3 presents
the results (see Figure 6 for the axes definition), where experi-
mental data are also given for comparison. Due to the high
symmetry of the molecules, only diagonal elements of the
polarizability tensors are nonzero. An examination of Table 3
shows that the components of the static molecular polarizability
tensor calculated in this work at the DFT level (B3LYP/aug-cc-
pVDZ) match closely their counterparts obtained using the

linear response coupled cluster approach (CCSD) by Hammond
et al.90 We also note that the calculated molecular polarizabilities
(DFT/CCSD) are well reproduced by the force field, especially
for the less polarizable perpendicular direction (Z axis). At
the same time, it can be seen that for larger PAHs, the agreement
is less perfect for the long molecular axis (X), where the
polarizability is underestimated by the AMOEBA force field.
Despite the fact that refining the atomic polarizability para-
meters would improve the agreement, it is our belief that some
degree of anisotropy should be included in the model91 to get
more accurate results (compared to the “exact” values)33 for the
induction energy.
van der Waals Energy. As already mentioned above, we

adopted the functional form for the vdW energy (repulsion�
dispersion) used in the AMOEBA force field and reoptimized
the two parameters for each atom class (atom size, r, and well
depth, ε) based on the sum of the three separate contributions
calculated using SAPT, namely, exchange�repulsion, dispersion,
and exchange�dispersion. Table 4 compares the old and the new
values for aromatic carbon and hydrogen atoms taken as an
average from the refinements on the naphthalene and anthracene
dimers.57

With the new vdW parameters, we can reproduce the SAPT
reference data with RMS deviations (the mean difference in
parentheses) of 0.5 (0.17), 0.5 (�0.18), and 0.9 (0.05) kcal/mol
for naphthalene (35 configurations), anthracene (32 config-
urations), and pyrene (41 configurations) dimers, respectively.
For pyrene, we excluded three dimer configurations with the
shortest intermonomer distance (2.8 Å) from the reference data
set. Figure 11 displays the scatter plots for these three PAH
dimers. It can be seen from this figure that with the reoptimized
vdW parameters from Table 4 (“new”), we can reproduce the
reference data over a wide range of energy values. Even the

Figure 9. The induction energy for the sandwich (left) and T-shaped (right) configurations of the benzene dimer (in kcal/mol). Shift is the distance
(in Å) between the two benzene rings (see Figure 1). The reference data are taken from ref 48. Lines are drawn to guide the eye.

Figure 10. The induction energy for the graphite (left) and T-shaped (right) configuration of the naphthalene dimer (in kcal/mol). Shift is the distance
(in Å) between the two naphthalene molecules. The reference data are taken from ref 57. Lines are drawn to guide the eye.
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energies in a very “repulsive” region of the PAH dimers are
accurately modeled. For both configurations of the benzene
dimer, the agreement with the SAPT reference data is also
improved compared to the other force fields (see Figures 2 and 3).
Total Intermolecular Energy. We calculate the total inter-

molecular interaction energy by summing up the electrostatic
(both short- and long-range components), vdW, and induction
contributions. We reproduce the total reference energies from
SAPTwith RMS deviations (the mean difference in parentheses)
of 0.64 (�0.45), 0.9 (�0.7), and 0.5 (�0.13) kcal/mol for
naphthalene, anthracene, and pyrene dimers, respectively. For
PAHs, we recommend using values for the expansion�contraction
parameters of 1.02 and 1.4 for carbon and hydrogen atoms,

respectively, together with the new vdW parameters listed in
Table 4. Examination of Figure 12 and of the mean differences
shows that some systematic bias is present, especially for the
naphthalene and anthracene dimers, which is probably due to
inaccuracies in the induction term (underestimated by the force
field) that warrant further investigation. By comparison, with the
unmodified AMOEBA force field, the RMS deviations are 2.9
(naphthalene), 4.0 (anthracene), and 2.6 (pyrene) kcal/mol.
To further validate our new force field, we performed a full crystal

energy minimization by optimizing over fractional atomic co-
ordinates and the lattice parameters for benzene, naphthalene,
anthracene, pyrene, and coronene. Tomake the comparison with
the experimental crystal structures meaningful, the internal flex-
ibilities of the molecules are taken into account using the
standard AMOEBA parameters (atom classes 85 and 86 for the
aromatic carbon and hydrogen atoms from the amoeba09.prm
compilation, respectively). Table 5 presents the results.
Examination of this table shows that the AMOEBA force field

poorly reproduces the orthorhombic lattice of the benzene
crystal (space group Pbca), whereas the unit cell edges based
on our new force field (labeled as “new” in Table 5) closelymatch
the experimental data. Ab initio calculations of van der Waals
bondedmolecular crystals, such as solid benzene, are notoriously
difficult to perform accurately. That this is still a challenge is
evident from the comparison of the lattice parameters fully
optimized by Bucko et al. (ref 100 and references therein) with
the VASP program. A closer examination of the unit cell of the
solid benzene, in which the four molecules are arranged in an
edge-to-face manner at 87� angles pairwise,101 reveals the
dominant contribution of this type of tilted T-shaped configura-
tion, shown in Figure 1.We note that this particular configuration
is found to be one of the most stable in the gas phase benzene
dimer (see, for example, ref 48), and it persists in the solid
benzene even under high pressure.110 As is evident from Figure 3
above, the total intermolecular interaction energies for this
configuration at a center-of-mass distance of around 5.0 Å, as
found in the crystal, are poorly reproduced by the AMOEBA
force field as compared to the reference (SAPT) data. Our new
force field, on the other hand, nicely reproduces the experimen-
tally observed mutual arrangement of the four molecules in the
unit cell, which is not the case with the AMOEBA force field. To
investigate the importance of this short-range electrostatic con-
tribution in more detail, we tested two other models, where (1)
we reoptimized the four vdW parameters (two for both carbon
and hydrogen) of the AMOEBA force field based on the total
interaction energies for 500 configurations of the benzene dimer
used before without adding the short-range electrostatic con-
tribution and where (2) we included the short-range term
without reoptimizing the vdW parameters. Despite the relatively
small RMS deviation of ca. 1 kcal/mol for the whole set of
benzene dimers, the model (1) was not capable of reproducing
either the cell edges or the mutual arrangement of the four

Table 4. van derWaals Parameters for Carbon andHydrogen
Atom Classes for the AMOEBA Force Field

old new

atom class r, Å ε, kcal/mol r, Å ε, kcal/mol

C 3.800 0.089 4.285 0.050

H 2.980 0.026 2.560 0.0075

Table 3. Molecular Polarizability Tensors (in Å3) for
Benzene and Several PAHs

method Rxx Ryy Rzz Riso
a

benzene

DFTb 12.17 12.17 6.64 10.33

TDDFT93 12.26 12.26 6.61 10.38

CCSD90 11.89 11.89 6.60 10.13

CCSD92 12.06 12.06 6.37 10.16

AMOEBAc 12.24 12.24 6.64 10.37

exp93 12.20 12.20 7.28 10.56

naphthalene

DFT 25.58 18.60 9.80 17.99

TDDFT94 26 19 10 18

CCSD90 24.69 18.28 9.84 17.60

AMOEBA 21.89 18.50 9.77 16.72

exp95 24.39 18.20 9.60 17.40

anthracene

DFT 44.06 25.09 12.89 27.35

TDDFT94 46 26 13 28

CCSD90 41.73 24.60 12.98 26.44

AMOEBA 32.62 24.56 12.93 23.37

exp96 35.90 24.46 15.88 25.41

pyrene

DFT 44.17 31.87 13.92 29.98

TDDFT94 45 32 14 30

CCSD90 42.37 31.14 na na

AMOEBA 33.70 29.81 13.75 25.75

exp97 34.2 34.2 16.3 28.2

perylene

DFT 55.97 44.01 16.82 38.94

TDDFT94 56 44 16 39

AMOEBA 42.90 38.16 16.95 32.67

exp98 57 46 16 40

coronene

DFT 59.12 59.12 18.96 45.73

TDDFT94 61 61 19 47

AMOEBA 47.51 47.51 19.14 38.05

exp99 56.8 56.8 20.7 44.8
a Isotropic polarizability taken as 1/3(Rxx þ Ryy þ Rzz).

bAt the
B3LYP/aug-cc-pVDZ//B3LYP/6-31G(d) level. c Interactive molecular
polarizability.
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benzenemolecules in the unit cell, the results being close to those
obtained with the standard AMOEBA force field. Our second
model, on the other hand, was found to be in much better
agreement with our new force field model, qualitatively reprodu-
cing the mutual arrangement of the benzene molecules observed
in the experimental crystal structure. This indicates that the short-
range electrostatic contribution seems to be particularly impor-
tant for the intermolecular interaction for a T-shaped configura-
tion in π-conjugated systems (for a discussion, see also refs 111
and 112). It would be interesting to see whether our new force
field is able to reproduce (or even predict) high-pressure poly-
morphs of the solid benzene.113 For PAHs, the situation is
different in a sense that the π�π stacking interactions are now
competitive with those found in (more electrostatically con-
trolled) T-shaped configurations.112 From Table 5, it can be seen
that the experimental monoclinic lattices (space group P21/a) of
selected PAHs are reproduced by the force fields. Recently,
Sanchez-Carrera et al.103 optimized the unit cell parameters for
a number of oligocenes from naphthalene to pentacene using a
different program (DMAREL) and a different force field
(Buckingham exp-6 for vdW interactions along with ESP-fitted
point charges for electrostatics) within the framework of the rigid-
molecule approximation (experimental molecular geometries
were used). Despite the markedly different approaches used,
their results are in agreement both with ours and with the
experiment. Interestingly, our new force field somewhat over-
estimates the length of the a axis of the unit cell for naphthalene
and anthracene. At the same time, the lengths of the other two
lattice axes (b and c) for naphthalene are closer to the experi-
mental data than those obtained with the standard AMOEBA
force field. It should be also noted that for pyrene the standard
AMOEBA force field gave the optimized lattice parameters
observed for the low-temperature (T = 93 K) metastable phase
(II), regardless of the starting values, whereas our new force field
recovers the parameters for both solid phases. It is well-known

that lattice energies are important for assessing the quality of a
force field. Our values for naphthalene (�12.0 kcal/mol) and
anthracene (�16.6 kcal/mol) underestimated the experimental
values114 of�17.8 (naphthalene) and�23.9 (anthracene) kcal/mol
mainly due to somewhat larger a axis of the unit cell.
Overall, in contrast to the standard AMOEBA and other

empirical force fields,103 our proposed intermolecular force field
parameters are based solely on the properties of monomers
calculated from first principles. Indeed, the atomic multipoles
come from the distributed multipole analysis (GDMA) based on
the monomer wave function, whereas the short-range electro-
static contribution and the vdW parameters were fitted to
reproduce the corresponding terms of the SAPT interaction
energy, the latter being calculated directly as a sum of physically
meaningful contributions. The reason we use the data calculated
by SAPT as a reference is that in this type of rigorous perturba-
tion theory the physically meaningful components (first-order
electrostatic and exchange contributions and second-order in-
duction and dispersion terms) can be nicely correlated with the
terms usually included in current empirical force fields. This
would be, however, not so straightforward with some other
decomposition schemes, such as the ones described in Khaliullin
et al.115 or in Wu et al.,116 where the electrostatic and exchange
contributions are not separated (named as the frozen density
component there). It would be interesting to try to parametrize a
force field using this latter (variational) decomposition scheme as
well. It is also worth remarking that the quality of our new force
field cannot be better than the quality of the reference data it is
based upon, so that our parameters will definitely benefit from
further improvement of the reference data. Furthermore, we are
confident that the notoriously difficult task of crystal structure
prediction can benefit from the force field development strategy
presented in this work.117We also hope that our contribution can
help better understand the shortcomings and failures of the
currently used force fields and will ultimately lead to an

Figure 12. Scatter plots of total intermolecular energies for selected dimers of PAHs (in kcal/mol). From left to right: naphthalene (35 configurations),
anthracene (32 configurations), and pyrene (41 configurations). The reference data are taken from Podeszwa et al.57

Figure 11. Scatter plots of van der Waals energies for selected dimers of PAHs (in kcal/mol). From left to right: naphthalene (35 configurations),
anthracene (32 configurations), and pyrene (41 configurations). The reference data are taken from Podeszwa et al.57
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improvement in the quality of future force fields for molecular
simulations. Curiously, in a very recent study on the develop-
ment of polarizable models for calculating interactions between
atomic charges and induced point dipoles, Wang et al.118 pointed
out the difficulty in reproducing interaction energies (at the
MP2/aug-cc-pVTZ level) for molecules possessing aromatic
groups (even after reoptimization of the van der Waals para-
meters). They found out that all MM models investigated
(including nonpolarizable or fixed-charge ones) have a tendency
to underestimate the attractive force between the aromatic
moieties. Even if it is known that the MP2 method (corrected
for basis set superposition error) overestimates the binding
energy for π stacks (see, for example, ref 119), we believe that
a further improvement can be achieved by including more
physically grounded electrostatics in a force field, which is the
main topic of our work. There is a hint in a recent work of
Watanabe et al.120 that an accurate treatment of electrostatic
interactions between adsorbates and a host framework would
necessitate the inclusion of charge penetration effects as well.
One final note is appropriate at this point. Since accurate

reference data based on the intermolecular perturbation theory
(such as SAPT) are still relatively scarce, a viable strategy using the
total intermolecular energy from highly accurate supermolecule

calculations can be used for the parametrization (see, for
example, refs 121�123). In this case, first, the short-range
electrostatic contribution can be parametrized using a much
cheaper method (e.g., B3LYP/aug-cc-pVXZ, X = D or T), as is
done here for the perylene dimer, and, second, when an appro-
priate model for the induction (polarization) contribution is at
hand, the vdW parameters for a chosen functional form can be
optimized to reproduce the repulsion�dispersion contribution
taken as the difference between the total interaction energy
(as reference) and the sum of the electrostatic (including both
the short- and long-range terms) and induction contributions. As
an example, we took the data published recently by Sherrill and
co-workers49 for the benzene dimer (∼90 configurations includ-
ing sandwich, T-shaped, and parallel-displaced ones) calculated
with the coupled-cluster theory through perturbative triples,
CCSD(T), extrapolated to the complete basis set limit. Having
parametrized the short-range part of the electrostatic energy
(see Table 1 for expansion�contraction parameters) and utiliz-
ing the induced point dipoles method (AMOEBA) to treat
polarization, the reoptimized vdW parameters (r = 4.239 Å
and ε = 0.0726 kcal/mol for carbon and r = 2.553 Å and ε =
0.0043 kcal/mol for hydrogen) turned out to be similar to the
values (labeled “new”) shown in Table 4. With these force field
parameters at hand, we can reproduce perfectly both the lattice
parameters of the orthorhombic phase of solid benzene (a= 7.391
Å, b = 9.356 Å, and c = 6.891 Å) and the mutual arrangement
of the four molecules in the unit cell as before using the SAPT
data as a reference. In addition, the calculated lattice energy
of �10.2 kcal/mol (at T = 0 K and without zero-point energy
correction), which is known to be notoriously difficult to evaluate
reliably, is in very good agreement with the values estimated from
first-principles methods124�126,100 (see also refs 127�129) and
the experimental value (�11.3 kcal/mol).114

5. CONCLUSIONS

Motivated by the need for a force field that can capture the
right physics of intermolecular interactions, we incorporated an
extra pairwise-additive energy term, which describes the short-
range contribution to the electrostatic energy due to charge
penetration, into the AMOEBA polarizable force field.46 Follow-
ing the original ideas of Spackman,50 the expansion�contraction
parameters are proposed to modify the radial dependence of the
spherical atomic charge densities. For a series of PAHs, we were
able to show that with a limited number of these parameters, the
intermolecular electrostatic energies estimated by the force field
match nicely the reference data based on SAPT interaction
energy calculations. Taken together with the reoptimized van
der Waals contribution, a balanced force field can be readily
constructed which avoids to a large extent the error cancellation
between different terms in the force field. Having implemented
the gradients of this new term, we are now in a position to
perform static geometry optimizations as well as molecular
dynamics simulations on the aggregation of PAH clusters, the
outcome of which being relevant for a number of fields such
as soot formation in combustion,130 interstellar radiation,131

optoelectronic devices,6 supramolecular chemistry (as exempli-
fied by molecular tweezers132), and host�guest systems,133 to
name a few. Moreover, we can anticipate that incorporating
realistic electrostatic effects into a force field would allow the
development of much more accurate QM/MM embedding
schemes. Polycyclic aromatic hydrocarbons and their derivatives

Table 5. Unit Cell Parameters for Benzene and Selected
PAHs

a (Å) b (Å) c (Å) R (deg) β (deg) γ (deg)

benzene

AMOEBA 7.744 7.750 7.750 90.0 90.0 90.0

new 7.567 9.269 7.142 90.0 90.0 90.0

VASP101 7.09 9.07 6.54 90.0 90.0 90.0

exp (138 K)102 7.39 9.42 6.81 90.0 90.0 90.0

exp (4.2 K)102 7.3551 9.3712 6.6994 90.0 90.0 90.0

naphthalene

AMOEBA 8.206 5.512 9.143 90.0 125.2 90.0

new 8.539 5.884 8.954 90.0 122.6 90.0

DMAREL103 8.146 6.033 8.716 90.0 122.5 90.0

exp104 8.108 5.940 8.647 90.0 124.4 90.0

anthracene

AMOEBA 8.361 6.080 11.070 90.0 127.0 90.0

new 8.896 6.121 11.184 90.0 124.6 90.0

DMAREL103 8.361 6.116 11.167 90.0 123.5 90.0

exp105 8.414 5.990 11.095 90.0 125.3 90.0

pyrene (I)

AMOEBA 12.513 9.799 8.104 90.0 94.7 90.0

new 13.637 9.435 8.528 90.0 100.2 90.0

exp106 13.532 9.159 8.387 90.0 100.2 90.0

pyrene (II)

AMOEBA 12.510 9.800 8.105 90.0 94.7 90.0

new 12.635 10.177 8.468 90.0 98.1 90.0

exp107,108 12.358 10.020 8.260 90.0 96.5 90.0

coronene

AMOEBA 16.156 4.484 9.934 90.0 110.2 90.0

new 16.186 5.047 9.904 90.0 110.8 90.0

exp109 16.119 4.702 10.102 90.0 110.9 90.0
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are seen as a promising class of materials for optoelectronics and
organic solar cells. Understanding the charge and energy trans-
port through these materials is very important in tuning their
properties for a particular application. We hope that physically
realistic force fields would be indispensable for that purpose, and
work along these lines is in progress.
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ABSTRACT: The Kratzer oscillator is useful in modeling anharmonic molecular vibrations; therefore, its underlying theory is
briefly explored in this study. The linear dipole moment time correlation function, within the Condon approximation, is analytically
evaluated, and linear absorption lineshapes are calculated at different temperatures. An important integral formula of Landau and
Liftshitz is, for the first time, utilized to evaluate the anharmonic Franck�Condon factor (FCF) resulting from modeling the initial
and final states by Kratzer potentials. In addition, an exact closed-form expression of the FCF for the linearly displaced and shape-
distorted final state energy curve, with respect to the ground state, is reported. Within the context of Mukamel formalism, nonlinear
spectral/temporal lineshapes, such as hole-burning, photon echo, and pump�probe signals, may not be calculated without
nonlinear response theory using the so-called “four-point dipole moment time correlation function”. The above FCFs will be
employed to calculate optical linear and nonlinear spectra at different temperatures utilizing a previously developed formula
[Toutounji, M. J. Phys. Chem. C 2010, in press], whereby a hole-burned absorption lineshape may be found using a linear dipole
moment time correlation function.

I. INTRODUCTION

Molecular vibrations are more realistically modeled by anhar-
monic oscillators such as Morse, Kratzer, or Rosen-Morse1

oscillators, all of which render sound treatment of anharmonic
molecules. Recently, the Morse potential has been used for
modeling diatomic molecules, or local modes,2,3 because it has
been proven to render qualified results, accounting for important
quantum mechanical properties of molecules.4 While consider-
able attention has been given to calculating Franck�Condon
factors (FCFs) and linear and nonlinear absorption lineshapes of
the Morse oscillator,2,3,5�9 little attention has been devoted to
that of Kratzer.10�12 Various techniques have been employed at
different levels of rigor, approximation, and applicability to deal
with the Morse oscillator and its consequent dynamics.13,14

Although the Morse oscillator has been at the forefront in
modeling anharmonic dynamics, utilizing the Kratzer oscillator
has not been as common in chemistry10�12 as has it been in
physics15�17 and mathematics,18�22 in an effort to solve the
corresponding Schrodinger equation using a Laplace transform
approach. Recently, the Kratzer oscillator has been drawing some
attention in physics; for example, constructing ladder operators
and coherent states of the Kratzer oscillator23 has been estab-
lished, employing properties of the corresponding eigenfunc-
tions. It has been noted that the Kratzer oscillator has few
advantages over that of the Morse oscillator. For example, the
latter has a finite number of bound states, whereas the former has
an infinite number of them. The Kratzer potential energy curve
has been reported, in the works of Van Hooydonk,12,24�26 to be
superior to that of the Morse potential energy curve in fitting the
energies of ∼300 diatomic molecules. While the Kratzer oscil-
lator outperforms the Morse oscillator in some molecules, it
certainly outperforms harmonic oscillators in all molecules. In
addition, a molecular hydrogen (H2) potential energy curve does
not follow the Morse potential: 90%�95% of it comes from that

of Kratzer, and the remaining 5%�10% is attributed to quartic
potential behavior. An excellent nonmathematical treatment of
H2 and its vibrational levels using Kratzer potential analysis is
provided in ref 26. The H2 experimental vibrational ground-state
energy is 2170.08 cm�1 and that calculated using the Kratzer
ground-state eigenvalue yields 2170.12 cm�1. The roto-vibra-
tional Schrodinger equation with the Kratzer potential can be
solved exactly when rotation (repulsive centrifugal potential) is
included, which cannot be done with the Morse potential. (This
property, in its own right, is a plus for a Kratzer roto-vibrator. The
Morse oscillator Schrodinger equation can only be solved exactly
if the vibrator is rotationless.) Another motivation for exploring
Kratzer oscillator anharmonic dynamics is that its eigenfunctions
have been used previously as a basis set for diatomic molecules,
rendering sound results.11 In addition, important matrix ele-
ments that were evaluated by Secrest11 have rendered finite
values for all rotational states (finite angular momentum),
whereas those values are finite only for the zero-rotation state
in the case of the Morse oscillator. Needless to mention, the
Kratzer oscillator eigenfunctions are easier to deal with than
those of the Morse oscillator.

In light of the above, the consequent linear and nonlinear
lineshapes and spectral dynamics of employing the Kratzer
oscillator have not yet been explored. Therefore, carrying out
this exploration in this study is deemed necessary and should
prove useful in this study. As such, this article is organized as
follows. Section II presents the foundations needed for under-
standing the underlying theory of the Kratzer oscillator. Section
III briefly draws the similarities and differences between the
Kratzer and Morse oscillators. A methodology is developed in
section IV, to account for both vibrational coherences and
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broadening due to pure electronic dephasing. Section V calcu-
lates the hole-burning absorption lineshape using the Kratzer
oscillator. Results and discussion are provided in section VI.
Concluding remarks and prospects are provided in section VII.

II. BACKGROUND ON THE KRATZER OSCILLATOR

While the Morse potential is a three-parameter potential, the
Kratzer oscillator is only a two-parameter potential. The para-
meters of the former are the Kratzer well depth (De), the
equilibrium internuclear distance (re), and the potential width/
shape (a; this is often known as the Morse parameter), whereas
the latter can only accommodate the bond strength (De) and
length (re). The Kratzer potential assumes this form:

VðrÞ ¼ De
r� re
r

� �2

� 1

" #
ð1Þ

where De is the well depth and re is the equilibrium internuclear
distance. A generic shape of the Kratzer potential function is
displayed in Figure 1, in which the similarity between the Kratzer
potential and that ofMorse is readily observed. (The numbers on
the abscissa are arbitrary and do not reflect any physicality.) The
mth vibrational eigenfunction of the Kratzer oscillator, in co-
ordinate representation, reads as follows:16

ΨmðqÞ ¼ Amq
λe�ηmq

1F1
λ�Ω2=ηm

2λ

�����2ηmq
0
@

1
A ð2Þ

where 1F1( 3 ) is the confluent hypergeometric function, and the
nuclear coordinate q is defined over the range of 0 < q < ¥. The
parameters λ,ηm, and the normalization constantAm are given by

λ ¼ 1
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 þ 1

4

r
ð2aÞ

ηm
2 ¼ 2μre2ðDe � EmÞ

p2
ð2bÞ

and

Am ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
reðmþ λÞp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γð2λþmÞ
2m!Γ2ð2λÞ

s
2λðλ� 1Þ
λþm

� �λ þ 1=2ð Þ
ð2cÞ

with Γ( 3 ) being the Gamma function, Ω2 = 2μre
2De/p

2, and
q = r/re. Em in eq 2b are the eigenenergies of the Kratzer oscillator
and are given by16

Em ¼ De 1� Ω2

ðmþ λÞ2
" #

m ¼ 0, 1, 2, ::: ð3Þ

This nonstandard integral is needed for evaluating the normal-
ization constant, Am:

Z ¥

0
q2λe�2ηmq

1F1
�m
2λ

�����2ηmq
0
@

1
A

2
4

3
5
2

dq ¼ 2ðλþmÞm!Γð2λÞ
ð2ηmÞ2λ þ 1ð2λÞm

Kratzer oscillator eigenfunctions are most often reported un-
normalized, and, in cases where the normalization constant was
reported, it was inaccurate, because it did not yield a value of
unity when numerically evaluated; therefore, the above challen-
ging integral had to be evaluated. One can define the Kratzer

coordinate, analogous to that of the Morse oscillator (vide infra),2

as z = 2ηq; as such,

ΨmðzÞ ¼ Amð2ηmÞ�λzλe�z=2
1F1

�m
2λ

�����z
0
@

1
A ð4Þ

An important quantity of the Kratzer oscillator is the dissociation
energy (D0), which is related to the force constant (which can be
defined as ke = μω

2). However, the Kratzer force constant (ke) is
given by18

ke ¼ d2

dr2
VðrÞ

�����
re

¼ 2De

r2e
ð5Þ

III. CONNECTION TO THE MORSE OSCILLATOR AND
THE HYDROGEN ATOM (COULOMB POTENTIAL)

The Morse oscillator has been explored extensively by differ-
ent groups.2�9,14 As noted earlier, one can interestingly observe
that theMorse and Kratzer potentials seem to have similar sets of
eigenfunctions: both sets are products of a power function, an
exponential function, and associated Laguerre polynomials. The
vibrational Morse oscillator Hamiltonian for the excited state reads

H ¼ P2

2μ
þDe exp � 2aðq� q0Þ

� �� 2exp�aðq� q0Þ
� �� 	

ð6Þ
defined over a range of �¥ < q < ¥, with P and q being the
momentum and position, respectively. The eigenfunctions of the
Morse oscillator are expressed in terms of the generalized
Laguerre polynomials:

ΦnðqÞ ¼ Bn 2ν exp � aðq� q0Þ
� �� 	s

exp � ν exp � aðq� q0Þ
� �� 	

Ln
2s2ν exp � aðq� q0Þ

� �
ð7Þ

Figure 1. Kratzer potential displaying bound/quantitized and conti-
nuum/scattering states. It looks very similar to the Morse potential,
which has three parameters—namely, well depth (De), width (a), and
bond length (re)—whereas the Kratzer potential lacks the width
parameter a.
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where

Bn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aΓðnþ 1Þ2s
Γð2ν� nÞ

s
ð7aÞ

where ν � (2μDe)
1/2/(pa) and 2s = 2ν � 2n � 1. One readily

observes that the variable y, which is often called the Morse
coordinate (defined as y � 2ν exp[�a(q�q0)]) can serve as an
independent variable in eq 7 and the parameter s is directly
related to the number of bound states. Hence, the Morse
eigenfunctions, expressed in terms of the Morse coordinate, read
as

ΦnðyÞ ¼ Bny
s exp � y

2

� �
Ln

2sðyÞ ð8Þ

One can employ this relationship,

Lλi ðxÞ ¼ Γðλþ iþ 1Þ
i!Γðλþ 1Þ 1F1

�μ

λþ 1

�����x
0
@

1
A ð9Þ

to express Laguerre polynomials in terms of confluent hypergeo-
metric functions, so that Morse oscillator eigenfunctions can be
compared to those of the Kratzer oscillator. Therefore, Morse
bound states may be recast as

ΦnðyÞ ¼ BnCny
s exp � y

2

� �
1F1

�n
2sþ 1

�����y
0
@

1
A ð10Þ

where

Cn ¼ Γð2sþ nþ 1Þ
n!Γðnþ 1Þ ð10aÞ

As such, casting Morse eigenfunctions in terms of confluent
hypergeometric functions, as in eq 10, will help pinpoint the
similarities and differences between the two anharmonic oscilla-
tors in modeling molecular vibrations. One may readily notice
that both the Kratzer and Morse oscillators stationary states
Ψm(z) and Φn(y) are made of power functions (zλ and ys),
exponential functions (exp(�z/2) and exp(�y/2)), and con-
fluent hypergeometric functions, both of which are linear in
nuclear coordinates.

Other important quantities, such as the potential width
parameter a (a � (ke

MO/2De)
1/2, with ke

MO being the force
constant at the minimum of the Morse potential, potential depth
De and anharmonicity constant χ governed by the number of
bound states: χ = 1/(2ν). (Pollak reported dynamical calcula-
tions with two- and five-state Morse oscillators in order to probe
vary large anharmonic effects.4) While the Kratzer force constant
ke is given in eq 5, that of Morse is ke

MO = 2aDe
2, which will give

rise to some spectroscopic and dynamical disparities rendered by
both oscillators, as the following discussion will demonstrate.

A fundamental feature of the Kratzer oscillator is that it has
an infinite number of vibrational bound states, thereby placing
restriction on its anharmonicity nature, as opposed to the
Morse oscillator, whose anharmonic character increases as the
number of its finite states goes down, whereas that of Kratzer
has no adjustable anharmonicity parameter. One can appreci-
ate this by examining the force constants (curvature) of the
two oscillators: the Morse oscillator curvature is dependent on
its width parameter (bond strength), whereas the Kratzer

curvature lacks any width-related parameter and, hence, is
independent of it (leading to an infinite number of bound
states) and, thus, is dependent only on frequency. As such, as
much as the Kratzer and Morse oscillators eigenfunctions
resemble each other, the above-cited differences will render
slightly different spectra and dynamics, as will be discussed in
the following sections.

Close examination of the hydrogen atom stationary states
shows that not only these states,

Rnl ðζÞ ¼ Mnl ζ
l exp � ζ

2

� �
L2l þ 1
n þ l ðζÞ

¼ Mnl ζ
l exp � ζ

2

� �
1F1

�ðnþ l Þ
2ðl þ 1Þ

�����ζ
0
@

1
A ð11Þ

resemble those of Kratzer and Morse but also the energies of
these states can be recovered from the Kratzer oscillator eigen-
energies, as well-elucidated in ref 18. Mnl in eq 11 is a normal-
ization constant that has no relevance here.

IV. ANHARMONIC LINEAR SPECTROSCOPY VIA KRAT-
ZER POTENTIAL

Suppose a quantum system is excited from an electronic
ground state |gæ to an excited state |eæ. The adiabatic electronic
Hamiltonian of the system is

Ĥ ¼ HgjgæÆgj þHejeæÆej ð12Þ
where the nuclear Hamiltonians are

Hg ¼ ∑
¥

j¼ 1

Pj2

2μj
þD

00
ej

1
q00
j

 !2

� 2
1
q00
j

2
4

3
5 ð12aÞ

and

He ¼ ∑
¥

j¼ 1

Pj2

2μj
þD

0
ej

1
q0
j

 !2

� 2
1
q0
j

2
4

3
5 ð12bÞ

Henceforth, the formal theory will be carried out over one mode,
without any loss of generality, where confusion is unlikely to
arise. Here, we follow the conventional notation in spectroscopy
whereby the initial state is denoted by double-primed quantities,
whereas the final state is denoted by single-primed ones. The linear
dipole moment time correlation function (DMTCF) is given by

JðtÞ ¼
Trðexp iĤt=p


 �
d exp � iĤt=p


 �
d exp � βĤ


 �
Þ

Trðd2 exp � βĤ

 �

Þ
ð13Þ

where β is the inverse temperature, Tr( 3 ) denotes the trace over
the entire system, and d is the electronic transition dipole
moment operator:

d ¼ degjeæÆgj þ dgejgæÆej ð14Þ
While the nuclear transition dipole moment operator deg,
under the Born�Oppenheimer approximation, is a matrix
element in the electronic subspace, it acts as an operator
in the nuclear subspace. Expanding eq 13 in the electronic
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two-dimensional basis set, assuming the electronic adiabatic
gap is much greater than kT and invoking the Condon
approximation, yields

JðtÞ ¼ Tr~N exp iHgt=p
� 

exp � iHet=pð Þ exp � βHg
� � 

Q

ð15Þ
where the partition function Q is

Q ¼ Tr~N exp � βHg
� �  ð15aÞ

where Tr ~N( 3 ) denotes the trace over the nuclear degrees of
freedom. In light of the above, one can assume that the
equilibrium density operator of the entire system is

F ¼ exp � βHg
� jgæÆgj

Q
ð16Þ

That is, the entire system is in thermal equilibrium with the
electronic ground state. Once the DMTCF is determined, the
linear electronic absorption lineshape function may be calcu-
lated using

IðωÞ ¼ 1
2π

Z ¥

�¥
dt JðtÞ exp iωtð Þ ð17Þ

In the foregoing sections, one-mode excitation is assumed,
while the rest of the modes remain in the ground state, and a
similarity of normal coordinates in the ground and excited
electronic states is assumed.

While the eigenfunctions of Hg, for one mode, are given as

Ψ
00
nðq00Þ ¼ A

00
nq

00λ00 exp �η
00
nq

00

 �

1F1
�n
2λ00

�����2η00
nq

00

0
@

1
A ð18Þ

and those of He are given as

Ψ
0
mðq0Þ ¼ A

0
mq

0λ0 exp �η
0
mq

0

 �

1F1
�m
2λ0

�����2η0
mq

0

0
@

1
A ð19Þ

The ground-state quantities are

λ00 ¼ 1
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω

002 þ 1
4

r
ð20aÞ

η
00
n2 ¼ 2μr

00
e2ðD

00
e � E

00
nÞ

p2
ð20bÞ

with Ω002 = 2μre00
2De

00/p2 and q00 = r/re00, whereas those of the
excited state are

λ0 ¼ 1
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω02 þ 1

4

r
ð20cÞ

η
0
m2 ¼ 2μr

0
e2ðD

0
e � E

0
mÞ

p2
ð20cÞ

withΩ02 = 2μre0
2De

0/p2 and q0 = r/re0 . Upon expanding the nuclear
trace, in terms of anharmonic number states, and using trace

invariance,{|Ψn
00æ}n=0, eq 15 reads

JðtÞ¼ Q�1 ∑
¥

n¼ 0
exp � βE

00
n


 �
exp

iE
00
nt
p

 !
ÆΨ

00
nj exp � iHet

p

� �
jΨ00

næ

ð21Þ
In order to proceed forward, one would need to surmount the
dilemma of {|Ψn

00æ}n=0 not being eigenstates of exp(�iHet/p).
One may expand the ket |Ψn

00æ, in terms of the eigenbasis set of
the excited state nuclear Hamiltonian He, vide supra, which will
involve some formidable integrals.

ÆrjΨ00
næ ¼ ∑

¥

m¼ 0
cmÆrjΨ0

mæ ð22Þ

where the expansion coefficient cmn is given by

cmn ¼
Z ¥

0
Ψ

0
m
�ðrÞΨ00

nðrÞ dr ð23Þ

Equation 21 thus reads

JðtÞ ¼ Q�1 ∑
¥

n¼ 0
exp � βE

00
n


 �
exp

iE
00
nt
p

 !
∑
¥

m¼ 0
exp � iE

0
mt
p

 !
jcmnj2

ð24Þ

cmn ¼ A
00
nA

0
m

Z ¥

0

r
r00e

 !λ00

r
r0e

 !λ0

exp½�kr�1F1
�m
2λ0

�����R2r

0
@

1
A1F1

�n
2λ00

�����R1r

0
@

1
A dr ð24aÞ

whereR1 = 2ηn00/re00, κ = (ηn00/re00)þ (ηm0 /re0 ),R2 = 2ηm0 /re0 , and the
partition function Q is given by

Q ¼ ∑
¥

n¼ 0
exp � βEnð Þ ð25Þ

Using the Landau and Liftshitz integral formula,19,20

Z ¥

0
xR � 1 exp½ � hx�1F1

a
b

�����kx
0
@

1
A1F1

a0

b0

�����k0x
0
@

1
A dx

¼ h�RΓðRÞF2 R; a, a0; b, b0;
k
h
,
k0

h

� �
ð26Þ

where F2( 3 ) is Appell’s hypergeometric function,21,27 which
yields

cmn ¼ A
00
nA

0
mðr

00
eÞ�λ00 ðr0eÞ�λ0 ðkÞ�ðλ00 þ λ0 þ 1ÞΓðλ00 þ λ0 þ 1Þ

�F2 λ00 þ λ0 þ 1; �m, � n; 2λ0, 2λ00;
R2

k
,
R1

k

� �
ð27Þ

|cmn|
2 acts as a FCF for the corresponding anharmonic transition

m r n. Using eq 24 in eq 17 yields the homogeneous (single-
site) absorption lineshape:

IðωÞ ¼ γQ�1

2π ∑
¥

n¼ 0
∑
¥

m¼ 0

jcmnj2 exp � βE
00
n


 �
ðωþ E00

n � E0
mÞ2 þ ðγ=2Þ2 ð28Þ
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where γ is the homogeneous line width. As well-elucidated in ref
3 and refs 28�30, eq 28 generates a lineshape of which all bands

Figure 2. Linear homogeneous absorption spectra calculated with
eqs 24�28, using ω0 0 = 1000 cm�1 and re0 0 � re0 = 1.5325 at different
temperatures. Note that the electronic bands appear atΔE = Em0 � En00 =
De
0{1 � (2μDe

0 re0
2)/[p2(m þ λ0)2]} � De

00{1 � (2μD0 0re0 0
2)/[p2(n þ

λ0 0)2]}.

Figure 3. Linear homogeneous absorption spectra calculated with
eqs 24�28 using ω0 0 = 1000 cm�1, ω0 = 800 cm�1, and re0 0 � re0 =
1.5325 at different temperatures.
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have the same homogeneous width. For example, at low tem-
peratures, one would find that the zero-phonon line (ZPL) and

progression members have the same relaxation time constant,
1/γ, which is unphysical.3,28�30

For anN-mode system, the total DMTCF can be expressed as
follows, where the Duschinsky mixing effect is assumed to be
negligible:

JðtÞ ¼
YN
j¼ 1

JjðtÞ ð29Þ

where Jj(t) is the individual DMTCF for the jthmode provided in
eq 24. In the case of exciting all the modes of this system, the
absorption spectrum is then given by combining all of the

Figure 4. Linear homogeneous absorption spectra calculated, using the
Morse oscillator DMTCF and the lineshape function developed in ref 2,
withω00 = 1000 cm�1,ω0 = 800 cm�1, and re0 0 � re0 = 1.5325 at different
temperatures. Although this figure and Figure 3 are plotted on different
wavenumber scales, one can easily see the similarity of the spectra
calculated using the Kratzer and Morse oscillators.

Figure 5. Hole-burned absorption lineshape with parameters of ω0 0 =
50 cm�1, ω0 = 40 cm�1, re0 � re0 0 = 0.910, ωB = 0, and Δ = 64.4 cm�1 at
different temperatures, showing the zero-phonon hole (ZPH) profile
tapering off at higher temperatures. These calculations yield γZPH = 2γel,
as expected.
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individual mode spectra:
IðωÞ ¼Z

dω1

Z
dω2 3 3 3

Z
dωN � 1 I1ðω�ω1ÞI2ðω1 �ω2Þ 3 3 3 INðωN � 1Þ

ð30Þ
where Ij(ω) is the homogeneous absorption spectrum for mode j
given by eq 28. To this end, one can identify the ZPL width, to
probe the electronic pure dephasing, as illustrated in the next
section.

A direct application of utilizing herein the DMTCF J(t) and
the corresponding absorption lineshape in eqs 24 and 28 is
shown in Figure 2. Figure 2 uses a typical vibrational frequency of
diatomic molecules, e.g., ω00 = 1000 cm�1, re0 � re00 = 1.5325
(dimensionless unit). Figure 3 shows the same spectra but with a
frequency change upon excitation (curvature change) to ω0 =
800 cm�1. Figure 4 shows the same spectra as those shown in
Figure 3 but calculated using the Morse oscillator absorption
lineshape.2,3 Spectra in Figures 3 and 4, which have been
calculated using the Kratzer and Morse oscillator models, are
comparable, showing clear similarities with a light difference in
the hot band 0 r 1 transition.

V. PURE DEPHASING AND LINEAR ABSORPTION
SPECTRA

If the system of interest consists of several anharmonic modes,
the total DMTCF reads

FðtÞ ¼ JelðtÞJanhðtÞ ð31Þ

JelðtÞ ¼ exp � γeljtj
2

� �
ð31aÞ

JanhðtÞ ¼
YN
j

Janh, jðtÞ ð31bÞ

where Janh,j(t) is given by

Janh, jðtÞ ¼ 1
Q

jc00j2exp � β D
00
e �
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00
e2r

00
e2μ

p2λ
00
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 !
þiΞt=p

" #(

þ ∑
¥
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∑
¥
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jcmnj2exp � βE

00
n þ

itðE00
n � E
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mÞ

p
� γjjtj

2

" #)

ð31cÞ
where

Ξ ¼ D
00
e �D

0
e þ

2D
0
e2r

0
e2μ

p2λ
0
e
2 � 2D

00
e2r

00
e2μ

p2λ
00
e
2 ð31dÞ

The set of equations presetned as in eq 31 will lead to an electronic
dephasing time equal to 1/γel and a vibrational relaxation time
equal to (γel þ γj)

�1. Of course, the dependence of γel on
temperature is determined by the nature of the ensuing dephasing
mechanism dictated by the guest�host relationship.3,28�30 If one
was to look only at the 0�0 transition (ZPL) rendered by eq 31c
(before multiplying it by Jel(t)), it will have a delta function-like
profile with a zero width and an intensity equal to

Q�1jc00j2 exp � β D
00
e �

2D
00
e2r

00
e2μ

p2λ
00
e
2

 !" #
ð32Þ

where the overlap integral,

c00 ¼
2λ

00 þ λ0 ðr00Þ�λ00 ðr0Þ�λ0Γð1þ λ00 þ λ0Þσ0λ0 þ 1=2ð Þσ00λ00 þ 1=2ð Þ σ00

r00
þ σ0

r0

� ��ð1 þ λ00 þ λ0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ00λ0r00r0Γð2λ00ÞΓð2λ0Þ

p ð32aÞ

results from integrating the product of the vibronic ground-state
wave functions, with

σ00 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μr00e2ðD00

e � E00
0Þ

p2

s
ð32bÞ

σ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μr0e2ðD0

e � E0
0Þ

p2

s
ð32cÞ

The above description is very similar to the treatment of the
Morse oscillator dephasing problem given in ref 3. Fourier
transforming equations 31 and 32 will produce absorption
spectra in which the ZPL has zero width in the low-temperature
limit and starts to gain some width as the temperature increases,
causing the ZPL to broaden and eventually diminish in the high-
temperature limit.

VI. ANHARMONIC HOLE-BURNING SPECTROSCOPY
VIA THE KRATZER POTENTIAL

As elucidated in ref 3, although hole burning is a nonlinear
technique, one may still calculate its lineshapes, using the linear
correlation function J(t), by calculating the absorption spectrum
following a burn time η:

Iηðω,ωBÞ¼
Z ¥

�¥
dΩχðΩ� νmÞJðω�ΩÞ exp½ � θJðωB �ΩÞη�

ð33Þ
whereΩ is the variable frequency of the ZPL of a single absorber
and ωB is the burn frequency. The absorption spectrum before
burning is I0(ω), which is obtained by setting the burning time as
η = 0. Thus, the hole-burned spectrum is given by

SHBðω,ωBÞ ¼ IηðωÞ � I0ðωÞ ð34Þ
χ(Ω � νm) is a Gaussian function, with variance Δ

2 centered at
νm, which governs the distribution of ZPL frequencies, because
of structural heterogeneity. θ is the product of three terms: the
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absorption cross section, the laser burn flux, and the quantum
yield for hole burning. Toutounji showed, using the theory of
Bessel functions, that, in the case of a large inhomogeneous
broadening, the hole-burning lineshape may be expressed in
terms of the linear DMTCF:3

SHBðω,ωBÞ ¼ 1
2π

θη

Z þ¥

�¥
dt jJðtÞj2 exp � iωtð Þ exp iωBtð Þ

ð35Þ

The correctness and applicability of eq 35 was evidently ratified
in ref 3. Figure 5 shows a model calculation of hole-burned
absorption lineshapes with parameters of ω00 = 50 cm�1, ω0 =
40 cm�1, re0 � re00 = 0.910, and inhomogeneous broadening Δ =
64.4 cm�1 at different temperatures, showing the zero-phonon
hole (ZPH) and phonon-sideband hole in the burned spectra at
ωB = 0. These parameters are similar to those used in ref 3 to

simulate hole-burned spectra of APT in glassy ethanol.31,32 In
these spectra, the ZPH width is given as γZPH = 2γel.

VII. CALCULATIONS AND DISCUSSION

Utilizing the Kratzer potential for modeling molecular vibra-
tions can be fruitful, because the Morse and harmonic oscillators
fail to reproduce the experimental vibrational ground-state
energy (2170.08 cm�1) of the hydrogen molecule (H2), whereas
that of the Kratzer oscillator, using eq 3, successfully renders a
value of 2170.12 cm�1. (The Morse and harmonic oscillators
yield values of 2201.6 and 2233.24 cm�1 for the vibrational
ground-state energy of H2, respectively.)

Figure 6 shows different absorption spectra calculated at
various temperatures using the Morse potential to describe the
initial and final states. The parameters used in Figure 6 are close
to those reported for CS2 molecule in refs 7�9. Figure 6 was

Figure 6. Linear homogeneous absorption spectra calculated using the
Morse oscillator model with χ0 0 = 0.02, ω0 0 = 50 cm�1, χ0 = 0.01, ω0 =
50 cm�1, and re0 � re0 0 = 0.910.

Figure 7. Same as in Figure 6, but with much higher anharmonicity
(and, hence, much less vibrational bound states), to contrast the
resulting spectra with those in Figure 6; see text for details.
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calculated with χ00 = 0.02,ω00 = 50 cm�1, χ0 = 0.01,ω0 = 50 cm�1,
and re0 � re00 = 0.910. Figure 7, on the other hand, illustrates single-
site absorption spectra with steep anharmonicity; it is calculated
using values of χ00 = χ0 = 0.08, ω00 =ω0 = 50 cm�1, and re0 � re00 =
0.910 at the indicated temperatures. Figure 7 uses a largely
anharmonic system with only six vibrational bound states in the
upper and lower electronic states. Although the parameters in
Figures 6 and 7 are the same, except for the anharmonicity
constant, one can see how much of a critical role the potential
anharmonicity may play in describing the spectra at hand.
Although both figures were calculated using the Morse oscillator
model, one can see how the disparity between the two sets of
spectra starts to develop at higher temperatures, because of
anharmonicity differences. Significant differences in the spectra
in both figures are observed at high temperatures, and those
differences are attributed to the differences in FCFs, which are
governed by χ.2

It is worth noting, in light of Figures 6 and 7, that making a
comparison between two Morse oscillators can sometimes be
pointless, which is very unlike comparing two harmonic oscillators.
This is because the number of bound states in a Morse potential is
intimately dependent on the extent of its anharmonicity; for
example, a largely anharmonic Morse oscillator can have as few
as two bound states, whereas a Morse potential with a small
anharmonicity (typically found to be ∼0.02 in diatomics) can
confine as many as 100 bound states. Comparing these twoMorse
oscillators would yield dissimilar results. Similarly, one must be
cautious when comparing Kratzer andMorse oscillators. While the
former has two parameters, namely, the bond length (re) and
strength (De), the latter has re, De, and anharmonicity constants,
which can influence the shape and, therefore, the spectral dy-
namics, of the Morse potential upon optical excitation. Thus, the
anharmonicity constant may dramatically affect the lineshape,
depending on its value. In contrast, the shape of the Kratzer
potential does not vary upon excitation, because it lacks a potential
width parameter (anharmonicity constant). However, under a
carefully designed set of conditions, onemaymake the comparison.

VIII. CONCLUDING REMARKS

The motivation for this work is 2-fold: first, the report by Van
Hooydonk12 on the superiority of the Kratzer potential over the
Morse potential in modeling ∼300 diatomic molecules, and
second, our calculation, which shows that the former potential
gives much better vibrational ground-state energy for molecular
hydrogen (H2) than both Morse and harmonic oscillators (see
section VII). The Kratzer oscillator features several advantages,
which the Morse oscillator does not have, two of which are the
ability to exactly solve the Schrodinger equation after including
the centrifugal term, and the ability to obtain finite matrix
elements in case of finite angular momenta, as noted in section
I. It should be kept in mind that the Morse potential is a three-
parameter potential, which will always have this “extra third
parameter” as a merit over that of Kratzer, which will often make
it outperform the Kratzer oscillator. However, as noted earlier,
that extra parameter was not as helpful in calculating the
vibrational ground-state energy of H2: only the Kratzer oscillator
can reasonably match its observed value in the laboratory, and
not that of the Morse oscillator.

The dynamics of the Morse and Kratzer oscillators can be
challenging under some conditions. Prezdho14 and Cao33 stu-
died the dynamics of the Morse oscillator, where divergence

problems arose. Therefore, as a maneuvering tactic, one may
attempt to employ wavelets, because they have proven to be
robust tools in treating divergence- and singularity-related pro-
blems. Also, it turns out that the Morse oscillator can readily be
mapped onto the rotating Kratzer oscillator, as carried out by
Stanek,15 which, in turn, allows for the latter oscillator Wigner
distribution function to be obtained.34 This is important, because
one can then work in phase space to probe mixed quantum-
classical dynamics (MQCD), using an anharmonic Wigner
distribution function, since MQCD formalism relies heavily on
Wigner transforms and their properties for calculating cross- and
autocorrelation functions in the mixed quantum-classical limit.35�38

In addition, Cooper17 also presented a unified, and extremely
useful, approach for utilizing Kratzer and Morse oscillators
harmonically, using a combination of nonlinear coordinate
transformation and similarity transformation. This transforma-
tion should allow for development of the time-Green’s function
of the Kratzer oscillator, whereby more efficient and accurate
spectroscopy of complex systems may be probed. Finally, as an
additional method to test the consistency with experiments, one
may consider evaluating Franck�Condon factors (FCFs) upon
making a transition from a Kratzer potential to that of Morse, to
better suit the experimental conditions, vide supra, of the system
of interest. However, the integrals that arise are challenging,
because they tend to be of a two-center integral nature, and the
best way to handle such a case is through the use of elliptical
coordinates.
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ABSTRACT: Excited-state calculations are implemented in a development version of the GPU-based TeraChem software package
using the configuration interaction singles (CIS) and adiabatic linear response Tamm�Dancoff time-dependent density functional
theory (TDA-TDDFT)methods. The speedup of the CIS and TDDFTmethods using GPU-based electron repulsion integrals and
density functional quadrature integration allows full ab initio excited-state calculations on molecules of unprecedented size. CIS/
6-31G and TD-BLYP/6-31G benchmark timings are presented for a range of systems, including four generations of oligothiophene
dendrimers, photoactive yellow protein (PYP), and the PYP chromophore solvated with 900 quantummechanical water molecules.
The effects of double and single precision integration are discussed, andmixed precision GPU integration is shown to give extremely
good numerical accuracy for both CIS and TDDFT excitation energies (excitation energies within 0.0005 eV of extended double
precision CPU results).

’ INTRODUCTION

Single excitation configuration interaction (CIS),1 time-de-
pendent Hartree�Fock (TDHF), and linear response time-
dependent density functional theory (TDDFT)2�6 are widely
used for ab initio calculations of electronic excited states of large
molecules (more than 50 atoms, thousands of basis functions)
because these single-reference methods are computationally
efficient and straightforward to apply.7�9 Although highly
correlated and/or multireference methods, such as multirefer-
ence configuration interaction (MRCI),10 multireference
perturbation theory (MRMP11 and CASPT2), 12and equa-
tion-of-motion coupled cluster methods (SAC-CI13 and
EOM-CC),14,15 allow for more reliably accurate treatment of
excited states, including those with double excitation character,
these are generally too computationally demanding for large
molecules.

CIS/TDHF is essentially the excited-state corollary of the
ground-state Hartree�Fock (HF) method and thus similarly
suffers from a lack of electron correlation. Because of this, CIS/
TDHF excitation energies are consistently overestimated, often
by ∼1 eV.8 The TDDFT method includes dynamic correlation
through the exchange�correlation functional, but standard
nonhybrid TDDFT exchange�correlation functionals generally
underestimate excitation energies, particularly for Rydberg and
charge-transfer states.5 The problem in charge-transfer excitation
energies is due to the lack of the correct 1/rCoulombic attraction
between the separated charges of the excited electron and hole.16

Charge-transfer excitation energies are generally improved with
hybrid functionals and also with range separated functionals that
separate the exchange portion of the DFT functional into long-
and short-range contributions.17�21 Neither CIS nor TDDFT
(with present-day functionals) properly includes the effects of

dispersion but promising results have been obtained with an
empirical correction to standard DFT functionals,22,23 and there
are continued efforts to include dispersion directly in the
exchange�correlation functional.24,25 Both the CIS and
TDDFT26 single reference methods lack double excitations
and are unable to model conical intersections or excitations in
molecules that have multireference character.27,28 In spite of
these limitations, the CIS and TDDFTmethods can be generally
expected to reproduce trends for one-electron valence excita-
tions, which are a majority of the transitions of photochemical
interest. TDDFT using hybrid density functionals, which include
some percentage of HF exact exchange, has been particularly
successful in modeling the optical absorption of large molecules.
Furthermore, the development of new DFT functionals and
methods is an avid area of research, with many new functionals
introduced each year. Thus it is a virtual certainty that the quality
of the results available from TDDFT will continue to increase. A
summary of the accuracy currently available for vertical excitation
energies is available in a recent study by Jacquemin et al. which
compares TDDFT results using 29 functionals for ∼500
molecules.29

Although CIS and TDDFT are the most tractable methods for
excited states of large molecules, their computational cost still
prevents application to many systems of photochemical interest.
Thus, there is considerable interest in extending the capabilities
of CIS/TDDFT to even larger molecules, beyond hundreds
of atoms.

Quantum mechanics/molecular mechanics (QM/MM)
schemes provide a way to model the environment of a
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photophysically interesting molecule by treating the molecule
with QM and the surrounding environment with MM force
fields.30�34 However, it is difficult to know when the MM
approximations break down and when a fully QM approach is
necessary. With fast, large-scale CIS/TDDFT calculations, all
residues of a photoactive protein could be treated quantum
mechanically to explore the origin of spectral tuning, for example.
Explicit effects of solvent�chromophore interactions, including
hydrogen bonding, charge transfer, and polarization, could be
fully included at the ab initio level in order to model solvato-
chromic shifts.

One potential route to large scale CIS and TDDFT calcula-
tions is through exploitation of the stream processing
architectures35 now widely available in the form of graphical
processing units (GPUs). The introduction of the compute
unified device architecture36 (CUDA) as an extension to the C
language has greatly simplified GPU programming, making it
more easily accessible for scientific programming. GPUs have
already been applied to achieve speed-ups of orders of magnitude
in ground-state electronic structure,37�40 ab initio molecular
dynamics41 and empirical force field-based molecular dynamics
calculations.42�45

In this article we extend our implementation of GPU quantum
chemistry in the newly developed TeraChem program46 beyond
our previous two-electron integral evaluation47 and ground-state
self-consistent field,39,48,49 geometry optimization, and dynamics
calculations41 to also include the calculation of excited electronic
states.We use GPUs to accelerate both thematrixmultiplications
within the CIS/TDDFT procedure and also the integral evalua-
tion (these steps comprise most of the effort in the calculation).
The computational efficiency that arises from the use of rede-
signed quantum chemistry algorithms on GPU hardware to
evaluate electron repulsion integrals (ERIs) allows full QM
treatment of the excited states of very large systems—both large
chromophores and chromophores in which the environment
plays a critical role and should be treated with QM. We herein
present the results of implementing CIS and TDDFT within the
Tamm�Dancoff approximation using GPUs to drastically speed
up the bottleneck two-electron integral evaluation, density func-
tional quadrature, and matrix multiplication steps. This results in
CIS calculations over 400 times faster than those achieved
running on a comparable CPU platform. Benchmark CIS/
TDDFT timings are presented for a variety of systems.

’CIS/TDDFT IMPLEMENTATION USING GPUS

The linear response formalism of TDHF and TDDFT has
been thoroughly presented in review articles.4,7,8,50 Only the
equations relevant for this work are presented here, and real
orbitals are assumed throughout. The TDHF/TDDFT working
equation for determining the excitation energies ω and corre-
sponding X and Y transition amplitudes is

A B
B A

 !
X
Y

 !
¼ ω

1 0
0 �1

 !
X
Y

 !
ð1Þ

where for TDHF (neglecting spin indices for simplicity):

Aai, bj ¼ δijδabðεa � εiÞ þ ðiajjbÞ � ðijjabÞ ð2Þ

Bai, bj ¼ ðiajbjÞ � ðibjajÞ ð3Þ

and for TDDFT:

Aai, bj ¼ δijδabðεa � εiÞ þ ðiajjbÞ þ ðijjfxcjabÞ ð4Þ

Bai, bj ¼ ðiajbjÞ þ ðibjfxcjajÞ ð5Þ
The two electron integrals (ERIs) are defined as

ðiajjbÞ ¼
Z Z

φiðr1Þφaðr1Þφjðr2Þφbðr2Þ
jr1 � r2j dr1dr2 ð6Þ

and within the adiabatic approximation of density functional
theory, in which the explicit time dependence of the exchan-
ge�correlation functional is neglected:

ðiajfxcjjbÞ ¼
Z Z

φiðr1Þφaðr1Þ
δ2Exc

δFðr1ÞδFðr2Þ φjðr2Þφbðr2Þdr1dr2
ð7Þ

The i,j and a,b indices represent occupied and virtual molecular
orbitals (MOs), respectively, in the HF/Kohn�Sham (KS)
ground-state determinant.

Setting the B matrix to zero within TDHF results in the CIS
equation, while in TDDFT this same neglect yields the equation
known as the Tamm�Dancoff approximation (TDA):

AX ¼ ωX ð8Þ
In part because DFT virtual orbitals provide a better starting
approximation to the excited state than HF orbitals, the TDA
generally gives results that are very close to the full linear
response TDDFT results for nonhybrid DFT functionals at
equilibrium geometries.7,8,51 Furthermore, previous work has
shown that a large contribution from the B matrix in TDDFT
(and to a lesser extent also in TDHF) is often indicative of a poor
description of the ground state, either due to singlet�triplet
instabilities or multireference character.52 Casida and co-workers
have examined the breakdown of TDDFT in modeling photo-
chemical pathways52 and have come to the conclusion that “the
TDA gives better results than does conventional TDDFTwhen it
comes to excited-state potential energy surfaces in situations
where bond breaking occurs.” Thus, if there is substantial
deviation between the full TDDFT and TDA-TDDFT excitation
energies, then the TDA results will often be more accurate.

A standard iterative Davidson algorithm53 has been imple-
mented to solve the CIS/TDA-TDDFT equations. As each AX
matrix�vector product is formed, the required two-electron
integrals are calculated over primitive basis functions within
the atomic orbital (AO) basis directly on the GPU. Within
CIS, the AX matrix�vector product is calculated as

ðACISXÞbj ¼ ∑
ia
½δijδabðεa � εiÞ þ ðiajjbÞ � ðijjabÞ�Xia ð9Þ

∑
ia
½ðiajjbÞ � ðijjabÞ�Xia ¼ ∑

μν
CμjCνbFμν ð10Þ

Fμν ¼ ∑
λθ

TλθfðμνjλθÞ � ðμλjνθÞg ð11Þ

Tλθ ¼ ∑
ia
XiaCλiCθa ð12Þ

Here Greek indices represent AO basis functions, Cλi is the
ground-stateMO coefficient of the HF/KS determinant, andTλθ
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is a nonsymmetric transition density matrix. For very small
matrices, there is no time savings with GPU computation of
the matrix multiplication steps in eqs 10 and 12. For matrices of
dimension less than 300, we thus perform the linear algebra on
the CPU. For larger matrices, the linear algebra is performed on
the GPU using calls to the NVIDIA CUBLAS library, a CUDA
implementation of the BLAS library.54

In quantum chemistry the AO basis functions are generally a
linear combination of primitive atom-centered Gaussian basis
functions. For a linear combination ofM primitive basis functions
χ centered at a nucleus, the contracted AO basis function jμ is

φμðrÞ ¼ ∑
M

m¼ 1
cμmχmðrÞ ð13Þ

Thus the two-electron integrals in the contracted AO basis that
need to be evaluated for eq 11 above are given by

ðμνjλθÞ ¼ ∑
Mμ

m1

∑
Mν

m2

∑
Mλ

m3

∑
Mθ

m4

cμm1 cνm2 cλm3 cθm4 ½χm1
χm2

jχm3
χm4

� ð14Þ

where parentheses indicate integrals over contracted basis func-
tions and square brackets indicate integrals over primitive
functions.

While transfer of matrix multiplication from the CPU to the
GPU provides some speedup, the GPU acceleration of the
computation of the ERIs delivers a much more significant
reduction in computer time. Details of our GPU algorithms for
two-electron integrals in the J and K matrices (Coulomb and
exchange operators, respectively) have been previously
published,39,47 so we only briefly highlight information relevant
to our excited-state implementation, which uses these algo-
rithms. Both J and K algorithms employ extensive screening
and presorting on the CPU. The GPU evaluates the J and K
matrices over primitives, and these are contracted on the CPU.
Initially pairs of primitive atomic orbital functions are combined
using the Gaussian product rule into a set of bra- and ket- pairs. A
prescreening threshold is used to remove negligible pairs, and the
remaining pairs are sorted by angular momentum class and by
their [bra| or |ket] contribution to the total [bra|ket] Schwarz
bounds, respectively.55 All data needed to calculate the [bra|ket]
integrals (e.g., exponents, contraction coefficients, atomic co-
ordinates, etc.) are then distributed among the GPUs. The
Coulomb J matrix and exchange K matrix are calculated sepa-
rately, with both algorithms designed to minimize interthread
communication by ensuring that each GPU has all necessary data
for its share of integrals. The [bra| and |ket] pairs are processed in
order of decreasing bound, and execution is terminated once the
combined [bra|ket] bound falls below a predetermined thresh-
old. Because the ground-state density matrix is symmetric, both
the ground-state J and K matrices are also symmetric, and thus
only the upper triangle of each needs to be computed.

The Coulomb J matrix elements are given by

Jμν ¼ ∑
λθ

PλθðμνjλθÞ ð15Þ

Within our J matrix algorithm, one GPU thread evaluates one
primitive two-electron integral using the Hermite Gaussian
formulation as in the McMurchie�Davidson algorithm,56,57

which then must be contracted into the final J matrix element
as given in eq 15. J matrix computation uses the μν T νμ and
λθTθλ symmetry and eliminates duplicates within the bra and ket

primitive Hermite product lists, reducing the number of integrals
calculated from O(N4) to O(N4/4). A different GPU subroutine
(or GPU kernel) is called for each angular momentum class,
leading to nine GPU kernel calls for all s- and p- combinations:
[ss|ss], [ss|sp], [ss|pp], [sp|ss], [sp|sp], [sp|pp], [pp|ss], [pp|sp],
and [pp|pp]. Many integrals are calculated twice because [bra|
ket] T [ket|bra] symmetry is not taken into account. This is
intentional—it is often faster to carry out more (but simpler)
computations on the GPU (compared to an algorithm that
minimizes the number of floating point operations) in order to
avoid bookkeeping overhead and/or memory access bottlenecks.
This may be viewed as a continuation of a trend that began
already on CPUs and has been discussed in that context
previously.58

The maximum density matrix element of all angular momen-
tum components weights the ket contribution to the Schwarz
upper bound. This allows the Jmatrix algorithm to take complete
advantage of sparsity in the density matrix, since there is a one-to-
one mapping between ket pairs and density matrix elements.
Also, because density matrix elements are packed together with
the J matrix ket integral data, its memory access pattern is
contiguous, i.e., neighboring threads access neighboring memory
addresses. In general, noncontiguous access patterns increase the
number of executed memory operations, hampering GPU
performance.

The exchange K matrix elements are given by

Kμν ¼ ∑
λθ

PλθðμλjνθÞ ð16Þ

Within our K matrix algorithm, one block of GPU threads
evaluates one K matrix element and thereby avoids any commu-
nication with other thread blocks. Because the integrals (bra|νθ)
and (bra|θν) are paired with different density matrix elements,
the K matrix algorithm does not take into account the μλT λμ
and νθ T θν symmetry. On the other hand, [bra|ket] T [ket|
bra] symmetry is used, leading toO(N4/2) integrals computed to
form the final K matrix.

In addition to having to compute more integrals than is
required for the Jmatrix computation, the Kmatrix computation
is slowed relative to J matrix computation by two additional
issues. The first is that unlike the J matrix GPU implementation,
the K matrix algorithm cannot map the density matrix elements
onto the ket integral data, since the density index now spans both
bra and ket indices. Instead each thread must load an indepen-
dent density matrix element noncontiguously. The second issue
facing K matrix computation is that because the sparsity of the
density cannot be included in the presorting of ket pairs, the
sorted integral bounds cannot be guaranteed to be strictly
decreasing, and a more stringent cutoff threshold (still based
on the product of the density matrix element and the Schwarz
upper bound) must be applied for K kernels, meaning that K
computation does not take as much advantage of density matrix
sparsity as J computation. As a result of these drawbacks, the
exchange matrix takes longer to calculate than its Coulomb
counterpart. Based solely on the number of integrals required,
the K/J timing ratio for ground-state SCF calculations should be
∼2. In practice, with the memory access and the thresholding
issues, values of 3�5 are more common.

In our excited-state calculations, we use the same J and K
matrix GPU algorithms, adjusted for the fact that the nonsym-
metric transition density matrix T replaces the symmetric
ground-state density matrix P. The portion of the F matrix from
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the product of Tλθ with the first integral in eq 11 is computed
with the Jmatrix algorithm. The portion of the Fmatrix from the
product ofTλθwith the second integral in eq 11 is computed with
the K matrix algorithm. While the J matrix remains symmetric
even with a nonsymmetric transition density matrix, theKmatrix
does not. We must thus calculate both the upper and lower
triangle contributions for the CIS/TDDFTKmatrix, resulting in
two calls to the K matrix algorithm and computation of up to
O(N4) integrals. In addition to an increased number of integrals
in the excited state, theK/J timing discrepancy (comparing CIS/
TDDFT to ground-state SCF calculations) is also increased due
to the sparseness of the transition density compared to the
ground-state density.

Evaluation of the exchange�correlation functional contribu-
tion from eq 7 needed for TDDFT excited states7 is performed
using numerical quadrature on a three-dimensional grid, which

maps efficiently onto massively parallel architectures, such as the
GPU. This was recently demonstrated for ground-state DFT, for
both GPU38,41 and related59 architectures. The expensive steps
are evaluating the electron density/gradient at the grid quad-
rature points to numerically determine the necessary functional
derivatives and summing the values on the grid to assemble the
matrix elements of eq 7. We use a Becke-type quadrature
scheme60 with Lebedev angular61 and Euler�Maclaurin radial62

quadrature grids. For the excited-state calculations, we generate
the second functional derivative of the exchange�correlation
functional only once, saving its value at each quadrature point in
memory. Then, for each Davidson iteration, the appropriate
integrals are evaluated, paired with the saved functional deriva-
tive values, and summed into matrix elements.

’RESULTS AND DISCUSSION

We evaluate the performance of our GPU-based CIS/TDDFT
algorithm on a variety of test systems: 6,60-bis(2-(1-triphenyl)-4-
phenylquinoline (B3PPQ), an oligoquinoline recently synthe-
sized and characterized by the Jenekhe group for use in OLED
devices63 and characterized theoretically by Tao and Tretiak;64

four generations of oligothiophene dendrimers that are being
studied for their interesting photophysical properties;65�67 the
entire photoactive yellow protein (PYP)68 solvated by TIP3P69

water molecules; and deprotonated trans-thiophenyl-p-couma-
rate, an analogue of the PYP chromophore70 that takes into
account the covalent cysteine linkage, solvated with an increasing
number of QM waters. We use the 6-31G basis set for all
computations, since we do not yet have GPU integral routines
implemented for d-functions. This limits the quality of the
excited-state energies, as polarization functions can give im-
proved accuracy relative to experimental values and are often
necessary for metals and hypervalent atoms, such as sulfur and
phosphorus. Benchmark structures are shown in Figures 1 and 2
along with the number of atoms and basis functions for a 6-31G

Figure 2. Structures, number of atoms, and basis functions (fns) for the 6-31G basis for benchmark systems photoactive yellow protein (PYP), the
solvated PYP chromophore, and oligoquinoline B3PPQ. For PYP, carbon, nitrogen, oxygen, and sulfur atoms are green, blue, red, and yellow,
respectively. For the other molecules, atom coloration is as given in Figure 1, with additional red and blue coloration for oxygen and nitrogen atoms,
respectively.

Figure 1. Structures, number of atoms, and basis functions (fns) using
the 6-31G basis set for four generations of oligothiophene dendrimers,
S1�S4. Carbon atoms are orange, and sulfur atoms are yellow.
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basis set. For the solvated PYP chromophore, only three
structures are shown in Figure 2, but benchmark calculations
are presented for 15 systems with increasing solvation, starting
from the chromophore in vacuum and adding water molecules
up to a 16 Å solvation shell, which corresponds to 900 water
molecules. Cartesian coordinates and geometry details for all
structures are provided in the Supporting Information.

For our benchmark TDDFT calculations, we use the general-
ized gradient approximation with Becke’s exchange functional71

combined with the Lee, Yang, and Parr correlation functional72

(BLYP), as well as the hybrid B3LYP functional. During the
SCF procedure for the ground-state wave function, we use two
different DFT grids. A sparse grid of ∼1000 grid points/atom is
used to converge the wave function until the DIIS error reaches
a value of 0.01, followed by a more dense grid of ∼3000 grid
points/atom until the ground-state wave function is fully con-
verged. This denser grid is also used for the excited-state TDDFT
timings reported herein, unless otherwise noted.

An integral screening threshold value of 1 � 10�11 atomic
units is used by default unless otherwise noted. Within Ter-
aChem, this means that Coulomb integrals with products of the
density element and Schwarz bound below the integral screening
threshold are not computed, and exchange integrals with pro-
ducts of the density element and Schwarz bound below the
threshold value times a guard factor of 0.001 are not computed.
The initial N2 pair quantities list is also pruned, with a default
pruning value of 10�15 for removing pairs from integral compu-
tation. The pair quantity pruning value is set to the smaller of
10�15 and 0.01 � the integral screening threshold. The timings
reported herein were obtained on a desktop workstation using
dual quad-core Intel Xeon X5570 CPUs, 72 GB RAM, and 8
Tesla C1060 GPUs.

All CPU operations are performed in full double precision
arithmetic, including one-electron integral evaluation, integral
postprocessing and contraction, and diagonalization of the sub-
space matrix of A. To minimize numerical error, integral

accumulation also uses double precision. Calculations carried
out on the GPU (Coulomb and exchange operator construction
and DFT quadrature) use mixed precision unless otherwise
noted. The mixed precision integral evaluation is a hybrid of
32- and 64-bit arithmetic. In this case, integrals with Schwarz
bounds larger than 0.001 au are computed in full double
precision, and all others are computed in single precision. The
potential advantages of mixed precision arithmetic in quantum
chemistry have been discussed in the context of GPU architec-
tures by several groups47,73,74 and stem in part from the fact that
there are often fewer double precision floating point units on a
GPU than single precision floating point units. To study the
effects of using single precision on excited-state calculations, we
have run the same CIS calculations using both single and double
precision integral evaluation for many of our benchmark systems.

In general we find that mixed (and often even single) precision
arithmetic on the GPU is more than adequate for CIS/TDDFT.
In most cases we find that the convergence behavior is nearly
identical for single and double precision until the residual vector
is quite small. Figure 3 shows the typical single and double
precision convergence behavior as represented by the CIS
residual vector norm convergence for B3PPQ, the first and third
generations of oligothiophene dendrimers S1 and S3, and a
snapshot of the PYP chromophore surrounded by 14 waters. The
convergence criterion of the residual norm, which is 10�5 au, is
shown with a straight black line. Note that for the examples in
Figure 3, we are not using mixed precision—all two-electron
integrals on the GPU are done in single precision (with double
precision accumulation as described previously).39 This is there-
fore an extreme example (other calculations detailed in this paper
used mixed precision where large integrals and quadrature
contributions are calculated in double precision) and serves to
show that CIS and TDDFT are generally quite robust, irrespec-
tive of the precision used in the calculation. Nevertheless, a few
problematic cases have been found in which single precision
integral evaluation is not adequate and where double precision is
needed to achieve convergence.75 During the course of hundreds
of CIS calculations performed on snapshots of the dynamics of
the PYP chromophore solvated by various numbers of water
molecules, a small number (<1%) of cases yield ill-conditioned
Davidson convergence when single precision is used for the
GPU-computed ERIs and quadrature contributions. For illustra-
tion, the single and double precision convergence behavior for
one of these rare cases, here the PYP chromophore with 94
waters, is shown in Figure 3. In practice, this is not a problem
since one can always switch to double precision, and this can be
done automatically when convergence problems are detected.
Recent work in our group76 shows a speedup of 2�4 times for an
RHF ground-state calculation in going from full double precision
to mixed or single precision for our GPU ERI algorithms. Similar
speedups are observed here for excited-state calculations.

Timings andCIS excitation energies (from the ground-state S0
to the lowest singlet excited state S1) for some of the test systems
are given in Table 1 and compared to the GAMESS quantum
chemistry package version 12 Jan 2009 (R3). The GAMESS
timings are obtained using the same Intel Xeon X5570 eight-core
machine as for the GPU calculations (where GAMESS is running
in parallel over all eight cores).We compare to GAMESS because
it is a freely available and mature quantum chemistry code and
provides a reasonable benchmark of the expected speed of the
algorithms on a CPU. GAMESS may not represent the absolute
best performance that can be achieved using the implemented

Figure 3. Plot of single and double precision (SP and DP) convergence
behavior for the first CIS/6-31G excited state of five of the benchmark
systems. The convergence threshold of 10�5 (norm of residual vector) is
indicated with a straight black line. In most cases, convergence behavior
is identical for single and double precision integration until very small
residual values well below the convergence threshold. A very small
percentage of calculations require double precision for convergence.
One such example is shown here for a snapshot of the PYP chromophore
(PYPc) surrounded by 94 waters.
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algorithms on a CPU.40 Coordinates of all the geometries used in
the tests are provided in Supporting Information, so the inter-
ested reader can determine timings for other codes and archi-
tectures if further comparisons are desired. Unfortunately, it is
not possible to compare our own code against itself, running on
the CPU or GPU, since there does not presently exist a compiler
that can generate a CPU executable from CUDA code.

Comparing the values for the CIS first excited-state energy
(ΔE S0/S1) given in Table 1, we find that the numerical accuracy
of the excitation energies for mixed precision GPU integral
evaluation is excellent for all systems studied. The largest
discrepancy in the reported excitation energies between GA-
MESS and our GPU implementation in TeraChem is less than
0.00004 eV. We also report the CIS times and speedups for
GAMESS and GPU accelerated CIS in TeraChem (note that the
times reported refer to the entire CIS calculation from the
completion of the ground-state SCF to the end of program
execution). Since CIS is necessarily preceded by a ground-state
SCF calculation, we also report the SCF speedups to give a

complete picture. We leave out the absolute SCF times, since the
efficiency of the GPU-based SCF algorithm has been discussed
for other test molecules previously.39,41,76 We find a large
increase in performance is obtained using the GPU for both
ground- and excited-state methods. The speedups increase as
system size increases, with SCF speedups outperforming CIS
speedups. For the largest system compared with GAMESS,
which is the 29 atom chromophore of PYP surrounded by 487
QM water molecules, the speedup is well over 500 times for
SCF and 400 times for CIS. Some possible reasons for the
differing speedups in ground- and excited-state calculations are
discussed below.

In the Supporting Information, we also include a table giving
the absolute TeraChem SCF and CIS times for four of the test
systems, along with the corresponding SCF and CIS energies, for
both mixed and double precision computation and for three
different integral screening threshold values. While the timings
increase considerably in switching from mixed precision to
double precision and in tightening the integral screening thresh-
olds, the CIS excitation energies remain nearly identical, suggest-
ing that the CIS algorithm is quite robust with respect to
thresholding.

The dominant computational parts in building the CIS/
TDDFT AX vector can be divided into Coulomb J matrix,
exchange K matrix, and DFT contributions. Figure 4 plots the
CPU þ GPU time consumed by each of these three contribu-
tions (both CPU and GPU times are included here, although the
CPU time is a very small fraction of the total), in which J and K
timings are taken from an average of the 10 initial guessAX builds
for a CIS calculation, and the DFT timings are from an average of
the initial guess AX builds for a TD-BLYP calculation. The initial
guess transition densities are very sparse, and thus this test
highlights the differing efficiency of screening and thresholding
in these three contributions. The J timings for CIS and BLYP are
similar, and only those for CIS are reported. Power law fits are
shown as solid lines and demonstrate near-linear scaling behavior
of all three contributions to the AX build. The Jmatrix and DFT
quadrature steps are closest to linear scaling, with observed
scaling of N1.1 for both contributions, where N is the number
of basis functions. The K matrix contribution scales as N1.4

because it is least able to exploit the sparsity of the transition
density matrix. These empirical scaling data demonstrate that
with proper sorting and integral screening, the AX build in CIS
and TDDFT scales much better than quadratic, with no loss of
accuracy in excitation energies.

Table 1. Time for CIS computation, relative speedups of SCF and CIS computation for GPU-based TeraChem compared to CPU-
based GAMESS, and first excited-state energies (ΔES0/S1)

a

CIS timings (s) speedup ΔES0/S1 (eV)

molecule (atoms; basis functions) GPU GAMESS SCF CIS GPU GAMESS

B3PPQ oligoquinoline (112; 700) 41.9 371.5 11 9 4.7056398 4.7056482

S2 oligothiophene dendrimer (128; 958) 97.1 755.9 13 8 4.1130572 4.1130275

PYP chromophore þ 101 waters (332; 1501) 133.2 3032.7 48 23 3.6409681 3.6409411

PYP chromophore þ 146 waters (467; 2086) 217.5 8654.9 84 40 3.6394478 3.6394222

PYP chromophore þ 192 waters (605; 2684) 318.1 20546.8 131 65 3.6425942 3.6425632

PYP chromophore þ 261 waters (812; 3581) 493.2 57800.5 218 117 3.6454079 3.6453773

PYP chromophore þ 397 waters (1220; 5349) 894.0 243975.7 426 273 3.6496150 3.6495829

PYP chromophore þ 487 waters (1490; 6519) 1221.2 562606.6 547 461 3.6549966 3.6549636
aCalculations were performed on a dual Intel Xeon X5570 (8 CPU cores) with 72 GB RAM. GPU calculations use 8 Tesla C1060 GPU cards.

Figure 4. Contributions to the time for building an initial AX vector in
CIS and TD-BLYP. Ten initial X vectors are created based on the MO
energy gap, and the timing reported is the average time for building AX
for those 10 vectors. The timings are obtained on a dual Intel Xeon
X5570 platform with 72 GB RAM using 8 Tesla C1060 GPUs. Data
(symbols) are fit to power law (solid line, fitting parameters in inset).
Fewer points are included for the TD-BLYP timings because the SCF
procedure does not converge for the solvated PYP chromophore with a
large number of waters or for the full PYP protein.
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Of the three integral contributions (J, K, and DFT quad-
rature), the computation of theKmatrix is clearly the bottleneck.
This is due to the three issues with exchange computation
previously discussed: (1) the J matrix takes full advantage of
density sparsity because of efficient density screening that is not
possible for our K matrix implementation, (2) exchange kernels
access the density inmemory noncontiguously, and (3) exchange
requires the evaluation of 4 times more integrals than J both
because it lacks the μλ T λμ and νθ T θν symmetry and
because it needs to be called twice to account for the nonsym-
metric excited-state transition density matrix. It is useful to
compare the time required to calculate theKmatrix contribution
to the first ground-state SCF iteration (which is the most
expensive iteration due to the use of Fock matrix updating77)
and to the AX vector build for CIS (or TD-B3LYP). We find that
for the systems studied herein the K matrix contribution is on
average almost 2 times faster in CIS compared to the first
iteration of the ground-state SCF. One might have expected
the excited-state computation to be 2 times slower because of the
two K matrix calls, but the algorithm efficiently exploits the
greater sparsity of the transition density matrix (compared to the
ground-state density matrix).

Due to efficient prescreening of the density and integral
contributions to the Schwarz bound before the GPU Coulomb
kernels are launched, the J matrix computation also exploits
the greater sparseness of the transition density and therefore is
3.5 times faster than the ground-state first iteration J matrix
computation. Since J matrix computation profits more from
transition density sparsity than K matrix computation, the
current implementation of the Jmatrix computation scales better
with system size than the implementation of the K matrix
computation (N1.1 vs N1.4 for the excited-state benchmarks
presented here).

As can be seen in Figure 4,78 the DFT integration usually takes
more time than the J matrix contribution. This is because of the
larger prefactor for DFT integration, which is related to the
density of the quadrature grids used. It has previously been
noted79 that very sparse grids can be more than adequate for
TDDFT. We further support this claim with the data presented
in Table 2, where we compare the lowest excitation energies and
the average TD-BLYP integration times for the initial guess
vectors for six different grids on two of the test systems. For both
molecules, the excitation energies from the sparsest grid agree
well with those of the more dense grids but with a substantial
reduction in integration time, suggesting that a change to an ultra
sparse grid for the TDDFT portion of the calculation could result
in considerable time savings with little to no loss of accuracy. The
TD-BLYP values computed with NWCHEM

80 using the default
‘medium’ grid are also given to show the accuracy of our
implementation. The small (<0.0002 eV) differences in excita-
tion energies between our GPU-based TD-BLYP and the CPU-
based NWChem are likely due to slightly differing ground-state
densities, which differ in energy by 7 microhartrees for the
chromophore and 1.9 millihartrees for the S2 dendrimer.

While successive ground-state SCF iterations take less com-
putation time than the first (because of the use of Fock matrix
updating), all iterations in the excited-state calculations take
roughly the same amount of time. This is the dominant reason for
the discrepancy in the speedups for ground-state SCF and
excited-state CIS shown in Table 1. An additional reason that
the SCF speedup is greater than the CIS speedup is decreased
parallel efficiency because the ground-state density is less sparse
than the transition density (all of the reported calculations are
running on eight GPU cards in parallel).

GPU-accelerated CIS and TDDFT computation provides the
excited states of much larger compounds than can be currently
studied with ab initio methods. For the well-behaved valence
transitions in the PYP systems, CIS convergence requires very
few Davidson iterations. The total wall time (SCF þ CIS)
required to calculate the first CIS/6-31G excited state of the
entire PYP protein (10869 basis functions) is less than 6 h, with
∼4.7 h devoted to the SCF procedure and ∼1.2 h to the CIS
procedure. We can thus treat the protein with full QM and study
how mutation within PYP will affect the absorbance. For any
meaningful comparison with the experimental absorption energy
of PYP at 2.78 eV,70 many geometrical configurations need to be
taken into account. For this single configuration, the CIS
excitation energy of 3.69 eV ismuch higher than the experimental
value, as expected with CIS. The TD-B3LYP bright state (S5) is
closer to the experimental value but still too high at 3.33 eV.

Solvatochromic studies in explicit water are problematic for
standard DFT methods, including hybrid functionals, due to the
well-known difficulty in treating charge-transfer excitations.16,81

In calculating the timings for the first excited state of the PYP
chromophore with increasing numbers of waters, we found that
the energy of the CIS first excited state quickly leveled off and
stabilized, while that for TD-BLYP and TD-B3LYP generally
decreased to unphysical values, at which point the ground-state
SCF convergence was also problematic. This behavior of the first
excitation energies for the PYP chromophore with increasing
numbers of waters is shown in Figure 5 for CIS, TD-BLYP, and
TD-B3LYP. While the 20% HF exchange in the hybrid TD-
B3LYP method does improve the excitation energies over TD-
BLYP, the energies are clearly incorrect for both methods, and a
higher level of theory or a range-separated hybrid functional19,21

Table 2. TD-BLYP Timings and First Excitation Energies
Using Increasingly Dense Quadrature Gridsa

grid points points/atomb time (s)c ΔE (eV)

PYPChromophore (29 atoms)
0 29497 1017 0.12 2.31734131

1 81461 2809 0.21 2.31743628

2 182872 6305 0.39 2.31742594

3 330208 11386 0.68 2.31736989

4 841347 29011 1.53 2.31737016

5 2126775 73337 3.77 2.31737016

NWChem/medium 21655 n/a 2.31751053

S2Dendrimer (128 atoms)
0 141684 1106 0.70 2.28428601

1 382576 2988 1.41 2.28429445

2 848918 6632 2.73 2.28429363

3 1506502 11769 4.54 2.28429472

4 3770640 29458 10.57 2.28429472

5 9472331 74002 25.48 2.284299472

NWChem/medium 25061 n/a 2.28445412
aTD-BLYP timings (average time for the DFT quadrature in one AX
build for the initial 10 AX vectors). For comparison, NWChem
excitation energies are also given using the default ‘medium’ grid.
bNumber of points/atom refers to the pruned grid for TeraChem and
the unpruned grid for NWChem. cNWChem was run on a different
architecture, so timings are not comparable.
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is certainly necessary for studying excitations involving explicit
QM waters.

The recent theoretical work by Badaeva et al. examining the
one and two photon absorbance of oligothiophene dendrimers
was limited to results for the first three generations S1�S3, even
though experimental results were available for S4.65�67 In
Table 3, we compare our GPU accelerated results on the first
bright excited state (oscillator strength >1.0) using TD-B3LYP
within the TDA to the full TD-B3LYP and experimental results.
Results within the TDA are comparable to those from full TD-
B3LYP, for both energies and transition dipole moments. Our
results for S4 show the continuing trend of decreasing excitation
energy and increasing transition dipole moment with increasing
dendrimer generation.

’CONCLUSIONS

We have implemented ab initio CIS and TDDFT calculations
within the TeraChem software package, designed from inception
for execution on GPUs. This allows full QM calculation of the
excited states of large systems. The numerical accuracy of the
excitation energies is shown to be excellent usingmixed precision
integral evaluation. A small percentage of cases require full
double precision integration. For these occasional issues, we
can easily switch to full double precision to achieve the desired
convergence. The ability to use lower precision in much of the

CIS and TDDFT calculation is reminiscent of the ability to use
coarse grids when calculating correlation energies, as shown
previously for pseudospectral methods.79,82�85 Recently, it has
also been shown86 that single precision can be adequate for
computing correlation energies with Cholesky decomposition
methods which are closely related to pseudospectral methods.87

Both quadrature and precision errors generally behave as relative
errors, while chemical accuracy is an absolute standard (often
taken to be 1 kcal/mol). Thus, coarser grids and/or lower
precision can be safely used when the quantity being evaluated
is itself small (and therefore less relative accuracy is required), as
is the case for correlation and/or excitation energies.

For some of the smaller benchmark systems, we present
speedups as compared to the GAMESS quantum chemistry
package running over eight processor cores. The speedups
obtained for CIS calculations range from 9 to 461 times, with
increasing speedups with increasing system size. These speedup
figures are not necessarily normative (other quantum chemistry
packages might be more efficient), but we feel they give a good
sense of the degree to which redesign of quantum algorithms
for GPUs may be useful.

The increased size of the molecules that can be treated using
our GPU-based algorithms exposes some failings of DFT and
TDDFT. Specifically, the charge-transfer problem16 of TDDFT
and the delocalization problem88 of DFT both seem to become
more severe as the molecules become larger, especially for the
case of hydrated chromophores with large numbers of surround-
ing quantum mechanical water molecules. It remains to be seen
whether range-separated hybrid functionals19,21 can solve these
problems for large molecules, and we are currently working to
implement these.
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ABSTRACT: We present a method of modeling vibrational resonance Raman scattering (RRS) spectra of isolated and
solvated systems with the inclusion of Franck�Condon (FC) and Herzberg�Teller (HT) effects and a full account for
possible differences between the harmonic potential energy surfaces of the initial and resonant electronic states. It describes
fundamentals, overtones, and combination bands and computes the RRS spectrum as a two-dimensional function of the
incident and scattered frequencies. The theoretical foundations of the method are described and the differences with other
currently available methodologies are outlined. Applications to the phenoxyl radical in the gas phase and indolinedimethine�
malononitrile (IDMN) in acetonitrile and cyclohexane solution are reported, as well as comparisons with available
experimental data.

I. INTRODUCTION

Resonance Raman scattering (RRS) refers to Raman scat-
tering at wavelengths close to an electronic excitation of the
molecule1 (see Figure 1 for a pictorial view). Because of this
peculiarity, RRS is able to provide information on electro-
nically excited state properties and structure,2 which is an
outcome that only rarely is obtained through other experi-
mental techniques, and for which the formulation of modern
quantum mechanical (QM)models has instead reached a well-
recognized maturity.3

The sensitivity of experimental RRS has largely improved
recently,4 so it is becoming a very valuable technique for the
study of the structure and dynamics of biosystems and materials.
However, the calculation of RRS spectral parameters is far from
being common in the literature; some aspects of such a subject
still remain unexplored. Most of the RRS calculations reported
until now are based on the so-called Transform Theory (TT)5 or
on the short-time dynamics (STD) approach.6,7 TT is rooted in
the Kramers�Kronig relationship between the polarizability and
the absorption spectrum and, in its most common version,
derives relative resonance Raman intensities from the differences
in the equilibrium structures between the ground and the
resonant excited states and a lineshape function Φ attainable
from the absorption spectrum. The STDmethod originates from
the pioneering work by Heller and co-workers, and it is based on
a time-dependent redefinition of the energy-frame Kramers,
Heisenberg, and Dirac (KHD) expression for the polarizability
tensor,8,9 in terms of the dynamics of a wave packet. Although
this approach is quite general, most of its practical applications
actually use the STD expressions, which are valid when only the

STD of the system is reflected in the RRS spectra, and, therefore,
are well-suited for preresonance regimes.6,7 In this limit, relative
RRS intensities are expressed in terms of the resonant-state
energy gradient at the ground equilibrium geometry; therefore,
they do not require explicit time-dependent calculations. Because
of that, STD is also generally known as the “gradient method”.
The time-independent analysis of Warshel and Dauber allows
one to bridge the TT and STD approaches in the harmonic
limit,10 where simple relations hold between excited-state gra-
dients and equilibrium geometry displacements. Recently, a
computationally different approach has been reported.11 There,
RRS is obtained from the geometrical derivatives of the fre-
quency-dependent resonance polarizabilities, calculated by in-
cluding a finite lifetime of the electronic excited states, using
time-dependent density functional theory (TD-DFT). Such a
method still relies on a short-time approximation and is similar to
the simple excited-state gradient approximation method if only
one electronic excited state is important.

Most of the previous methods for the calculation of RRS focus
on the calculation of the so-called “Albrecht AVI term”,1,12 which
implies that Herzberg�Teller (HT) vibronic couplings are
completely discarded, so that only Franck�Condon (FC)-type
scattering is considered in the theoretical formalism. Also, it is
assumed that only one electronic excited state is relevant in the
process, and that the potential energy surfaces (PES) of the
ground and excited state are harmonic. In addition, ground and
excited state normal modes and their frequencies are assumed to

Received: January 24, 2011
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be identical (”independent mode, displaced harmonic oscillator
model” (IMDHO)13) and excited- and ground-state normal
coordinates are assumed to differ only in their equilibrium
positions, so that Duschinsky rotations are not important. Finally,
in most cases, only fundamental 0f 1 transitions are considered,
and the dependence on the incident frequency is not explicitly
considered (although this is actually possible using both the TT
theory5 and the STD method6,7).

Within the above frameworks, several contributions have been
presented in the literature, such as extensions to address anti-
resonance contributions,14 methods for the selective calculation
of high-intensity modes,15 computations of the lineshape func-
tion Φ entering in the TT expressions from sum over states
approaches (and not from the experimental data),16 corrections
for the contributions of more than one resonant state,17 extensions
to resonance Raman optical activity,18 as well as applications to
interesting systems such as uracil,19 pyrenes,20 rhodamine,21,22

julonidinemalononitrile chromophores,23 and large ruthenium
complexes.24,25

In this paper, we intend to present a general method rooted in
the harmonic approximation that overcomes the approximations
of the methods described above, using a time-independent sum-
over-states (SOS) approach. We focus on vibrational RRS from
the ground vibrational state |0gæ (only Stokes bands), with the
aim of describing both FC and HT effects (the so-called
“Albrecht BVI�DVI terms”) and to fully account for any possible
difference between the harmonic PES of the initial and resonant
electronic states. In addition, the SOS approach, by explicitly
computing the polarizability tensor, allows one to provide RRS

spectra as a function of two frequency coordinates (two-dimensional
(2D) RRS spectra)—the incident coordinate and scattered
coordinate—and to account for interferential features arising
from the contribution of more than one quasi-resonant electro-
nic state. Recall that formal expressions to include Duschinsky
and HT effects in the TT approach26 and along the time-
correlator formalism27�29 have been derived in the past, and
that the effect of HT30 and Duschinsky mixings31 has been
addressed in simplified models for specific systems. However, a
general tool for computing RRS spectra at the harmonic level is
still lacking.

The basic ingredients to perform SOS RRS calculations,
including Duschinsky and HT effects, are very similar to those
required to compute absorption spectra. Namely, accurate for-
mulas are needed to computemultidimensional FC integrals and,
in large systems, effective prescreening methods must be able to
select the relevant transitions among the very large number of
possible quasi-resonant vibronic states (easily exceeding 1020).
While easily implemented recurrence formulas to compute FC
integrals were derived a long time ago, through a generating
function approach,32�34 or a coherent state approach,35,36 only
recently effective selection schemes have been worked out (see
ref 37 for a comprehensive review). They include specific partition
in “levels” of the possible transitions38 and selections through
block factorization of the Duschinsky matrix,39,40 or through
analytical sum rules.41

We recently worked out a method based on partition of
the possible transitions in classes Cn, depending on the number
(n) of simultaneously excited modes in the final state, and a

Figure 1. Pictorial view of the resonance Raman effect, along with a graphical representation of the various levels of treatment (a�d) of the ground (g)
and excited (r) states potential energy surfaces: (a)ωk

r =ωk
g
,ΔQ

k
= 0; (b)ωk

r 6¼ωk
g,ΔQ

k
= 0; (c)ωk

r =ωk
g
,ΔQ

k
6¼ 0; and (d)ωk

r 6¼ωk
g
,ΔQ

k
6¼ 0.Q stands

for a normal coordinate,ΔQ is the displacement along that coordinate, and theω terms are the vibrational frequencies associated with theQ values in the
ground and excited states.
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prescreening method for high-order (n > 2) classes based on the
analysis of C1 and C2 classes.42 The method, which was
originally worked out for FC 0 K one-photon absorption
(OPA) and emission spectra, has been generalized to include
temperature effects43 and HT effects,44 and to deal with one-
photon circular dichroism (ECD)45 and two-photon absorption
and circular dichroism.46 It has been recently implemented47,48 for
OPA and ECD in a optimized routine in the Gaussian 09
package.49 Here, we present its further extension to 2D RRS
spectra, exploiting the protocols developed for dealing with
vibrationally excited initial states in finite temperature spectra43

and including additional prescreening recipes on the final
vibronic states of the ground electronic states, together with a
generalization of analytical sum rules to check SOS calculation
convergence.

It has been recognized that a very important role in RRS is
played by the presence of a solvent,4,21,50 because of the fact that
the solute�solvent interactions can largely affect the electronic
excited states, both by modifying their nature (the charge-
transfer character is usually increased in polar solvents) and by
inducing structural deformations, which can lead to very different
relaxed excited states, with respect to their counterparts in the
gas phase. In recent years, a method to couple TT and STD
to continuum solvation models has been proposed.51,52 In
this paper, its further extension is reported, by also including
the solvent effects on excited-state normal modes and transi-
tion dipoles, by exploiting the Polarizable Continuum Model
(PCM).53,54

The paper is organized as follows. In the next section (section
II), the theoretical background is summarized. After a brief
section on computational details (section III), application of
the methodologies to few selected systems in the gas phase or in
solution is reported (section IV). Concluding remarks (in section
V) end the presentation.

II. THEORETICAL FRAMEWORK

A. General Expression for Vibrational Resonance Raman
Cross Section. We consider a monochromatic incident (I)
radiation with angular frequency ωI propagating in the direction
of the unit vector n0

I , impinging on the sample, and we analyze
the scattered radiation (s) of frequency ωs in the propagation
direction n0

s . The terms n0
I and n0

s define the so-called “scattering
plane”, and θ is the scattering angle (θ = cos�1(n0

I
3 n0

s )). Two
possible polarizations for the incident and scattered light are,
respectively, perpendicular (^) and parallel ( )) to the scattered
plane. The scattered intensity at an angle of θ = 90� for any
polarization (^s þ )s) for incident light with perpendicular
polarization (^I) is given as1,55

I
π

2
;^s þ )s,^I

� �
¼ ω4

sI
16ε20c

4
0π2

45a2 þ 7g2 þ 5d2

45
ð1Þ

where I is the incident field irradiance, c0 the speed of light,
and ε0 the electric permittivity in a vacuum. The orientational
average has been taken into account by considering freely
rotating molecules. The a, g, and d terms are functions of the
molecular polarizability tensor and, therefore, are dependent
on ωI and ωs, as well as on molecular parameters; they are the
so-called “mean polarizability”, “symmetric anisotropy”, and
“antisymmetric anisotropy”, respectively, and their explicit
expressions are given below. Removing the dependence on

I , a differential cross section (with respect to a scattering solid
angle Ω) is defined:

σ0ðωI ,ωsÞ ¼ Dσ
DΩ

¼ Iðπ=2;^s þ )s,^iÞ
I

ð2Þ

Note that an alternative definition of σ0(ωI, ωs) is reported by
some authors, not in terms of unit incident irradiance (I ), but
per unit of incident photon flux (I =pωI). In this case, the
second differential cross section σ00(ωI, ωs) (where σ00(ωI, ωs) =
∂
2σ/∂Ω∂ωs), which is dependent on ωs

3ωI rather than ωs
4 (see

eq 2), is reported.
We now introduce the polarizability tensor for a transition

|iæ f |fæ. Its Fσth element (F, σ = x, y, z) is

Rfi
Fσ ¼ 1

p

X
m

Æf jμFjmæÆmjμσjiæ
ωmi �ωI � iγm

þ 1
p

X
m

Æf jμFjmæÆmjμσjiæ
ωmi þωI þ iγm

ð3Þ

where μF is the F-Cartesian component of the electric dipole.
The sum is taken over all possible intermediate states |mæ,
ωmi = ωm �ωi; pωi and pωm are the energies of states |iæ and
|mæ, respectively; and, finally, γm is the lifetime of excited state
|mæ. In the framework of the Born�Oppenheimer approxima-
tion (BO) and by considering, in eq 1, rotational states to be
factorized out and summation over all possible orientations,
we must address the vibronic states, which can be written as a
product

jek; vkl æ ¼ jek > X jvkl æ
where |ekæ is the electronic state and |vl

kæ the associated
vibrational state. The previously introduced a, g2, and d2

quantities are given as1

a ¼ 1
3
ðRfi

xx þ Rfi
yy þ Rfi

zzÞ ð4Þ

g2 ¼ 1
2
j½ Rfi

xx � Rfi
yyj2 þ jRfi

xx � Rfi
zzj2 þ jRfi

yy � Rfi
zzj2

þ3
2

jRfi
xy þ Rfi

yxj2 þ jRfi
xz þ Rfi

zxj2 þ jRif
yz þ Rif

zyj2
� ��

ð5Þ

d2 ¼ 3
4

jRfi
xy � Rfi

yxj2 þ jRfi
xz � Rfi

zxj2 þ jRif
yz � Rif

zyj2
� �

ð6Þ

When the incident frequency is close to resonance with the
transition energy ωmi, the first resonant term in eq 3 dominates
over the second off-resonant term, which can be safely neglected.
Moreover, if both the initial and final states belong to the ground
electronic state |egæ (vibrational resonance Raman), by integrat-
ing over the electronic degrees of freedom, the following
equation is obtained:

Rfi
Fσ ¼

X
k,m

Ævgf jμgkF jvkmæÆvkmjμkgσ jvgi æ
ωkm, gi �ωI � iγk

ð7Þ

where μβ
gk = Æeg|μβ|ekæ,ωkm,gi =ωek þωvmk � (ωeg þωvi

g), and the
lifetime γkm of the intermediate states |ek; vm

k æ is assumed to be
independent from the vibrational state |vm

k æ, so that it is possible
to drop them subscript out (γk). As shown by eq 2, the transition
probability is dependent on the square of polarizability tensor
elements. Therefore, when the exciting frequency is in near-
resonance with the transitions to more than one excited electro-
nic state |ekæ, the sum in eq 7 must be carried out over all the
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intermediate states, which can give rise to interferential features.
Nonetheless, in this case, it also is possible to compute a
polarizability tensor RFσ

gk for each intermediate state |ekæ and
obtain the total polarizability tensor by summing them up.
Without any loss of generality, it is therefore possible, in the
following, to refer to a single intermediate state |ekæ, so that the
summation over k will drop out.
B. The RR Cross Section in the Harmonic Approximation:

Franck�Condon and Herzberg�Teller Terms. The discus-
sion of the previous section has been carried out in very general
terms. This section will focus the theory on the special cases
where the PES of both the initial |egæ and intermediate |ekæ
electronic states can be treated within the harmonic approx-
imation. In this case, vibrational states |vm

l æ of a given electronic
state |elæ are direct products of one-dimensional (1D) states
|mj

læ for each mode j, and |vm
k æ = |mkæ = |m1

kæX|m2
kæ...X|mN

k æ, with
N being the number of normal coordinates andmj

k the quantum
number of mode j.
According to Duschinsky,56 the sets of mass-weighted normal

coordinatesQg andQk of electronic states |egæ and |ekæ are related
through a linear transformation:

Q g ¼ JQ k þ K ð8Þ
where J is the Duschinsky matrix and K is a column vector
collecting the displacements between the equilibrium geometries
of the two electronic PES.
The transition electric dipole μB

gk generally is an unknown
function of the normal coordinates. Its F Cartesian component
can be written in terms of a Taylor expansion of the normal
coordinates of the initial (ground) electronic state, Qg:

μgkF ¼ μgkF ð0Þ þ
X
j

μgkF ðjÞQg
j þ

X
j, l

μgkF ðj, lÞQg
j Q

g
l þ ::: ð9Þ

By restricting the expansion to the first order and substituting
into eq 7, it follows that

Rfi
Fσ ¼ 1

p

P
m

Ænf , g jμgkF ð0ÞjmkæÆmkjμkgσ ð0Þjni, gæ
ωkm, gi �ωI � iγk

þ 1
p

X
m

Ænf , g jP
l
μgkF ðlÞQg

l jmkæÆmkjμkgσ ð0Þjni, gæ
ωkm, gi �ωI � iγk

þ 1
p

X
m

Ænf , g jμgkF ð0ÞjmkæÆmkjP
j
μkgσ ðjÞQg

j jni, gæ

ωkm, gi �ωI � iγk

þ 1
p

X
m

Ænf , g jP
l
μgkF ðlÞQg

l jmkæÆmkjP
j
μkgσ ðjÞQg

j jni, gæ

ωkm, gi �ωI � iγk

ð10Þ
The first term of eq 10 is the FC term, while the remaining

terms arise from the HT borrowing mechanism of electronic
transitions. By inspection of eq 10, it is apparent that the
antisymmetric anisotropy d (eq 6) vanishes for pure FC transi-
tions but is generally different from zero when the HT effect is
considered. Adopting a second quantization,

Q̂ g
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

2ωl
âg,þl þ âgl

� �s

we have

Q̂ g
l jnf , gæ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nf , gl þ 1

q
jnf , g þ 1læ

þ
ffiffiffiffiffiffiffiffi
nf , gl

q
jnf , g � 1læ ð11Þ

where |nf,g þ plæ is a vibrational state characterized by the same
quantum numbers of |nf,gæ for all modes except mode l, for which
there are pl additional quanta. Therefore, both FC and HT
contributions can be computed if the generic FC overlap
integrals Æng|mkæ can be evaluated. Such integrals can be com-
puted starting from the FC integrals between the ground
vibrational states Æ0g|0kæ, according to the well-known recurrence
formulas:33,34,57

Æ0g jmkæ ¼ 1

2mk
j

 !1=2

AjÆ0g jmk � 1jæþ
mk
j � 1

mk
j

 !1=2

DjjÆ0g jmk � 2jæ

þ
X
l, ðl 6¼jÞ

mk
l

mk
j

 !1=2

DjlÆ0g jmk � 1j � 1læ ð12Þ

Æng jmkæ ¼ 1
2nj

 !1=2

BjÆng � 1jjmkæþ ngj � 1

ngj

 !1=2

EjjÆng � 2jjmkæ

þ
X
l, ðl 6¼jÞ

ngl
ngj

 !1=2

EjlÆng � 1j � 1ljmkæ

þ
X
l

mk
l

ngj

 !1=2

FjlÆng � 1jjmk � 1læ ð13Þ

where

Y ¼ J†ΓgK
X ¼ J†ΓgJþ Γk

A ¼ � 2K†ΓgX�1ðΓkÞ1=2
D ¼ 2ðΓkÞ1=2X�1ðΓkÞ1=2 � I

B ¼ 2K†ðΓgÞ1=2ðI� ðΓgÞ1=2JX�1J†ðΓgÞ1=2Þ
E ¼ 2ðΓgÞ1=2JX�1J†ðΓgÞ1=2 � I

F ¼ 2ðΓgÞ1=2JX�1ðΓkÞ1=2

ð14Þ

and Γg and Γk are diagonal matrices collecting the reduced
frequenciesωj

g/p andωj
k/p, respectively, whereas I is the identity

matrix. The FC integral between the ground states is57

Æ0g j0kæ ¼ ðdetΓgdetΓkÞ1=4 2NdetJ
detX

 !1=2

�exp �1
2
K†ΓgK þ 1

2
Y†X�1Y

� �
ð15Þ

Equations 10�13 are our working expressions. In the following,
the treatment will be restricted to transitions from the ground
vibrational state |0gæ, i.e., by definition to Stokes transitions
ωs < ωI.
C. Comparison with Alternative Approaches. Limiting the

discussion to time-independent methods only, as already
reported in the Introduction, two main approaches have been
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employed so far for the evaluation of RRS. The first one is
based on the so-called “transform theory” (TT),5 while the
other is commonly known as the “short-time dynamics”
(STD) method or the “gradient method”.6,7 For harmonic
models, both approaches can be seen as particular cases of
eq 10, and most of the reported calculations rely on the
IMDHO model, where, as previously mentioned, the ground
and excited PES share the same set of normal modes (i.e., for
the Duschinsky matrix J = I) and there are no frequency
changes (i.e., Γk = Γg).
In this case, the recurrence formulas in eqs 12 and 13 are

drastically simplified, because the FC integrals can be written
as products of one-dimensional (1D) integrals, and in eq 14,
all the matrices except F vanish. Furthermore, F = I and
A = �B, with

Aj ¼ � Bj ¼ � KjðΓg
j Þ1=2 ¼ �Δj ð16Þ

Note that Δj = Kj(ωj
g/p)1/2 is the so-called “dimensionless

displacement”. Therefore, one simply obtains

Æ0gj jmk
j æ ¼ � Δjffiffiffiffiffiffiffiffi

2mk
j

q Æ0gj jmk
j � 1jæ ð17Þ

Ængj jmk
j æ ¼

Δjffiffiffiffiffiffiffi
2ngj

q Ængj � 1jjmk
j æþ

ffiffiffiffiffiffiffiffiffiffiffiffi
mk
j =n

g
j

q
Ængj � 1jjmk

j � 1jæ

ð18Þ
In addition, the most popular and simplified approaches
assume that HT contributions are negligible, and in eq 10,
they only consider fundamental transitions 0j f 1j for each
mode j.
1. The Transform Theory. Let us start from a well-known

relationship, which holds between the absorption cross section
(Lorentzian broadening) and the polarizability tensor (T = 0 K is
assumed):

σabsðωIÞ ¼ CωI
P
mk

jÆ0g jμg, kjmkæj2 γk
π½ωkg þ

P
j
ωk

j m
k
j �ωI �2 þ γ2k

¼ C
π
ωIIm½R0, 0

xx þ R0, 0
xx þ R0, 0

xx � ð19Þ

where C is a proportionality factor and ωkg is the energy
difference between the ground vibrational states associated to
the two electronic states k and g. The explicit definition of such a
factor has been previously reported in the literature48 and is
dependent on universal constants. By expressing all the param-
eters in atomic units, ε(ωI) (given in dm3 mol�1 cm�1) is
obtained (for a Lorentizian broadening). Let us further define a
normalized cross section σhabs (ωI) = σabs (ωI)/(ωI

R
σabs (ωI)/

ωI dωI). By focusing on a FC case and considering a specific
oscillator l, one can write

σabsðωIÞ ¼
X
ml

jÆ0gl jmk
l æj2SðωI �mk

lω
k
l Þ ð20Þ

where, according to ref 19, we define

SðωI �mk
lω

k
l Þ

¼
X

mk
j , " j 6¼l

Πj 6¼lÆj0gl jmk
l jæ2

π½ðωkg þ
P
j 6¼l

ωk
j m

k
j Þ � ðωI �mk

lω
k
l Þ�2 þ γ2k

TðωI �mk
lω

k
l Þ

¼
X

mk
j , " j 6¼l

Πj 6¼lγkjÆ0gj jmk
j æj2½ðωkg þ

P
j 6¼l

ωk
j m

k
j Þ � ðωI �mk

lω
k
l Þ�

π½ðωkg þ
P
j 6¼l

ωk
j m

k
j Þ � ðωI �mk

lω
k
l Þ�2 þ γ2k

ΦðωIÞ
¼
X
ml

jÆ0gj jmk
j æj2½TðωI �mk

lω
k
l Þ þ iSðωI �mk

lω
k
l Þ� ð21Þ

Application of eq 18 gives

Æ1gl jmk
l æ ¼

Δlffiffiffi
2

p Æ0gl jmk
l æþ

ffiffiffiffiffiffi
mk
l

q
Æ0gl jmk

l � 1læ

Æmk
l j0gl æ ¼ � Δlffiffiffiffiffiffiffiffi

2mk
l

q Æ0gl jmk
l � 1læ ¼ Δ2

l

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mk

l ðmk
l � 1Þ

q Æ0gl jmk
l � 2læ

Æ1gl jmk
l æÆm

k
l j0gl æ ¼

Δlffiffiffi
2

p ½jÆ0gl jmk
l æj2 � jÆ0gl jmk

l � 1læj2�

Æ2gl jmk
l æÆm

k
l j0gl æ ¼

Δ2
l

2
ffiffiffi
2

p ½jÆ0gl jmk
l æj2 � 2jÆ0gl jmk

l � 1læj2

þ jÆ0gl jmk
l � 2læj2�

Æ1gj 1
g
l jmk

j m
k
l æÆmk

j m
k
l j0gj 0gl æ ¼

ΔjΔl

2
½jÆ0gl jmk

l æj2 � jÆ0gl jmk
l � 1læj2�

�½jÆ0gj jmk
j æj2 � jÆ0gj jmk

j � 1jæj2� ð22Þ

Such expressions are equivalent to those given by Neugebauer
and Hess19 in the case of |0l

gæ f |1l
gæ fundamental transitions

and also extend them to the treatment of overtones |0l
gæ f |2l

gæ
and combination bands |0j

g0l
gæ f |1j

g1l
gæ. By further following

Neugebauer and Hess,19 one finally gets the following, for funda-
mentals:

R0l f 1l
Fσ ¼ μgkF ð0Þμgkσ ð0Þ

Δlffiffiffi
2

p ½ΦðωIÞ �ΦðωI �ωlÞ� ð23Þ

where Φ(ωI) is related to the normalized spectrum σhabs(ωI)
through the following equation (P indicates the Cauchy princi-
pal-value integral):

ΦðωIÞ ¼ iπσabsðωIÞ þP
Z

dω
σabsðωÞ
ðω�ωIÞ ð24Þ

For the first overtone band, one similarly obtains

R0l f 2l
Fσ ¼ μgkF ð0Þμgkσ ð0Þ

Δ2
l

2
ffiffiffi
2

p ½ΦðωIÞ � 2ΦðωI �ωlÞ þΦðωI � 2ωlÞ�

ð25Þ
and, for the two-mode combination bands,

R0j0l f 1j1l
Fσ ¼ μgkF ð0Þμgkσ ð0Þ

ΔjΔl

2
�½ΦðωIÞ �ΦðωI �ωjÞ �ΦðωI �ωlÞ
þΦðωI �ωj �ωlÞ� ð26Þ

Note that eqs 23 and 25 holdwhenevermode l is notmixed (i.e., Jll=
1) and its frequency is unchanged in the twoelectronic states (Γll

g=Γll
k),

and, therefore, also when Duschinsky mixing and frequency
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changes take place for other modes (i.e., J 6¼ I and/or Γg 6¼ Γk).
The same also holds for eq 26 if both modes j and l fulfill these
requirements. Therefore, eqs 23�26 can be utilized to estimate
the intensities a priori for themodes that almostmeet the conditions
reported above. For instance, whenΔl (andΔj) are small (i.e.,,1),
fundamental transitions are expected to be the strongest ones.
2. The Gradient Approximation. Let us consider only FC terms

in the polarizability tensor and only the fundamental transitions
0j f 1j for each mode j. If Δj , 1, as already noticed by Long1

and by Warshel and Dauber,10 it follows that Æ0jg|0jkæ≈ Æ1jg|1jkæ≈
1 and Æ0jg|1jkæ =�Æ1jg|0jkæ =�Δj/

√
2, while all the other integrals

are zero. By neglecting all the terms beyond the first order in the
displacements Δl, the polarizability tensor simply becomes

R0j f 1j
Fσ ¼ μgkF ð0Þμkgσ ð0Þ

Æ0gj j0kj æÆ0kj j1gj æ
ωkg �ωI � iγk

þ Æ0gj j1kj æÆ1kj j1gj æ
ωkg þωj �ωI � iγk

" #

ð27Þ

R0j f 1j
Fσ ¼ μgkF ð0Þμkgσ ð0Þ

ωjΔjffiffiffi
2

p ðωkg �ωI � iγkÞðωkg þωj �ωI � iγkÞ
ð28Þ

where ωkg is the electronic adiabatic energy difference. When
ωkg � ωI . ωj, the denominator of last equation can be con-
sidered constant for differentωj; therefore, the approximate rela-
tionships hold for the polarizability tensor componentRFσ

0j f 1j�
Δjωj, and for the differential cross section σ00jf1j � (Δjωj)

2.
Note that, in the limit of validity of the IMDHOmodel,Δj can be
obtained avoiding geometry optimization of the excited state, by
simply computing the derivative of the excited-state energy, with
respect to the normal coordinate Qj at the ground equilibrium
geometry (the so-called “vertical gradient”):

DEk

DQj

 !
0

¼ Ekj ¼ �ω2
j Kj ¼ �ω3=2

j Δj

p1=2
ð29Þ

Therefore, it is possible to write that the ratio between the RRS
intensities of the two modes j and l is

I0 f 1
j

I0 f 1
l

¼ Ekj
Ekl

 !2
ωl

ωj
¼ ω2

j Δ
2
j

ω2
l Δ

2
l

ð30Þ

To complete this section, it is worth recalling that, in a series of
seminal papers,6,7 Heller and co-workers showed, using a time-
dependent approach, that, under preresonance conditions, when
only the very short time dynamics on the excited state is to be
considered, the first equality of eq 30 is still fulfilled; also, in case
the IMDHO model is not valid and the second equality of eq 30
does not hold. In true resonance cases, even when the harmonic
approximation is valid, eq 30 does not hold and Duschinsky
mixing and frequency changes must be considered; this can be
done via direct application of eq 10, thus also allowing for a
detailed analysis of these effects.

III. COMPUTATIONAL METHOD: A DOUBLE-LAYER SE-
LECTION SCHEME

As already stated in the Introduction, our aim is to focus on
vibrational RR transitions from the ground vibrational state |0gæ
(only Stokes bands), to describe both Franck�Condon (FC)
and Herzberg�Teller (HT) effects, and to fully account for any

possible difference between the harmonic PES of the initial and
intermediate electronic states. Our working expressions for
intensity are eqs 1�6, while the polarizability tensor for each
intermediate electronic state |ekæ is computed according to eq 10.

As reported above, the necessary integrals on the vibrational
coordinates can be computed according to recurrence formulas
(see eqs 12 and 13). However, such a treatment can be very
cumbersome from the computational point of view, for two main
reasons. The first one is that the explicit calculation of the
polarizability tensor, in terms of a brute-force SOS expression,
is generally unfeasible, because the number of vibrational states
of the intermediate electronic state in a sizable molecule is huge
(can easily exceed 1020). Note that, in fact, if one wants to
compute the RRS spectra as a function of the excitation
frequency, all the vibronic transitions relevant for the absorption
spectrum of the resonant state must be taken into account. The
second reason is that the number of possible final vibrational
states (i.e., those belonging to the ground electronic state) also is
extremely large. Thus, in order to make the calculation feasible, it
is necessary to work out effective prescreening techniques that
are able to select only the relevant contributions a priori. Here, we
will propose a way to overcome such difficulties using a two-layer
strategy, by keeping in mind the fact that, although a too-strict
selection of the final states may result in the absence of some
bands in the simulated RR spectrum, an incomplete inclusion of
the intermediate states may lead to inaccuracies in the predicted
bands, which cannot easily be controlled.
A. Selection of the Intermediate States.Upon inspection of

eq 10, it can be realized that, by resorting to an SOS time-
independent perspective, the computation of the polarizability
tensor for a given final state |fgæ (the initial state is always the
ground state |0gæ) is equivalent to the computation of two
absorption spectra (possibly including HT effects) for the
electronic transition |egæ f |ekæ. The first one arises from the
ground vibrational state |0gæ (for T = 0 K), and the second arises
from a selected hot-vibrational state |fgæ. If more than one
intermediate electronic state |ekæ is to be considered, the calcula-
tion should be repeated for each state and the polarizability
tensors summarized before computing the square contributions
to eq 2. An effective method to compute absorption spectra
including Duschinsky and HT effects both for T = 0 K and finite
temperature spectra has been proposed previously by some of
us.42�44 It is intuitive that the machinery that permits the
computation of spectra at finite temperature also allows, in a
straightforward manner, the computation of the spectrum from a
single hot state |fgæ.
In brief, our method is based on a partition of the manifold of

vibrational states |mkæ of the resonant state |ekæ (and of the
corresponding transitions) in different classes Cn, each depend-
ing on the number n of oscillators, whose quantum number is
different from zero. For instance, Æng|3, 0, ...æ is a C1 transition,
and Æng|0, 3, 0, 5, 4, 0, ...æ is a C3 transition. For each Cn, a
maximum-allowed excitation vectorWn

max(ng) is defined, so that
all the integrals Æng|mkæ to states |mkæ with larger quantum
numbers can be considered as negligible. In the general case of
a finite-temperature spectrumwithHT effects, the determination
of Wn

max(ng) is based on the analysis of the C1 and C2 FC
transitions (which involve a low computational cost), both from
the ground and from the excited initial states (in our case, |0gæ
and |f gæ), with the addition of the HT contribution to the C1

class.44 For further details, the interested reader is directed to the
cited references.
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Because of the recursive nature of the formulas in eqs 12 and
13, the calculation of the spectrum from the |f gæ state automatically
provides all the data that are required for the computation of the
spectrum from any state |f 0gæ, as far as fj0ge fj

g for"j. In the cited
references, such a feature was exploited in the computation of the
finite temperature spectra, by grouping the Boltzmann-popu-
lated initial states into “mother states”, which are used for the
calculation of the spectra for all the initial states that share the
same set of initially excited normal modes.
Here, we will exploit the recursive properties of the method by

performing separate calculations for the overtones of each
normal mode j, up to a given quantum fj (i.e., by adopting the
initial state |fgæ = |0gþ fj

gæ), and also by collecting, in this way, the
information for lower overtones and fundamentals. In an analo-
gous way, for combination bands, a separate calculation for each
couple (j, l) up to quanta fj and fl can be performed (i.e., selecting
the initial state |fgæ = |0g þ fj

g þ fl
gæ), to gather the information

needed for any less-excited combination band of the same couple
j and l.
B. Selection of the Final Vibrational States of the Ground

Electronic State. In principle, the number of the possible final
states of the ground electronic states populated upon RRS is not
limited by any strict selection rule. However, experimental RRS
spectra are usually measured in a rather narrow energy window,
only encompassing fundamentals and low-excited overtones and
combination bands. Concerning theoretical simulations, most
of those reported in the literature so far consider only funda-
mental bands.
Here, we will focus on fundamentals, overtones, and combina-

tion bands of two modes, and we will adopt simple selection
schemes, based on the analysis of the TT predictions within the
IMDHO model. In practice, we exclude from the calculation all
of the modes that are essentially not mixed by Duschinsky
couplings and that show displacements and frequency changes
that are below a given threshold. For all the other modes,
fundamentals and overtones are computed up to the same
maximum quantum number. The analysis of the fundamentals
and overtones is used to guess the most important combination
bands of two modes, by sorting the modes in decreasing order of
RRS intensities for fundamentals and by further selecting the first
Nr modes for which combination bands are actually computed,
that, in order to keep the number of initial states for combination
bandsNr*(Nr� 1)/2 below a given maximum number. This very
simple selection is based on the observation that, in the limit of
validity of the IMDHO model, according to TT predictions (see
eqs 23�26), fundamental intensities are dependent on dimen-
sionless displacements and (1 þ 1) combination bands on their
product; therefore, the combination bands of two modes show-
ing negligible fundamentals is expected to be negligible (unless
very strong Duschinsky mixings take place). More-refined selec-
tions are obviously possible, but the investigation of such amatter
will be postponed to future work.
C. Analytical Sums andConvergenceChecks. It is worthy to

note that, when the transition is off-resonant ωI , ωkm,gi, the
denominator in eq 10 can be considered constant and equal to
ωkg�ωI for each intermediate electronic state |ekæ. Therefore, it
is possible to sum over the vibrationalmk states and, by exploiting
the closure relationship

P
vmk |vm

k æÆvmk | = 1, one can easily prove
that the FC term vanishes. In those particular cases, the dominant
terms in the polarizability tensor that determine the transition
intensity are the HT terms (i.e., those depending linearly on the
normal coordinates Qg). Obviously, when ωI , ωkm,gi, the

second term in the right-hand side (rhs) of eq 3 cannot be
considered negligible in comparison with the first term, however,
its FC contribution also vanishes, thus making the FC contribu-
tion to Raman scattering null. In the resonant case, both FC and
higher-order terms may contribute to the polarizability tensor
and FC terms are expected to dominate for strongly allowed
transitions, i.e., when |μB

gk (0)|. |
P

lμB
gk(l)ΔQ l|, where now μB

is the vector (μx, μy, μz) andΔQl represents the displacements of
the equilibrium structures caused by the electronic transition
along mode I.
To compute the RRS intensities through the SOS expression

in eq 10, the number of intermediate vibronic states to be
considered is, in principle, infinite, and clearly the sum must be
truncated. Moreover, Duschinsky effects prevent easy routes to
accelerate the calculations. Therefore, it is useful to work out
analytical sum rules in order to check the convergence of the
results. As already discussed, the calculation of RRS intensities
can be reduced to the calculation of two absorption spectra, and,
therefore, the same analytical sums that have been derived in
previous papers44 also can be useful for RRS.
In addition, the off-resonant limit of the polarizability tensor

provides a suitable route to obtain new and specific sum rules for
RRS. In fact, by skipping the denominators in eq 10, we obtain

R
f 0

Fσ ¼
X
m

Æ0g jμgkF ð0ÞjmkæÆmkjμkgσ ð0Þjf gæ

þ
X
m

Æ0g j
X
l

μgkF ðlÞQg
l jmkæÆmkjμkgσ ð0Þjf gæ

þ
X
m

Æ0g jμgkF ð0ÞjmkæÆmkj
X
j

μkgσ ðjÞQg
j jf gæ

þ
X
m

Æ0g j
X
l

μgkF ðlÞQg
l jmkæÆmkj

X
j

μkgσ ðjÞQg
j jf gæ ð31Þ

and by summing over the intermediate vibrational states, we get

R
f 0

Fσ ¼ μgkF ð0Þμkgσ ð0ÞÆ0g jf gæþ μkgσ ð0Þ
X
l

μgkF ðlÞÆ0g jQg
l jf gæ

þμgkF ð0Þ
X
j

μkgσ ðjÞÆ0g jQg
j jf gæ

þ
X
l, j

μgkF ðlÞμkgσ Æ0g jQg
l Q

g
j jf gæ ð32Þ

The above integrals are easily evaluated (for example, switch-
ing to a second quantization), giving

Rf 0
Fσ ¼

μgkF ð0Þμkgσ ð0Þ þ
P
l
μkgF ðlÞμkgσ ðlÞ p

2ωg
l

if jf gæ � j0gæ

ðμgkF ð0Þμkgσ ðlÞ þ μgkF ðlÞμkgσ ð0ÞÞ
ffiffiffiffiffiffiffiffi
p

2ωg
l

s
if jf gæ � j0g þ 1læ

ðμgkF ðlÞμkgσ ðjÞ þ μgkF ðjÞμkgσ ðlÞÞ p

2
ffiffiffiffiffiffiffiffiffiffiffi
ωg

lω
g
j

q if jf gæ � j0g þ 1l þ 1jæ

μgkF ðlÞμkgσ ðlÞ
ffiffiffi
2

p
p

2ωg
l

if jf gæ � j0g þ 2læ

0 for all other final states

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

ð33Þ
When performing the SOS calculation of the RRS intensity for

a given final state |fgæ, it is thus possible to compute numerical
quantities RFσ

num, analogous to the analytical RFσ ones, by adding
all the contributions for each different intermediate state
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considered, |mkæ. Comparison of numerical and analytical sums
permits one to check the convergence of the calculations.

IV. APPLICATIONS

Here, the methodology described in the previous sections to
evaluate RRS is applied to selected systems, i.e., the phenoxyl
radical in the gas phase, and indolinedimethine�malononitrile
(IDMN) in an acetonitrile and cyclohexane solution. These two
cases were chosen because of the availability of experimental data
in the literature that allow for a critical comparison of the
accuracy of our computations and a detailed analysis of perfor-
mance of the various levels of approximation. Although our
approach, in principle, is applicable to any electronic structure
method that can locate equilibrium structures of ground and
excited states and their Hessian matrices, in the following, we
will refer to TD-DFT calculations for mere computational
convenience.

In parallel to the presentation of RRS spectra, we also report
and discuss absorption spectra of the various systems, in order to
evaluate the overall performance of TD-DFT in reproducing
excitation energies, vibronic band profiles, and states hierarchy,
and to identify the electronic states that are in resonance with a
certain excitation frequency exploited in the RRS spectra.

A necessary starting point for the simulation is to locate the
equilibrium geometry of the ground electronic state and to
perform a normal-mode analysis in order to establish a harmonic
model of the ground PES (Vg). In addition, both RRS and
absorption spectra calculation rely on the specific model of the
excited (resonant) state PES (Vk). Vertical (V) and adiabatic (A)
approaches can be exploited, depending whether the excited PES
is expanded in a Taylor series of the nuclear coordinates around
its own equilibrium geometry (“A” approach) or around the
ground-state geometry (“V” approach). Moreover, when only
constant and linear terms are retained in the Taylor expansion of
the difference Vk� Vg, the model implicitly assumes that normal
modes and frequencies are the same in the two states and only
the equilibrium geometries are displaced (IMDHO model). In
this framework, if displacements are obtained from the excited-
state gradient at the ground-state geometry, we have the so-called
“Vertical Gradient” (VG)model; alternatively, if they are directly
obtained as the difference in the equilibrium geometries, a
different model—which we call the “Adiabatic Shift” (AS)
model—is obtained.

In order to account not only for displacements, but also for
frequency changes and Duschinsky mixings, it is necessary to
compute the excited-state Hessian, thus obtaining the Vertical
Hessian (VH) or Adiabatic Hessian (AH) models, depending on
the reference geometry. The model for the computation is
complete if the approximation for the transition electric dipole
is specified, namely, if only the constant (FC) terms, the linear
(HT) terms, or both (FC þ HT) terms are considered in the
expansion (see eq 9).

In the following, we will compare the results obtained from
SOS expressions for absorption and RRS spectra (see eqs 20 and
10), according to FC|AS, FC|AH, and (FC þ HT)|AH models
(for the sake of brevity, “FCþHT” will be abbreviated hereafter
as HT; this generates no confusion, since we never show the pure
HT contributions alone). In the case of RRS spectra, in order to
highlight the differences between our method and the ones
mostly exploited in the literature so far, we will also report the
FC results obtained according to the gradient (VG)

approximation (TT spectra are usually computed by skipping
the Φ factor and, therefore, are assimilable to VG results).

All the electronic calculations that will be reported were
performed by exploiting the Gaussian0949 package. Vibronic
FC42 and HT44 calculations were done using a modified version
of the FC classes code;58 in the latter, the convergence of the
results is ruled by a user-defined parameterNmax, which limits the
number of possible transitions to be computed for each excita-
tion class n. Increasing Nmax results in a better convergence
(hence, better quality of the results) but also increases the
computational burden; therefore, a compromise must be chosen.
Convergence of absorption and RRS was checked according to
the analytical sums given in eq 33, as well as by direct comparison
of the spectra obtained with different choices of Nmax. RRS
spectra appeared to converge much faster than the analytical
sums, which is a favorable feature that was already observed for
absorption spectra.42

When required, solvent effects were taken into account using
the PCM,53,54 by setting cavity parameters as well as the proper
static and optical dielectric constant values according to
Gaussian0949 default values.
A. The Phenoxyl Radical in the Gas Phase. 1. Absorption

Spectrum. In Figure 2, calculated excitation energies from the
doublet 2B1 ground state D0 to the first five OPA allowed
electronic excited states of the phenoxyl radical in the gas phase
are reported (C2v symmetry) . Following ref 40, the uB3LYP/
TZVP level was selected, among others. As can be seen from the
results reported in the figure, such a level performs in a manner
pretty similar to that of the uB3LYP/cc-PVTZ level (which was
already proposed for this molecule by Radziszewski et al.59) and
to the 6-31þG(d,p), 6-31þþG(d,p) and 6-311þG(d,p) basis
sets. The level of reproduction of the experimental excitation
energies is almost independent of the choice of the basis set, and
it is pretty good overall, with the maximum deviation being of the
order of 0.4 eV. Because of this fact, the following discussion will
be limited to the uB3LYP/TZVP results.
Figure 3 sketches the calculated absorption spectrum of the

phenoxyl radical, and the FC|AS, FC|AH, andHT|AH approaches
are compared by focusing on the transitions to states D2 (

2B2) and
D3 (

2A1), since the transition to D1 is extremely weak. In order to
simulate inhomogeneous broadening, stick spectra have been
convoluted with a Gaussian lineshape, whose width is indicated
in the figure caption. As is evident upon inspection of the
calculated spectra, the role of HT is quite marginal for the D2

spectrum (panel a), whereas a more substantial effect is noticed on
relative intensities of the various vibronic peaks of theD3 transition
(panel b). One dominant progression can be singled out in the
D0fD2 absorption spectrum, along mode ν6

(2) (the number in
parentheses specifies the electronic state, 0� g), whose frequency
is 522 cm�1; this mode is projected for more than 99% on ground-
state mode ν5

(0), and it corresponds to a 1,4 elongation of the
phenyl ring; secondary progressions involve three modes in the
1550�1600 cm�1 range. The main vibrational progressions in the
D3 spectrum are due to ν23

(3) (1499 cm�1), ν19
(3) (1278 cm�1) and

ν14
(3) (927 cm�1). Notice that ν23

(3) and ν19
(3) show the largest

derivatives of μB
03; however, interestingly, HT leads to a decrease

of their vibronic intensities (as they become lower than the
fundamental of ν14

(3)), because of partial destructive interference.
The approximations of the AS model, with respect to the AH
model, manifest themselves in a general blueshift of the spectrum,
because of neglect of the zero-point energy differences in the
ground and resonant electronic states, and in some redistribution
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Figure 2. Calculated excitation energies of the first five OPA allowed electronic states of phenoxyl radical in the gas phase, as obtained
using the B3LYP functional and different basis sets. Symmetry assignments are done according to the orientation reported in Figure 3 and
are as follows: (1) 2A2, (2)

2B2, (3)
2A1, (4)

2B2, and (5) 2A1. For comparison, experimental excitation energies taken from ref 59 are also
reported.

Figure 3. Absorption spectrum for the (a) D0 f D2 (labeled
2A2 in panel c) and (b) D0 f D3 (labeled

2B1 in panel c) transitions of phenoxyl
radical, computed according to different models, convoluted with a Gaussian lineshape with HWHM = 0.033 eV. For D0 f D3, a spectrum
convoluted with a Gaussian lineshape with HWHM= 0.066 eV (labeled as “broaden” in the inset) also is reported. Stick spectra refer to the HT|
AH calculation. (c) The experimental spectrum is also reported, for comparison (reprinted with permission from ref 59, Copyright 2001,
American Institute of Physics).
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of the peak intensities, which are more pronounced for the
D3 state.
Overall, the reproduction of the experimental absorption

spectrum (which was recorded in an argon matrix at a tempera-
ture of 7 K, see ref 59), shown in Figure 3c, is good, thus showing
the reliability of the combination of TD-DFT with our approach
to calculate vibronic progressions.
2. RR Scattering for the D0 f D2 Transition: Fundamentals

and Overtones. Moving to RRS, in Figure 4, the spectrum
obtained for the D0 f D2 transition is reported (Figure 4a) as
a function of the level of description of the RR phenomenon. All
the spectra have been computed assuming an excitation at the
vertical transition energy and, if not differently stated, an excited-
state lifetime of γ = 0.1 eV, apart from those computed according
to the gradient approximation, which are not explicitly depen-
dent on these parameters and are thus given in arbitrary units.
Note that, in the present manuscript, γ is used as a purely
phenomenological parameter: the dependence of the description
of RR spectra and Raman excitation profiles on γ will be
underlined for selected cases (vide infra). Calculated vertical
transition energies (and not estimated experimental ones) have
been used (see Figure 2 for their values). Note further that, here
and afterward, in order to be free of possible anharmonic effects
that would complicate the comparison of the different harmonic
models, the excited-state energy gradient values are actually
retrieved, by invoking the harmonic approximation, from the
displacements of the equilibrium structures, according to the
relations given in eq 29.
The convergence of the reported spectra is very good. As

shown in the Supporting Information, spectra evaluated with

Nmax = 105 are exactly superimposable to the more accurate ones
computed with Nmax = 107, even if, in the first case, a maximum
error of 7% still remains, as far as the convergence to the
analytical sums for fundamentals is concerned.
A general overview of the spectra reported in Figure 4

indicates remarkable differences in the predictions obtained by
the different models all over the spectrum, and that mostly
involve vibrations in the 400�700 cm�1 and 1000�1500 ranges
(out-of-plane and in-plane ring bending and C�O stretching
modes). By analyzing the spectra in more detail, two dominant
lines can be seen at the FC level, corresponding to the funda-
mentals of the ν5

(0) and ν25
(0) modes (a combination of ring CC

stretchings). It is remarkable that these lines are strictly corre-
lated to the progressions observed in the absorption spectrum,
but also that, at the same time, noticeable differences arise. In fact,
the ν5

(0) mode gives rise to themain progression in the absorption
spectrum, and the progressions at∼1550�1600 cm�1 (although
more than one mode is involved, because of Duschinsky effects)
are mainly correlated with a remarkable displacement along the
ν25
(0) mode. Nonetheless, while the progression along the ν5

(0)

mode is, by far, the dominant one in the absorption spectrum, the
RRS intensity along this mode is overcome by that along the ν25

(0)

mode. Moreover, the difference between the various computa-
tional approaches is more evident in the RRS spectrum than in
the absorption spectrum. In particular, the introduction of HT
effects causes a markedly different intensity pattern, leading to
the appearance of new bands that are not predicted by the other
models. This is the case, for example, of the bands at 600 cm�1

and 1276 cm�1, which are respectively assigned to the funda-
mentals of the ν6

(0) and ν19
(0) modes, which, in fact, exhibit large

Figure 4. (a) Comparison of the RRS spectrum resonant with themaximumof theD0fD2 transition, computed according to differentmodels (γ= 0.1 eV).
(b) FC resonance Raman 2D spectrum for the D0 f D2 transition for γ = 0.1 eV (upper panel) and 0.02 eV (lower panel). (c) FC Raman excitation
profile resonant with the D0fD2 transition for two different vibrational modes for a γ = 0.1 eV. A convergence test is also shown in the case of ν25

(0) (the
accuracy parameter Nmax is varied from 105 to 107, see red and black straight lines). The vibrational stick RRS bands have been convoluted with a
Gaussian lineshape, with HWHM = 25 cm�1 (not normalized, i.e., its maximum is 1).
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derivatives of the transition dipole moment μB
02. Despite this

fact, these two modes (or, better, the corresponding D2 modes)
do not appear to give appreciable signatures in the absorption
spectrum.
It is also worth highlighting some marked differences between

the VG and FC|AS spectra. In fact, while, for small displace-
ments, the two models are expected to give similar results,
differences arise when the displacements are relevant. The two
peaks at 1068 and 3175 cm�1 are overtones (2 quanta) of the
dominant fundamental bands along the ν5

(0) and ν25
(0) modes,

which have remarkable intensity but are not described within the
gradient approach (at least in its standard implementation).
Finally, the differences among the FC|AS and FC|AH models
are only marginal (see, for example, the overtone band at
3175 cm�1), thus indicating that Duschinsky effects play only
a minor role in the present case.
2D RRS Spectra and Raman Excitation Profiles. Figure 4b

reports the RRS 2D spectrum as a function of the incident
frequency and the difference between the frequencies of the
incident and scattered light (indicated as vibrational frequency,
i.e., the same coordinate already adopted in Figure 4a). Because
of some arbitrariness in the choice of the γ parameter, two
possibilities are compared, corresponding to a short lifetime
(γ = 0.1 eV) and a long lifetime (γ = 0.01 eV). As expected, the
2D spectra appear very different for the two values of γ and are
much more resolved for a long lifetime. A more-detailed analysis
is possible by examining cuts of the 2D spectra obtained by fixing
the vibrational frequency (i.e., the so-called Raman excitation
profiles). Figure 4c reports such spectra for the two dominant
bands: the fundamentals of the ν5

(0) and ν25
(0) modes. For the ν25

(0)

mode, the results of two different calculations are reported,
performed with Nmax = 105 and Nmax = 107 (black and red
straight lines), to show that the method permits to reach a very
good convergence, even with respect to the excitation profile.
Focusing on the interpretative aspects, it is worth noting that the
relative RR intensities of the two modes are dependent on the
frequency of the exciting light, and, in particular, because of the
shape of the curves, the band at 534 cm�1 may or may not
overtake that at 1587 cm�1, depending on the exciting radiation.
At this point of the discussion, a general comment is appro-

priate. Given the current state of the art, the γ value is not easily
computable ab initio, so it is commonly treated as a phenomen-
ological parameter. Moreover, the computational prediction of
the absolute position of the excited states is always affected by
some error, so it may not be easy to establish a one-to-one
correspondence between the experimental incident frequency
and the vertical frequency at which the RRS spectrum is
simulated. Therefore, it is very encouraging that the method
presented here can efficiently compute spectra, as a function of
these parameters. In fact, this may allow for a careful check of the
sensitivity of the predictions on these parameters, in order to
provide a robust interpretation, which is possibly not biased by
particular and possibly unappropriate choices of such values.
3. RR Scattering for the D0 f D3 Transition: Fundamentals

and Overtones. Figure 5 shows calculated RRS spectra of the
D0 f D3 transition, as a function of the choice of the computa-
tional model. Similar to that observed for the D0fD2 transition,
in this case, the predicted spectral shape also changes remarkably
as the computational model varies with the appearance/disap-
pearance of some peaks, the most evident differences being those
introduced byHT effects (theHT|AHmodel). Comparison with
the experiment (taken from ref 60) documents a good overall

agreement, especially if the low resolution of the experimental
data is considered. In more detail, our calculation correctly
predicts the dominant band to be observed at ∼1500 cm�1

(assigned to the fundamental of the ν23
(0) mode with a frequency

of 1478 cm�1), and that such a band is accompanied by a second
blue-shifted peak, assigned to the ν25

(0) mode at a frequency
of 1587 cm�1, whose intensity, however, is significantly
overestimated in our calculations when compared with the
experiment, where it simply appears as a shoulder. The positions
of minor peaks at∼1200, 1000, 800, and 600 cm�1 are also nicely
predicted, as well as, in most cases, the relative order of their
intensities. The strongest band at 1011 cm�1 is assigned to the
fundamental of the ν15

(0) mode. Note that, similar to that
observed in the D0 f D2 spectrum, in the region above
3000 cm�1, some small but non-negligible peaks arise. These
latter might be erroneously assigned to CH stretchings, whereas
they are actually due to overtones of the fundamental bands in
the 1500 cm�1 region. This can be easily recognized by noticing
that they are absent in VG calculations, which only account for
fundamentals.
Raman Excitation Profiles. In Figure 6, Raman excitation

profiles resonant with the D0 f D3 transition are reported for
two selected normal modes. FC|AH and HT|AH results are
compared in Figure 6a, where absorption spectra, obtained using
the same broadening (0.1 eV), also are given, for comparison.
The difference between FC andHT is not relevant for the band at
1011 cm�1 (only a shift in the intensity), whereas the difference
is more substantial for the mode at 1478 cm�1. Both FC and HT
models, however, predict a larger RR intensity for this last band.
Figure 6b only reports FC results, computed with a much
narrower linewidth (γ = 0.02 eV), documenting that the shape
of the profile is hugely dependent on the chosen linewidth, and
that, for small values, the relative intensity of the two peaks may
become drastically dependent on the incident frequency. Speci-
fically, while the intensity of the 1011 cm�1 peak is higher than
that of the 1478 �1 one when the exciting frequency is in
resonance with the 0�0 transition at ∼27 000 cm�1, in two
different regions—namely, at ∼28 800 and 30 000 cm�1—the
1011 cm�1 peak is almost completely quenched and it is overcome
by the 1478 cm�1 peak, by more than 1 order of magnitude.

Figure 5. RRS spectrum resonant with the maximum of the D0 f D3

transition, computed according to different models. VG calculation only
includes fundamental transitions and is reported in arbitrary units. The
experimental spectrum is reported for comparison (reprinted with permis-
sion from ref 60, Copyright 1984, American Institute of Physics). Vibra-
tional stick RRS bands have been convoluted with a Gaussian lineshape,
with HWHM = 25 cm�1 (not normalized, i.e., its maximum is 1).
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4. RR Scattering for the D0 f D3 Transition: Combination
Bands. The unusually high-frequency experimental peak at
2034 cm�1 (see Figure 5) is not reproduced in our calculations,
which do predict a band in that region (2022 cm�1), assigned to
the first overtone of ν15

(0), but its intensity is much smaller than its
experimental counterpart. Based on the position of the strongest
experimental band slightly above 1500 cm�1 and the secondary
band at 528 cm�1, it may be suggested that the peak at
2034 cm�1 corresponds to a combination band of the two
modes, giving rise to these fundamentals.
A brute-force SOS calculation of all of the possible combina-

tions of two bands (435 pairs) would require a very expensive
calculation. Analysis of the TT expression for combination bands
in eq 26 indicates that, apart the frequency-dependentΦ factors,
their RRS intensities are expected to be dependent on the
product of the displacements along the two modes, in the same
way as fundamentals and overtones are dependent on such
displacements and their powers. Here, based on these considera-
tions, we have selected the combination bands of pairs of modes
corresponding to the eight most-intense fundamentals (namely,
ν5
(0), ν10

(0), ν15
(0), ν17

(0), ν19
(0), ν21

(0), ν23
(0), ν25

(0)). The RRS spectra
obtained including either only fundamentals and overtones (up
to the quantum number n = 3) for each mode or also the two-
mode combination bands (quantum numbers 1þ 1) of the eight
selected modes are compared in Figure 7. Here, for an easier
individuation, the fundamentals and overtones of mode n with
quantum number q are labeled as nq and the combination bands

ofmodes n andmwith quantumnumbers q and r are labeled as nqþ
mr. It is interesting to note that combination bands strongly
modify the spectral shape at ∼2500 cm�1 and ∼3000 cm�1,
creating new features in a region otherwise totally flat
(∼2500 cm�1), or dominating the close-lying overtones of the
modes involved in the combination (∼3000 cm�1). As an
example, the combination band 231þ251, of the ν23

(0) and ν25
(0)

modes, is more intense than the overtone 252, even if the
fundamental 231 is more intense than 251. In agreement with
what we speculated at the beginning of this section, in the region
of 2000�2100 cm�1, two combination bands arise—51 þ 231

and 51þ 251 respectively—at frequencies of 2013 cm�1 (enforcing
the 152 band at 2022 cm�1) and 2122 cm�1, but their intensities
(relative to the spectrum maximum at ∼1500 cm�1) are under-
estimated, with respect to the experimental band at 2034 cm�1;
this feature was expected, since the computed fundamental 51 is
actually sensibly weaker than the experimental band at 528 cm�1.
As a last remark, it is interesting to note that the band 51þ 251 is
∼25% higher than 51þ 231, even if the fundamental 231 is more
intense than 251, showing that the exact intensities of combina-
tion bands cannot be trivially deduced from the intensities of the
fundamentals of the involved modes.
B. IDMN in Acetonitrile and Cyclohexane Solutions. In this

section, we present results for IDMN in a cyclohexane and
acetonitrile solution. IDMNhas 96 normal modes and, therefore,
is a much larger system than that of a phenoxyl radical (30 normal
modes). Based on the results of a previous study performed in ref
52 on IDMN RRS spectra in solution, calculations were per-
formed by adopting CAMB3LYP and the 6-311G(d,p) basis sets.
In the Supporting Information, we checked that the dependence
of the computed spectra on the basis set is very weak, using
calculations with the smaller 6-31G(d) basis set.
1. Absorption Spectra. Figure 8 sketches the calculated

absorption spectra in the two solvents, according to different
computational models. In this case, only the first singlet excited
state is relevant to the spectrum. Apart from a general blue-shift
in all the spectrum, because of the particular choice of the com-
bination of DFT functional and basis set, the comparison between
calculations and experimental findings, given in Figure 8b
and taken from ref 61, shows generally good agreement. In
both solvents, the relative intensity of the bluemost peak
appears slightly too small, thus indicating a slight underestima-
tion of geometry displacements or Duschinsky mixings.

Figure 6. (a) FC and HT Raman excitation profiles resonant with the
D0 f D3 transition for two different vibrational modes and for γ =
0.1 eV. For HT computations, a convergence test also is reported by
giving the results obtained by setting the accuracy parameter as Nmax =
106 and 107. RR profiles are compared with the corresponding absorp-
tion spectra computed with a Lorentzian broadening, with the same
linewidth and γ = 0.1 eV. (b) FC Raman excitation profile resonant with
the D0 f D3 transition for two different vibrational modes and a small
linewidth and γ = 0.02 eV (solid lines). The RR profiles are compared
with the corresponding absorption spectrum, computed with the same
Lorentzian broadening.

Figure 7. RRS spectrum resonant with the maximum of the D0 f D3

transition, computed according to the HT|AH model, including only
fundamentals and overtones (blue dashed line, the same data reported in
blue in Figure 5, here denoted by the label “single-mode”) or also the
main combination bands of two modes (red solid line). The vibrational
stick RRS bands have been convoluted with a Gaussian, with HWHM =
25 cm�1 (not normalized, i.e., its maximum is 1).
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Inhomogeneous broadening is larger in acetonitrile than in
cyclohexane, because of their different polarities. This is the
main reason why, in the experimental spectrum, the two peaks
almost coalesce in acetonitrile while they are better distinguished
in cyclohexane. A priori estimate of the electrostatic contribution
to the broadening is becoming feasible and is the subject of work
we currently have in progress, while the treatment of the none-
lectrostatic (dispersion, repulsion, and cavitation) contributions
might be addressed by a recent approach presented in the
literature.62 At the state of the art, the broadening is usually
treated as a phenomenological parameter; therefore, for the
scope of the present article, we decided to avoid a proliferation
of parameters, convoluting the stick spectra in the two solvents
by the same Gaussian lineshape (fwhm = 0.1 eV). Nonetheless,
the two peaks in acetonitrile still appear to coalesce slightly more
than those in cyclohexane, highlighting an interesting pure
vibronic contribution to broadening, even if it is clearly of
secondary importance, with respect to the effect of solvent
fluctuations.
The inclusion of HT terms causes only negligible effects,

whereas more-substantial differences are observed by varying the
model to approximate the excited state PES (compare the AS and
AH results). In both solvents, the AH results, which include the

effect of frequency changes and Duschinky mixings, outperform
the AS results, as far as the ratio of the intensity of the peaks is
concerned.
2. Resonance Raman Scattering. The calculated RRS spec-

trum of IDMN in acetonitrile is reported in Figure 9, as a function
of the different models used to treat the vibronic coupling. The
spectrum obtained by exploiting the VG model is also shown.
The vibrational modes giving rise to the most intense peaks involve
the motion of the π-system (in the 1200�1700 cm�1 range) and
the nitrile groups stretching (at ∼2350 cm�1). As already seen
for the absorption spectrum, HT effects on the transition dipoles
are negligible for RRS, whereas changing the level of accuracy of
the description of the PES of the resonant state has a remarkable
impact on the relative intensities of the various peaks, which is
clear via comparison of the AS and VG results with those
provided by the full AH model. This highlights the possible
importance of the effect of frequency changes and Duschinsky
mixings in resonance Raman spectra. It is worthy to note, for
example, that the relative intensities of the two major peaks at
∼1400 and 1600 cm�1 are remarkably dependent on the
introduction of Duschinsky effects. Actually, these two peaks
arise from fundamentals of the 62 and 77 modes, respectively,
and these two modes are affected by strong Duschinsky mixings.
In fact, respectively, 9 and 10 excited-state normal modes are
needed to project them by more than 95%. Therefore, it is not
surprising that, as shown in the Supporting Information, the
calculation of overtones along these modes is more challenging
for the computational method. Figure 10 compares the FC|AH
RRS spectra in acetonitrile (Figure 10a) and cyclohexane
(Figure 10c) with the experimental spectra (Figure 10b). Both
theoretical stick spectra, and spectra obtained by their Gaussian
convolution, with HWHM = 15 cm�1, are given. All the most
intense lines correspond to fundamental transitions and are
labeled by the number (in order of increasing frequency) of
the involved normal mode. Overall, the theoretical results are in
very good agreement with their experimental counterparts and
nicely reproduce the main structure characterized by three
multiplets lying at ∼1150, ∼ 1350 and ∼1550 cm�1, both in
terms of their positions (apart from a slight blueshift, expected
since no scaling factor has been applied on the frequencies), and
in terms of their relative intensities. Also, the agreement in the
relative intensities is satisfactory. Focusing on the results in
acetonitrile, comparison of the relative heights of the FC|AH
multiplets at ∼1350 and ∼1550 cm�1 with those predicted by
the simpler FC|AS and VGmodels indicates that the inclusion of

Figure 8. Calculated absorption spectrum of IDMN in (a) acetonitrile
and (c) cyclohexane, computed according to different models and
convoluted with a Gaussian lineshape, with HWHM = 0.05 eV. (b)
For comparison, the experimental spectrum taken from ref 61 also is
reported.

Figure 9. Calculated RRS spectrum of IDMN in acetonitrile excited at
the band maximum, assuming γ = 0.1 eV, and obtained by exploiting
different computational models. The vibrational stick RRS bands have
been convoluted with a Gaussian lineshape, with HWHM = 25 cm�1

(not normalized, i.e., its maximum is 1).
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Duschinsky effects and frequency changes significantly improves
the agreement with the experiment (see Figure 10).
As far as the solvent effect is concerned, comparison of the

theoretical and experimental spectra shows that the combination
of the PCM with our approach is able to account for the
peculiarities in the spectrum introduced by the nature of the
medium. In particular, the presence of the solvent and its polarity
characteristics do not simply cause a shift in the bands and/or an
homogeneous increase/decrease of band intensities, but the
relative intensities of the peaks remarkably change, as a result
of the nature of the solute�solvent interactions, thus causing an
overall different intensity pattern in the spectrum. Major differ-
ences in the computed spectra in the two solvents arise in the
relative heights of the multiplet at∼1350 and∼1550 cm�1 (the
blue one is enhanced in cyclohexane, in very good agreement
with the experimental findings). Also, the inner structure of each
multiplets can be analyzed. While the two-peak structure of the
multiplet at ∼1350 cm�1 is perfectly reproduced in our calcula-
tions, the three-peak structure of the bluemost multiplet is
apparently not reproduced in the convoluted spectrum, where
only two peaks appear (with the middle peak being apparently
missing). Nonetheless, analysis of the stick spectra shows that
two different transitions contribute to the major peak at
∼1600 cm�1, in agreement with the experiment, but they are too

close to each other, so they coalesce in a single peak after
convolution. Finally, the experimental multiplet at
∼1150 cm�1 shows a richer and more asymmetric structure in
acetonitrile than in cyclohexane; even this feature is nicely
reproduced by our calculations.
It is also worth noting that computed spectra in Figures 9 and

10 assume an excitation at the vertical transition, while experi-
mental spectra were recorded at 391 nm, which is an excitation
blue-shifted by more than 2000 cm�1, with respect to the band
maximum (estimated for an infinite broadening) both in acet-
onitrile and cyclohexane. By taking into account such a blue-shift,
the computed RRS spectra change only slightly for the chosen γ
value (see the Supporting Information).
To end this section, it is worth noting that the noticeable

improvement of the use of our full FC|AHmodel, with respect to
other methodologies, is further evidenced in comparison with
previous calculated spectra reported in the literature.52

V. SUMMARY, CONCLUSIONS, AND PERSPECTIVES

We have presented a time-independent method, grounded in
the harmonic approximation, and based on a sum-over-states
(SOS) calculation of the polarizability tensor that provides
several improvements, with respect to the commonly adopted
models for the computation of vibrational resonance Raman
scattering (RRS) spectra. In particular, our method is able to
include Duschinsky and Herzberg�Teller (HT) effects, and to
consider not only fundamental transitions but also overtones and
combination bands. In addition, its computational effectiveness
allows one to compute two-dimensional (2D) RRS spectra, as a
function of both the incident and the scattered frequencies, and
to explore the dependence of the spectra on the excited-state
lifetime, which is a parameter that is usually treated phenomen-
ologically. Moreover, the present method paves the way for
analysis of the interferential features that occur when more than
one excited state is in quasi-resonance with the excitation
frequency. Beyond that, it is worthwhile to note that the
approach presented here can be extended rather straightfor-
wardly to the description of other spectroscopic phenomena
related to RRS, such as resonance Raman optical activity or
resonance hyper-Raman, by also including, for these spectro-
scopies, Duschinsky and HT effects.

The computational burden of RRS calculations increases
significantly with respect to absorption spectra. In this respect,
the numerical evidence that the convergence of RRS spectra does
not require the full convergence to the analytical sums (either the
RRS ones or the absorption ones) is very encouraging, because it
allows one to strongly decrease the computational cost. None-
theless, although, in principle, the method also can be adopted
for extensive exploration of the intensities of combination bands
involving two or more modes, computational efficiency would
probably require refinement and further optimization of the
selection schemes. In this respect, in future work, we plan to
explore different computational strategies, based on the time-
dependent formalism introduced by Heller and collaborators.6,7
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ABSTRACT:We present a study of the infrared spectrum of N-methyl acetamide (NMA) performed by using molecular dynamics
(MD)with a quantum electronicHamiltonian. A recently developedmethod, based on the Born�Oppenheimer approximation and
on a semiempirical level of quantum chemistry (SEBOMD), is employed.We focus on the solvent effect on the infrared spectrum of
the solute, on its geometry, and on its electrostatic properties. We thus run simulations of NMA in the gas phase and in water (64
solvent molecules with periodic boundary conditions), taking into account its two different conformers—cis and trans. The use of a
semiempirical electronic Hamiltonian allows us to explore much larger time scales compared to density functional theory basedMD
for systems of similar size. NMA represents a simple model system for peptide bonds: those infrared bands that are more significant
as a signature of the peptide bond (amide I, II, and III and the N�H stretch) are identified, and the solvent shift is evaluated and
compared to experiments. We find a satisfying agreement between our model and experimental measurements, not only for the
solvent shift but also for the structural and electrostatic properties of the solute. On the other hand, when a molecular mechanics,
nonpolarizable force field is used to run MD, very little or nil solvent effect is observed. By analyzing our results, we propose an
explanation of this discrepancy by stressing the importance of mutual polarization and charge transfer in an accurate modeling of the
solute�solvent interactions.

1. INTRODUCTION

Recent advances in computer simulations of the condensed
phase have made possible the investigation of dynamics in large
systems at a quantum level.1�8 The use of a quantum Hamilto-
nian and the definition of the wave function of the whole
electronic system result in an accurate description of polarization
and charge transfer. This is crucial for modeling bond making/
breaking, a feature that is lacking in most molecular dynamics
(MD) simulations based on molecular mechanics (MM) force
fields. The possibility of treating at a quantum level the electronic
Hamiltonian of bio-organic systems in their real environment is
thus becoming closer, even for molecular dynamics simulations.

In molecular biology studies, infrared spectroscopy often
complements the widely employed X-ray diffraction and NMR
techniques, in particular to study proteins and peptides. Amide
bands are used to probe the secondary structure when exploring
the folding dynamics of proteins.9,10 A theoretical model of these
systems should therefore be able to describe the effect of the
environment on the infrared signature of peptide bonds.11 In
addition, theoretical investigations at the DFT-molecular dy-
namics level have stressed the importance of conformational
sampling for an accurate description of specific infrared features,
such as, for example, the experimental line shape resulting from a
mixture between two different conformations of a peptide.12,13

N-methyl acetamide (NMA) has been widely used as a model
of the peptide group. It results from a linkage between two
residues, a C-terminal (ACE) and a N-teminal (N Met) residue.
NMA has two different conformers, corresponding to the cis and
trans arrangements of the carbonyl and �NH groups. The trans

form is the most stable in the gas phase and in solution,14�17 and
an experimental evaluation of the energy difference between the
two forms in a rigid matrix gives a value of 2.3 kcal/mol,18 while
NMR measurements in 1,2-dichloroethane gave a difference
ranging from 2.8 to 3.4 kcal/mol.19 The free energy barrier
between the two forms has been investigated by means of
different computational techniques, and it varies between 15
and 20 kcal/mol, depending on the method.16,20�23 The pre-
sence of a solvent enhances the barrier height by 2�3 kcal/
mol.14,20,21

The literature concerning experimental and theoretical studies
of NMA in solution is quite remarkable in size, and it is beyond
the scope of this work to provide a full review. We shall only
address those works that are closer to our objectives, that is,
studies of the IR spectra of NMA in water. The most significant
bands in the IR spectrum of a peptide group are the amide I, II,
and III bands and the one corresponding to the N�H stretch
(Amide A). The amide I mode is mostly related to the C�O
stretching motion, which was shown to be coupled with water
motions in aqueous solution.24 Amide II arises mostly from the
C�N�H bending motion combined with the C�N stretch,
whereas a larger contribution of the C�N stretch combined with
the C�N�H bend generates amide III.

The IR spectrum of NMA obtained through classical MM
simulations has been compared to the one obtained through a
QM/MM approach.25 The authors have concluded that reliable
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modeling of IR spectra in solution should include the effect of the
time-dependent solvent-induced dipole on the solute. The effect
of hydrogen bonding with surrounding water molecules on the
vibrational frequencies of NMA has been extensively studied by
means of quantum chemistry calculations on NMA�water
clusters,26 and it has been described in terms of a spatially
inhomogeneous electric field generated by the solvent acting
on the solute.27 Quantum chemistry calculations have been
performed on NMA�water clusters (8000 structures) extracted
from MM simulations.28 The results obtained through this
approach for the position and for the shape of amide I�III bands
are in good agreement with experiments: solute�solvent hydro-
gen bonding plays a relevant role in reproducing band profiles.

The importance of hydrogen bonding and nonspecific elec-
trostatic interactions between the solute and solvent has been
analyzed in depth by modeling the harmonic frequencies and by
including anharmonic effects in a joint quantum chemistry and
experimental study.29 Another study based on the interplay
between quantum chemistry and experiments has focused on
the influence of the environment and the temperature on the
amide I band.30 According to this work, the intensity of this band
depends strongly on the solvent, and it varies with temperature.
Concerning the solvent effect on the band position, the authors
have shown that a simple approach based on the Onsager
reaction field can reasonably predict both the solvent-induced
and the temperature-induced frequency shifts.

Recent work on theoretical modeling of two-dimensional
(2D) IR spectroscopy has been carried out by Jeon and Cho
and applied to deuterated NMA in a cluster of 16 D2Omolecules,
based on aQM/MM scheme.31 The approach has been shown to
be successful in reproducing the main features of the experi-
mental 2D IR spectrum. The authors have pointed out that a
better description of inhomogeneous broadening might be
achieved by including more solvent molecules and by describing
them at a quantum level.

Most of the work on IR spectra of small peptides in solution
points toward the importance of including polarization and of
specific solute�solvent interactions (i.e., hydrogen bonding) in
the theoretical description of vibrational properties. In particular,
we believe that the mutual polarization between solute and
solvent should be included, as well as charge transfer, which
might be relevant in the case of NMA, due to the presence of a
hydrogen bond donor and of a hydrogen bond acceptor within
the peptide bond. All of these terms are taken into account if the
electronic Hamiltonian of the full system is treated at the
quantum level.

The two conformers of NMA immersed in water, as well as
more complex exemples of peptides, have already been investi-
gated at the DFT molecular dynamics level, in particular by
Gaigeot et al. (see ref 8 for a recent review). However, due to
their high computational cost, DFT-basedMD simulations are in
general limited to simple systems and/or small simulation times.
As explained below, the method proposed here is intended to
address such limitation by relaxing the level of the quantum
chemistry approach used to describe the electronic structure of
the solution. This is particularly important when dealing with the
calculation of infrared spectra,25,32 which requires good
statistics33 (as we shall discuss in section 2).

The method used here is based on a semiempirical Born�
Oppenheimer molecular dynamics (SEBOMD) approach.7 At
each step of the MD simulation, the electronic wave function of
the system is computed with a semiempirical quantum method

making use, if necessary, of a linear scaling algorithm, such as the
divide and conquer method.34,35 Obviously, semiempirical Ha-
miltonians strongly reduce the computational cost of the simula-
tions compared to ab initio or density functional theory based
molecular dynamics. The price to be payed is a lower accuracy in
the computed molecular properties, though reasonable results
are expected for the IR spectra of isolated molecules36�38

However, in the case of solvated molecules, further tests are
necessary. In fact, traditional semiempirical Hamiltonians, which
were parametrized mainly on the basis of gas-phase properties of
molecules, do not describe intermolecular interactions correctly.
For example, a PM3Hamiltonian39 applied to water dimers gives
rise to a few wrong features in the potential energy surface.40,41 In
addition, unphysical artifacts are obtained for H�H interactions
at short distances.42 A new parametrization of intermolecular
interactions within PM3 has thus been introduced in terms of a
parametrizable interaction function (PIF),40,43 based on fitting
high level ab initio results. This approach has been tested in depth
on liquid water,7 and though it appears that the average polariz-
ability is slightly underestimated by the semiempirical Hamilto-
nian, the predicted structure and thermodynamical properties of
the liquid (simulation with 216 molecules using periodic bound-
ary conditions, 100 ps time scale) are in good agreement with
experimental data. By contrast, the structure of water is not well
described by using the standard PM3 Hamiltonian.

The present study illustrates the first application of SEBOMD
to study the molecular properties of a solvated solute, and we
would like to test the accuracy of this approach to predict the
infrared spectrum of biological systems in solution.

This paper is organized as follows. The next section will be
devoted to the computational strategies adopted in our study. In
section 3, we shall present and illustrate our results, including a
comparison with experimental data and other theoretical work in
the literature. We shall finally conclude in section 4 by summar-
izing our findings and by introducing the guidelines of the future
developments of our work.

2. COMPUTATIONAL DETAILS

In this section, we shall describe in detail the computational
methods and the procedures that were adopted to run molecular
dynamics simulations and to compute infrared spectra.

First of all, we introduce ourMD simulations carried out with a
MM force field. We performed MD simulations by using the
Amber code, version 9,44 and the Amber0345 force field. This
force field was recently introduced to overcome some of the
shortcomings of previous nonpolarizable force fields in the
simulations of proteins in the condensed phase, especially in
the prediction of molecular dipole moments and of properties
related to the torsional parameters.

Simulations of cis- and trans-NMA isolated and in cubic boxes
containing 64, 125, and 216 SPC/E46 water molecules were run
at 300 K both in the microcanonical ensemble and at constant
temperature. In the latter case, the Anderson method47 was used
for temperature control, and the frequency for velocity rando-
mization was 1 ps�1. The SPC/E model was used since it gives
very similar results to the ones obtained with the semiempirical
electronic Hamiltonian and PIF corrections with respect to the
structure of liquid water.7 In addition, SPC/E is one of the best
available MM models to describe the dielectric properties (and
thus electrostatic solvation properties) of water.48 We do not
expect large effects on the infrared spectrum of NMA due to
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using a rigid water model, since the solute�solvent correlations
are not included in our calculation (see below).

Simulations in the condensed phase were run with periodic
boundary conditions. Long-range electrostatics was treated with-
in the Ewald sum scheme.49 The size of the boxes was adapted to
reproduce the room temperature density of water (0.996 g/
mL50), by taking into account the volume occupied by the solute.

Equilibration at a constant temperature (T = 300 K, Andersen
thermostat) was performed for 500 ps, followed by data acquisi-
tion over 1 ns for each simulation. We used a time step of 1 fs.
The SHAKE procedure51,52 was used to keep water molecules
rigid, whereas all bonds in the solute molecule were flexible.

Regarding MD simulations with a semiempirical quantum
mechanical PM3 Hamiltonian to describe the electronic wave
function of the whole system, we compared the results obtained
in the gas phase with those obtained in the condensed phase by
using the standard PM3 Hamiltonian for intramolecular inter-
actions and the PIF correction for water�water40,40 and
solute�water42 intermolecular interactions.

We remind the reader that a well-known issue with the PM3
method is an artificial tendency toward pyramidal hybridization
of the N atom. A specific correction term (PM3-MM) has thus
been introduced to keep peptide bonds planar through a
harmonic constraint on the H�N�C�O dihedral. In our
calculations, we used the Gaussian 0353 implementation of this
potential. In order to test the effect of this correction on the
vibrational frequencies of NMA, we performed gas phase calcula-
tions on both the cis and the trans conformers by carrying out
geometry optimization and normal modes analysis in Gaussian.53

We used both the standard PM3 parameters and the PM3-MM
parameters. Other than the different values for the H�N�C�O
dihedral and for the molecular dipole moment, no remarkable
difference was found in the normal mode frequencies of cis- and
trans-NMA as well as in the interatomic distances.

In water solution, each of the two NMA conformers were
dissolved in a box with 64 water molecules, and we ran dynamics
on a 300 ps time scale, at the same temperature and using the
same time step as in theMM simulations. No SHAKE constraints
were applied. Previous equilibration for each MD run was
performed over 100 ps starting from a configuration extracted
from the molecular mechanics force field MD simulations. The
Fock matrix of the system was built at each time step and
diagonalized through standard techniques according to the self-
consistent field (SCF) scheme. This ensures that the electronic
density converges at each step of the simulation, and that the
dynamics follows the Born�Oppenheimer potential energy
surface.54,55

We would like to stress here that the density matrix of the
system can also be obtained by means of the divide and conquer
approach. However, in our case, the standard diagonalization
techniques are faster than the divide and conquer approach, since
the size of the system is below the crossover point.56

Simulations in the condensed phase were run with periodic
boundary conditions, and long-range electrostatic interactions
were taken into account by using the Ewald method.57 The full
Fock matrix is built using the minimum image convention for all
direct interactions inside the periodic box (direct sum). The
Ewald reciprocal sum is incorporated as a correction to the Fock
matrix in a way similar to the one proposed by Nam et al:57

atomic partial charges computed from the semiempirical wave
function define an Ewald field in the reciprocal space that can be
incorporated in the core Hamiltonian as long as derivatives of

these atomic charges with respect to the density matrix elements
are defined. In our implementation, Ewald summation can be
performed by using either Mulliken or CM158 atomic charges to
represent the long-range electrostatic field that self-consistently
polarizes the semiempirical wave function.

A typical SCF procedure proceeds as follows: from an initial
guess for the densitymatrix, (1) the atomic charges are computed
(Mulliken or CM1 charges); (2) the minimum image Fock
matrix is perturbed by the Ewald field (i.e., both the minimum
image Fock matrix and the Ewald field are derived from the same
density matrix); (3) the total Fock matrix is diagonalized to
obtain the wave function coefficients; (4) a new density matrix is
built from the coefficients of the molecular orbitals; (5) con-
vergence is checked, and back to step 1 if the procedure has not
converged yet.

During the MD simulation, the different sets of charges can be
derived from the wave function evaluated at each time step. We
also evaluated CM259 partial charges. We recall that CM1 and
CM2 charges are parametrized to obtain reliable charge-depen-
dent molecular properties, in particular, the molecular dipole
moment.

In the case of isolated NMA, we ran simulations in the
microcanonical ensemble and at constant temperature (the same
conditions as those used for simulations with anMM force field).
In all (isolated, condensed phase) simulations, we monitored the
O�C�N�H dihedral, in order to make sure that the NMA
molecule would stay in the original cis or trans conformation
during the simulation, in agreement with the observation of a
high barrier between the two conformers predicted by other
calculations.20�23

Let us now give some details on the calculation of infrared
spectra. It has been shown that the IR absorption line shape I(ω)
for an isotropic sample is related to the quantum mechanical
electrical dipole moment (μ̂) time correlation function
(TCF)60�62 through a Fourier transform (FT) operation:

IðωÞ ∼
Z þ¥

�¥
dt e�iωtTr½e�βĤ μ̂ð0Þ 3 μ̂ðtÞ�

Tr½e�βĤ� ð1Þ

where Tr denotes the trace operator, Ĥ is the Hamiltonian of the
system (under the Born�Oppenheimer approximation), and β
is the inverse of the Boltzmann constant times the temperature.

In order to make it possible to extend this theory to classical
dynamics, one can approximate the quantum TCF by using its
classical analog63 and the quantum electric dipole moment
operator by using the classical dipole moment μ:

IðωÞ ∼ Q ðωÞ
Z þ¥

�¥
dt e�iωtÆμð0Þ 3μðtÞæ ð2Þ

where the effect of approximating quantum operators with their
classical counterparts is compensated by the use of the quantum
correction factor Q.

Although different forms for Q(ω) have been proposed in the
literature,64 this factor is often omitted, and it has been recently
proven that its inclusion does not significantly affect I(ω).65 We
calculate IR spectra by omitting the prefactor, and they are thus
expressed in arbitrary units. In addition, we do not introduce any
scaling factor to rescale our computed frequencies in order to
better reproduce the experimental results.

During the SEBOMD simulation in the gas phase, the dipole
moment of NMA can be obtained by applying the dipole
moment operator to the wave function of the molecule.
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However, the same procedure cannot be applied to NMA in
water, due to the delocalization of the wave function over the
entire system. This issue has already been discussed in a previous
paper,7 and we adopt here the same approximation proposed
there. We evaluate the dipole moment of NMA on the basis of
partial atomic charges (instantaneous Mulliken, CM1, and CM2
charges) and instantaneous atomic positions, exactly as it is done
for the classical MM simulations. In the gas phase, we compared
the SEBOMD results based on partial charges with those
obtained from the dipole moment operator. As for the IR
spectrum, no differences were observed with respect to the band
positions and shape.

In solution, experiments aimed at recording the IR spectrum
of a solute use a subtraction method (the spectrum of a blank is
subtracted from the spectrum of the full solution). In simulations,
this would translate into considering cross-correlations (solute�
solvent) to calculate the TCF of the dipole moment as well as
solute�solute correlations. However, this approach requires
taking into account correlations between solute and solvent
motions, and much better statistics are necessary compared to
the calculation of self-correlations.33,66,67 Following the same
approximations proposed by Gaigeot and collaborators,66 we
restrict our calculation to self-correlations of the NMA dipole
moment.

In the quantum calculation, at each time step, NMA interacts
with neighboring water molecules; thus its instantaneous charge
may differ from zero. We therefore calculated the dipole moment
of NMA with respect to its center of mass.

According to eq 2, we should calculate the Fourier transform
of the TCF of the dipole moment. In order to obtain reasonable
results, one needs very good statistics for the calculation of the
TCF, which means quite long NVE simulations. This can be
more easily done in the gas phase. However, when switching to
simulations in water with periodic boundary conditions using a
semiempirical Hamiltonian, temperature control is necessary. In
the Andersen approach, this means that we have NVE intervals
between two successive velocity randomizations. In our case, we
have a collection of 1 ps NVE simulations over a 300 ps
simulation time.

We thus tested a procedure to calculate IR spectra on each 1 ps
NVE trajectory, averaging over the 300 1 ps blocks. In the gas
phase, we had the chance to compare this procedure with the
single 300-ps-long NVE simulation.

Another issue that we analyzed is the numerical method to
calculate the Fourier transform of a TCF. In the gas phase, we
compared IR spectra obtained by using the Wiener�Khinchin
theorem68 and those obtained by using the maximum entropy
method (MEM)68 with the result obtained by numerically
calculating the integral in eq 2.

We found that the MEM and the procedure based on
averaging over the 300 NVE blocks, 1-ps-long each, gave spectra
in excellent agreement with the direct evaluation of the FT of the
dipole TCF in the microcanonical ensemble. The comparison
between the different methodologies is available as Supporting
Information (SI).

Peak assignment on IR spectra was carried out by using a
decomposition of the total vibrational density of states (VDOS)
into atomic contributions. This procedure is often used when
dealing with peak assignment in calculated IR spectra.66,67 The
VDOS is obtained by calculating the FT of the self-correlation
function of the atomic velocities of NMA. The same procedure
described above to calculate the FT of a time correlation function

was applied. Additionally, some tests were performed by using
internal coordinates to confirm the assigment. Results for the
VDOS decomposition are provided as SI.

While more precise methods have been proposed to identify
the IR bands when the vibrational modes differ significantly from
the zero temperature equilibrium normal modes (ENMs) in the
gas phase,69,70 it was not necessary to apply them in the present
work, since recent studies have shown that the instantaneous
normal modes of the NMA molecule in water solution can be
identified using the corresponding ENMs as patterns (see refs 71
and 72).

In the next section, we shall discuss and compare the
molecular properties that we obtained from our models. Only
IR spectra calculated by applying the MEM on data from NVT
simulations will be presented.

3. RESULTS

3.1. Results in the Gas Phase. We first analyze the average
intramolecular properties calculated from our MD simulations.
When considering the equilibrium geometry of NMA, no
differences in the average bond distances are observed between
the cis and the trans conformers, and the values that we found by
using the PM3 Hamiltonian are similar to those found when
using the Amber03 force field, with the exception of the C�N
distance. Results are collected in Table 1. We recall that PIF
parameters only modify the intermolecular (solvent�solvent
and solvent�solute) interactions and therefore do not affect
the intramolecular properties of NMA in the gas phase.
In Table 2, we report the results obtained for the molecular

dipole moment of cis- and trans-NMA and a comparison with
other results obtained with different levels of calculations and
from experiments in the literature. Atomic charge parameters for
the Amber03 simulations and the Mulliken, CM1, and CM2
charges for the quantumHamiltonian are provided as Supporting
Information.
On average, our PM3 results are in reasonable agreement with

the data in the literature; in particular, the result obtained for
trans-NMA through CM1 charges is in remarkable agreement
with experiments.76,77 The Mulliken charges lead to an under-
estimation of the molecular dipole moment. Higher levels of
quantum chemistry predict a more polar cis conformer as well as
the PM3 calculations both from the electronic structure calcula-
tions on the minimum geometry and from the average value of
the SEBOMD simulations. This is in agreement with the trend

Table 1. Geometrical Parameters for Isolated cis- and trans-
NMAa

atom Amber03 cis Amber03 trans PM3 cis PM3 trans

CACE�HACE 1.09 1.09 1.10 1.10

CNMet�HNMet 1.09 1.09 1.10 1.10

C�O 1.22 1.22 1.22 1.22

N�H 1.01 1.01 1.00 1.00

CACE�C 1.52 1.52 1.51 1.51

C�N 1.33 1.34 1.43 1.43

N�CNMet 1.46 1.47 1.47 1.47
aAverage values from molecular mechanics MD and from SEBOMD
with a PM3 Hamiltonian. Distances are in Å. The standard deviation on
distances is 0.03 Å with the exception of the CO and CN distances, for
which it is 0.02 Å.
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based on Mulliken charges from SEBOMD simulations. On the
other hand, the MM force field Amber03 and CM1 charges at a
PM3 level predict the trans conformer to be more polar than the
cis. Finally, no difference in polarity is observed when evaluating
the molecular dipole moment through CM2 charges.
We now present our results for the IR spectra of cis- and trans-

NMA. In Figure 1, we show the computed spectra for cis- and
trans-NMA as obtained from MM MD simulations by using the
Amber03 force field.45

The procedure based on the VDOS decomposition, described
in section 2, allows us to deduce the following assignment. The
bands between 3200 and 3400 cm�1 are due to the N�H stretch,
those between 2800 and 3100 cm�1 to the C�H stretch (both
for the ACE and the N Met residues). The positions of such
bands are quite similar for cis- and trans-NMA, though the former
is slightly red-shifted in trans-NMA compared to cis. On the basis
of low temperature nitrogen matrices, the infrared spectra of cis-
and trans-NMA were measured.18 According to this study, the
N�H stretch absorption due to the cis form has a peak at
3458 cm�1 and the one due to the trans form at 3498 cm�1 .
Experiments in CCl4 at ambient temperature found a peak at
3476 cm�1, whereas symmetric and antisymmetric C�H
stretches fall between 2900 and 3000 cm�1.18,78

The analysis of the VDOS decomposition shows that in the
simulated spectrum of trans-NMA the H�N�C bending vibra-
tion (amide II) occurs at 1780 cm�1 and the C�O stretch
(amide I) occurs at 1680 cm�1, whereas in cis-NMA, these two
bands superimpose in a broader absorption around 1800 cm�1 .

Experimental measurements of the IR spectrum (see ref 78 and
references therein for the trans conformer) assign absorption
between 1714 and 1731 cm�1 to amide I and between 1497 and
1500 cm�1 to amide II. As for the experimental spectrum of the
less stable cis conformer,18 the amide I mode occurs in the same
frequency range as for the trans conformer, while the amide II
mode is found at lower frequencies (by about 40 cm�1) than in
trans. In any case, the molecular mechanics force field employed
does not give the correct trend between amide I and amide II
absorption. It has been pointed out that pyramidalization at the
peptide group N atom needs to be taken into account along an
MD simulation,79,80 since the CN torsion and the N�H out-of-
plane bending give an important contribution to the NMA IR

Figure 1. Isolated NMA. Calculated infrared spectrum from molecular
dynamics simulations with an MM force field. The infrared intensity is
arbitrary units.

Table 2. Comparison of NMADipole Moment (in Debye) As
Obtained from Different Methods in the Gas Phase:
Car�Parrinello Molecular Dynamics (CP-MD), Quantum
Chemistry Calculations at the B3LYP/6-31G* and HF/6-
31G(d) Levels of Theory, Our Results for Quantum Calcu-
lations at the PM3 Level (in the Case of Standard PM3
Parameters As Well As PM3 with the Correction for the
Peptide Bond (PM3-MM)), Our Results from SEBOMD at
the PM3 Level (Average Value of the Molecular Dipole—
from the Dipole Moment Operator—and the Corresponding
Values from Partial Atomic Charges Using Different
Schemes), and Our Results from Simulations with the Am-
ber03 Force Field

method cis-NMA trans-NMA

CP-MD66 4.38 3.99

B3LYP/6-31G*73 4.00 3.81

B3LYP/6-311þþG*74 4.31 3.97

HF/6-31G(d)75 4.37 4.22

MP2/6-31G(d)14 4.21 4.04

PM3 3.39 3.10

PM3-MM 3.68 (TS)a 3.31

PM3-SEBOMD 3.36 3.09

PM3-SEBOMD (Mulliken charges) 3.09 2.64

PM3-SEBOMD (CM1 charges) 3.24 3.79

PM3-SEBOMD (CM2 charges) 3.54 3.54

Amber03 molecular mechanics MD 4.09 4.50

exp. (in benzene)76 3.85

exp. (vapor)77 3.71�3.73
a In this case, geometry optimization of the cis conformer led to a
transition state (TS).

Figure 2. Isolated NMA. Calculated infrared spectrum from SEBOMD
simulations with a PM3 Hamiltonian. The infrared intensity is
arbitrary units.
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spectrum. Krimm and collaborators have performed extensive
studies showing that including geometry-dependent charges may
be more important than developing a polarizable MM force
field.81,82 An alternative approach has been proposed, generally
improving the agreement with experiments compared to the
classical MM-based evaluation of the vibrational properties of
biological systems.83 This method is based on including addi-
tional terms in the potential energy function of the MM
force field.
Another band in the IR spectrum from MD simulations,

located around 1590 cm�1 in cis-NMA, was assigned to the
HACE�CACE�C bend. This band is red-shifted to about
1510 cm�1 in trans-NMA. Between 1320 and 1510 cm�1, in
trans-NMA we find the amide III bend and the H�C�C and
H�C�N bending motions. As for cis-NMA, the same bands fall
between 1380 and 1590 cm�1. The amide III band position
varies between 1255 and 1259 cm�1 in experiments, and back-
bone motions absorb at lower frequencies, where the pattern
becomes more and more complicated for both conformers.
In Figure 2, we show the results obtained from SEBOMD

simulations by using the PM3 Hamiltonian. We recall that we
have different results according to the different scheme for partial
atomic charges.
The band positions and their width do not seem to depend on

the charge type, which however affects slightly the peak inten-
sities. Results are collected in Table 3.
The two regions in the high frequency portion of the spectrum

(between 3000 and 3200 cm�1 and around 3420 cm�1) are very
similar for cis- and trans-NMA, the latter being blue-shifted by

20 cm�1 compared to the cis. This finding is in agreement with
the experiment in ref 18.
The amide I band is located for both conformers around

1920 cm�1 . The result is overestimated compared to the average
experimental data. The amide II and amide III bands are spread
over the 1230�1480 cm�1 region for trans-NMA, and in a less
extended region (between 1290 and 1480 cm�1 region) for cis-
NMA. The amide II peak in cis-NMA is red-shifted by 20 cm�1

compared to the trans, again in agreement with the results in ref
18 (red shift of about 40 cm�1). The positions of the amide II and
amide III bands in the gas phase seem in quite good agreement
with experiments. MD simulations within the Car�Parrinello
scheme66 have provided the following results: the frequency for
amide I is 1609 cm�1 in trans-NMA and 1606 cm�1 in cis-NMA.
The frequency calculated for amide II is 1458 cm�1 in trans- and
1369 cm�1 in cis-NMA. Finally, The frequency for amide III is
1189 cm�1 in trans- and 1259 cm�1 in cis-NMA. Our results are
in general agreement with the CPMD results. In particular, the
amide I frequency is the same in cis- and trans-NMA, and the
amide II peak in cis-NMA is red-shifted compared to trans-NMA.
However, it seems that the latter approach leads to a better
agreement with experiments for the amide I band and to a worse
agreement for amide II. In addition, no bands in theN�H stretch
region are observed on the basis of CPMD simulations.
In summary, though the amide I experimental band position is

not accurately reproduced by our SEBOMD, we obtain a general
reasonable agreement with experiments. On the other hand, MD
with the Amber03 force field does not reproduce the correct
ordering between amide I and II, predicting a lower frequency
amide I mode compared to amide II.
3.2. Results in Water. First of all, we examine solvent effects

on the solute geometry. Compared to the results in the gas phase,
few or no differences are observed when using the MM force
field, whereas quite a few interesting conclusions can be drawn
from an analysis of the results obtained with a quantum electro-
nic Hamiltonian. In the latter case, we used PM3 parameters with
PIF corrections, as described in section 2. Results obtained on the
intramolecular distances are collected in Table 4.
When going from the gas phase to a solution in water, the

C�O bond is elongated. The distance between the C and the N
atoms is quite shortened. This is in agreement with the results
observed in the literature.66

To interpret this result, we recall the two possible resonance
structures of NMA in Figure 3.
In a polar solvent, the zwitterionic form is stabilized by

electrostatic interactions between the solute and the solvent,
and accordingly, the C�O distance elongates and the C�N
bond shortens. This effect cannot be reproduced by MM force

Table 3. Collection of Results for the Infrared Frequencies Which Are Characteristic of the Peptide Bond of NMA in the Gas
Phase and in Water: Amide I (AI), Amide II (AII), Amide III (AIII), and N�H Stretch (δNH)

a

Amber03 SEBOMD experiment18,78

mode GP sol. Δ GP sol. Δ GP sol. Δ

AI 1680,b1800c 1680,b1800c 0 1920b,c 1800b,c �120 1714�1731 1625�1646 �90

AII 1780,b1800c 1780,b1800c 0 1420,b1440cc 1485,b1522c 75 1497,1500 1565�1585 80

AIII 1250,b1320c 1250,b1330c 5 1290,b1230c 1340,b1370c 95 1255�1259 1314�1317 60

δNH 3380,b 3370c 3380,b 3370c 0 3405,b 3410c 3370,b 3300c �110c 3476d 3300 �130
aAll data in the gas phase (GP), in water (sol.), and the average shift of the condensed phase results with respect to the gas phase (Δ) are reported
in cm�1. b cis-NMA. c trans-NMA. d In CCl4 solution.

Table 4. Geometrical Parameters for cis- and trans-NMA in
Watera

atom Amber03 cis

Amber03

trans PM3-PIF cis

PM3-PIF

trans

CACE�HACE 1.09 (0.00) 1.09 (0.00) 1.11 (þ0.01) 1.11 (þ0.01)

CNMet�HNMet 1.09 (0.00) 1.09 (0.00) 1.11 (þ0.01) 1.11 (þ0.01)

C�O 1.23 (0.00) 1.23 (0.00) 1.25 (þ0.03) 1.25 (þ0.03)

N�H 1.01 (0.00) 1.01 (0.00) 1.00 (0.00) 1.01 (�0.01)

CACE�C 1.52 (0.00) 1.52 (0.00) 1.50 (�0.01) 1.51 (0.00)

C�N 1.33 (0.00) 1.33 (�0.01) 1.39 (�0.04) 1.39 (�0.04)

N�CNMet 1.46 (0.00) 1.46 (�0.01) 1.48 (þ0.01) 1.47 (0.00)
aAverage values from molecular mechanics MD and from SEBOMD
with a PM3 Hamiltonian and PIF corrections. [The standard deviation
on distances is 0.03 Å with the exception of the CO and CN distances,
for which it is 0.02 Å.] Distances are in Å. In parentheses, we report the
shifts with respect to the gas phase.
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fields and, not surprisingly, in this case, MD simulations of NMA
in water do not predict significant changes in NMA geometry
with respect to the gas phase.
As for the out-of-plane position of the N�H bond in the case

of simulations with a quantumHamiltonian, we find distributions
corresponding to a pyramidal N atom (see Figure 4).
The distribution ismuch broader in solution than in the gas phase,

and the out-of-plane angle is smaller ((16� for cis- and(25� for
trans-NMA). This is consistent with a larger contribution of the
zwitterionic resonance structure in a polar solvent.
When analyzing CM1 and CM2 atomic charges (tables

collecting all results are available as SI), we observe a displace-
ment of electrons from the�NH group toward the�CO group,
again in agreement with a larger contribution of the zwitterionic
form. Charges on the O atom decrease, whereas those on the N
and the H atoms increase on going from the gas phase
to solution. The C atom is less affected. On average, about
about�0.1e is transferred from�NH to�CO.We can therefore
expect to observe a strong increase of the molecular dipole
moment in solution. We collect our results for the molecular
dipole moment together with other values obtained at different
levels of theory in Table 5.
As in the gas phase, some methods (Car�Parrinello MD,

density functional theory with a B3LYP functional and a

6-31G(d) basis set coupled with a continuum solvent, or our
PM3 calculation withMulliken andCM2 charges) predict a more
polar cis conformer, while others (Hartree�Fock calculations
with a 6-31G(d) basis set coupled with a reference interaction
site model (RISM) to describe the solvent, molecular mechanics
MD with the Amber03 force field, or our PM3 calculation with
CM1 charges) predict the trans conformer to be the most polar
in water.
Not surprisingly, very small induced dipole moments are

calculated when running MD simulation with an MM force field.
On the contrary, a very large change in the dipole moment on the
order of 3 D is calculated from CP-MD and in our simulations
when using CM1 charges. The effect is similar when using CM2
charges (about 2.7 D) and Mulliken charges (about 2.7�2.8 D),
but much smaller with HF/RISM (1.4�1.7 D) and B3LYP/
continuum (about 1 D). Since the two latter methods take into
account the solvent as a bulk, specific interactions between solute
and solvent are not described explicitly, in particular, the forma-
tion of hydrogen bonds with water molecules.
The final part of this section will be devoted to the analysis of

the IR spectra in water, and to a comparison with the gas phase
results.
The results obtained for the IR spectrum of cis- and trans-

NMA in water when running MD simulations with an MM force
field (see Figure 5) show no remarkable differences both in band
positions and shapes compared to the gas phase (compare with
Figure 1—peak positions are collected in Table 3).
The only perceivable difference in band position involves

those modes which are located at lower frequencies (under
1000 cm�1), where one can observe some line broadening both
for trans- and cis-NMA.
In addition to the wrong frequency ordering of amide I and

amide II bands, the Amber03 force field is thus not able to
describe the differences in the IR spectrum of peptides going
from the gas phase to aqueous solution.
On the other hand, the results obtained with the SEBOMD

approach display significant differences in the condensed phase
compared to the gas phase. This finding is in agreement with the
CPMD results from ref 66. The effect of the dipole induced by
water molecules on the solute has been shown to significantly
affect the spectral profile of amide I�III bands.25 In this work, the
authors have compared the relative intensity and the band
shape of amide I�III with experiments. An agreement with

Figure 4. Distribution of the angle formed by the N�H bond with the
plane instantaneously identified by N and the two C atoms from
molecular dynamics with the Amber 03 force field (left side) and from
SEBOMD (right side). Top panels: cis-NMA (gas phase and solution).
Bottom panels: trans-NMA (gas phase and solution).

Table 5. Comparison of NMA Dipole Moment (in Debye)
As Obtained from Different Methods in Aqueous Solutiona

method cis-NMA trans-NMA

CP-MD66 7.33 (þ2.95) 6.96 (þ2.97)

B3LYP/6-31G*-SCRF73 4.95 (þ0.95) 4.86 (þ1.05)

HF/6-31G(d)-RISM75 5.79 (þ1.42) 5.93 (þ1.71)

PM3,PIF(Mulliken) 5.94 (þ2.85) 5.41 (þ2.77)

PM3,PIF(CM1) 6.26 (þ3.02) 6.63 (þ2.94)

PM3,PIF(CM2) 6.26 (þ2.52) 6.22 (þ2.68)

Amber03 MM MD 4.14 (þ0.05) 4.54 (þ0.04)
aCar�Parrinello molecular dynamics (CP-MD), quantum chemistry
calculations (B3LYP/6-31G* in a continuum solvent and HF/6-31G(d)
coupled with RISM), our results from SEBOMD at the PM3 and PIF
levels (average molecular dipole from partial atomic charges using
different schemes), and from simulations with the Amber03 force field.
In parentheses, we report the shifts with respect to the gas phase.

Figure 3. Resonance structures for NMA.
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experimental features of these bands is achieved only if the solute
is treated at a quantum level by means of a semiempirical
electronic Hamiltonian.
In Figure 6, we collect the IR obtained from the three different

charge schemes used in this work.When comparing Figure 6 with
Figure 2, the IR bands in solution are broadened with respect to
gas phase spectra. In addition, differences between spectra for the
cis and trans conformers are enhanced in the condensed phase. A
more detailed analysis of solvent effects for each vibrational mode
is presented below and summarized in Table 3.
SEBOMD simulations predict the N�H stretch to be red-

shifted in both conformers. The trans conformer of NMA (band
around 3300 cm�1) undergoes a larger effect (red shift of about
110 cm�1) compared to the cis one (band around 3370 cm�1, shift
of about 35 cm�1). Experimentally, the frequency of the N�H
stretch was measured in CCl4 to be 3476 cm

�1 and 3300 cm�1 in
water.84 One should point out that this band is very sensitive to
temperature and concentration. A large red shift is observed in
experiments, the magnitude of which is compatible with our
calculated result based on the most stable conformer trans NMA.
The band related to the C�H stretch (between 2900 and

3200 cm�1) is similar for cis- and trans-NMA. Compared to the
gas phase, this band is quite broadened but not shifted. To our
knowledge, no experimental data are available for the frequencies
of the C�H stretching motions in aqueous solution.
The amide I band is located around 1800 cm�1, and the cis-

and trans-NMA conformers are predicted to absorb at the same
frequency. In this case, solvent effects lead to a red shift of about
120 cm�1 . Results in the literature for amide I absorption band
position vary from 1625 to 1646 cm�1 in aqueous solution.78 An
average red shift of about 90 cm�1 is thus observed, in good
agreement with our results.
In the cis-NMA spectra, the peak centered at 1485 cm�1 is

assigned to the amide II mode. A similar assignment is made in
the case of trans-NMA for the peak at 1522 cm�1 . Compared to
gas phase data, we predict a blue shift of 80 cm�1 in cis-NMA and
75 cm�1 in trans-NMA. Experimental results for this band in
water vary between 1565 and 1585 cm�1.78 The average blue
shift is thus about 80 cm�1, again in quite good agreement with
our calculated shift.

Bands between 1260 and 1370 cm�1 are quite broadened in
solution. In this region, we observe the amide III motion.
However, some other modes are active too, and it is not easy
to quantitatively extract their position. The cis absorption
appears at slightly lower frequencies compared to the trans form.
On average, we can estimate a solvent blue shift effect of about
95 cm�1. The experimental results for amide III absorption vary
between 1314 and 1317 cm�1, with an average blue shift of
60 cm�1 compared to the gas phase.78

The results obtained with Car�Parrinello MD in ref 66
predict an average blue shift of 110 cm�1 for amide I, an average
red shift 20 of cm�1 for amide II, and of 40 cm�1 for amide III.
The solvent effect obtained at this level of theory is again in fairly
good agreement with our description. A comparison with the
AM1/MMmethod used by Cho and collaborators25 can only be
carried out on the absolute values of the IR frequencies, since the
corresponding results in the gas phase are not available. In
addition, only the most stable (trans) conformer was considered.
Amides I, II, and III and theN�H stretch are reported to occur at
1896, 1721, 1444, and 3332 cm�1, respectively. With the
exception of the last band, it seems as if the AM1/MM combined
strategy tends to overestimate the frequencies which are char-
acteristic of the peptide bond.
The IR spectrum of trans deuterated NMA in a 16 D2O

molecule cluster has been calculated on the basis of a PM3/MM
approach.31 If we compare the results obtained in this work with the
experimental measurements78,85 on the amide I0 band (the band
corresponding to amide I in the deuterated system), we obtain an
underestimated blue shift (30 cm�1 in the simulations vs 90 cm�1 in
the experiment). Although not conclusive, this comparison suggests
that the solvent effect on the position of the solute IR bands is better
described when the full system is treated at the quantum level, thus
including mutual polarization and charge transfer.
Finally, broad absorption around 1000 cm�1 is related to

backbone motion, but it becomes more and more complicated to
analyze in depth the lower frequency regions of the spectrum,
since many different modes are active there.
Overall, solvent effects are well reproduced by our SEBOMD

simulations, although the absolute values of the frequencies are

Figure 6. NMA in water. Calculated infrared spectrum from SEBOMD
simulations with a PM3 Hamiltonian with PIF corrections. The infrared
intensity is in arbitrary units.

Figure 5. NMA in water. Calculated infrared spectrum from MD
simulations with an MM force field. The infrared intensity is
arbitrary units.
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not predicted with high accuracy. Specifically, when considering
the frequency of the amide I, II, and III modes, the calculated
frequencies are overestimated, the error being relatively large for
amide I but smaller and similar for amides II and III. As a
consequence, the gap between the amide I and II frequencies is
too high, while the amide II�amide III gap is in reasonable
agreement with experiments, both in the gas phase and in
solution.

4. CONCLUDING REMARKS

In this paper, we have reported the first analysis of infrared
spectra of solvated compounds using molecular dynamics simu-
lations in which the electronic Hamiltonian of the whole
solute�solvent system is described by a semiempirical quantum
mechanical method. The PM3 Hamiltonian was used to obtain
the electronic wave function of the system, and PIF corrections
for the core�core interaction terms were considered in order to
improve the description of intermolecular interactions. Themain
scope of this study was to assess the validity of this SEBOMD
approach to predict solvent effects on the vibrational frequency
of amide bonds. This is an important objective in the perspective
of the application of this model to larger systems such as
peptides, and eventually proteins.

Overall, our results are quite encouraging. Indeed, a remark-
ably good agreement was obtained with available experimental
data and other calculations in the literature. Interestingly, the
same study conducted by using a molecular mechanics, non-
polarizable force field showed no remarkable difference in the
infrared bands that are more significant signatures of a peptide
bond when going from the gas phase to aqueous solution. This
finding stresses the importance of a correct description of
electronic properties (polarization, charge transfer, etc.) for an
adequate molecular modeling of absorption spectra in solution.
This is particularly crucial in the case of amide (peptide) bonds
since the relative weight of neutral vs zwitterionic tautomeric
structures is extremely sensitive to electrostatic interactions with
the environment and needs to be accounted for.

As far as the absolute position of the bands is concerned, and
not surprisingly, our study shows the usual limitations connected
to the use of semiempirical methods, namely on the position of
the amide I band. In addition, predicted IR intensities are not
quantitative. However, several improvements of the present
approach can be envisaged. For instance, including the prefactor
in eq 2 might lead to more accurate band shapes,63,64,86 although
a strong effect should not be expected on the bands’ intensity.65

In addition, exploiting the possibility offered by the SEBOMD
approach to run long time scale simulations (i.e., compared to ab
initio MD) should allow one to unravel the role of the solute�
solvent cross-correlation term mentioned in section 266 and thus
the contribution of intermolecular coupling on the solute
vibrations.

Finally, it is worth noting that this approach would be suitable
for studying energy transfer in solution. In a recent work, a novel
formulation of the instantaneous normal modes (INM) ap-
proach was proposed and applied to energy reorganization after
the excitation of the amide I71 and the C�H stretching72 modes
of NMA in solution using anMM, nonpolarizable force field. The
relevance of this kind of investigation stems from the importance
of energy transfer along peptide chains in biological systems,
where polarization and charge transfer effects are expected to
play a role in the mechanism of energy redistribution through

intra- and intermolecular modes. Accordingly, coupling the
SEBOMD method to the INM analysis is a very promising
technique in this domain that will be evaluated in forthcoming
work with model peptides.
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ABSTRACT: Theoretical calculations of absorption and fluorescence properties of 1-phenylpyrrole have been performed, at the
CASPT2//CASSCF level, in the gas phase and in acetonitrile solution, using in the latter case the ASEP/MDmethod. In addition to
a locally excited state, it was also possible to identify a candidate intramolecular charge transfer state that could explain the second
red-shifted fluorescence band that appears in polar solvents. In the gas phase, the charge transfer state is found to lie higher in energy
than the locally excited state and the Franck�Condon absorption state, making it unlikely to be reached under these conditions. In
acetonitrile solution, the charge transfer state is stabilized and lies much closer to the locally excited state, becoming accessible after
absorption. The results indicate that the free-energy surface of the charge transfer state is very flat in solution, and several geometries
are possible, ranging from almost planar to twisted and bent. Solvent caging and transition probabilities favor emission from
structures with a small twist angle between the rings and without a pyramidal atom.

1. INTRODUCTION

A significant number of organic molecules combining electron
donor and acceptor groups exhibit the so-called dual fluores-
cence in polar solvents. In nonpolar solvents, the fluorescence
spectrum features a single “normal” band, which suffers only a
slight shift when the solvent polarity is increased. In polar
solvents, a second “anomalous” band appears in the spectrum;
this second band’s position and intensity is much more affected
by the solvent polarity, being strongly red-shifted and intensified
(at the expense of the “normal” band) in highly polar solvents.
The phenomenon of dual fluorescence has been widely studied
in the literature since its discovery 50 years ago.1�8 It was
suggested early on that the “anomalous” fluorescence band is
due to the existence of an intramolecular charge transfer (ICT)
state that can be stabilized in polar solvents, while in nonpolar
solvents only the state responsible for the “normal” band, usually
called local excitation (LE), is stable enough to be observed.

This picture is still generally accepted as a valid explanation for
the dual fluorescence. However, there is a continuing controversy
between different groups regarding the nature and geometry
of the ICT state, the possible existence of other intermediate
states, the mechanism through which the LE and ICT states are
formed, and practically every other detail of the dual fluorescence
phenomenon.

Perhaps the most successful models for the dual fluorescence
in the prototype molecule 4-(N,N-dimethylamino)benzonitrile
(DMABN) and its derivatives are the ones known as TICT
(twisted ICT) and PICT (planar ICT). These models propose,
respectively, a perpendicular and coplanar relative configuration
of the donor and acceptor groups. Experimental evidence in favor
of one model or the other is usually derived from comparison of
the properties of various compounds with different geometric
constraints and substituents. For example, compounds like 3,
5-dimethyl-4-(N,N-dimethylamino)benzonitrile, where the di-
metylamino group is forced to be twisted, display only the ICT
band in fluorescence, suggesting a TICT is responsible for the

band. Other compounds where the twisting is hindered (like
6-cyano-1,2,3,4-tethrahydroquinoline, NTC6) can present dual
fluorescence, which points to a PICT state. These apparently
conflicting conclusions probably indicate that the two models
can be valid, and each particular system will favor one of them.

In recent years, a pair of closely related molecules has been
studied for their dual fluorescence properties, see Figure 1. The
two rings in 1-phenylpyrrole (PP) can freely rotate around the
middle bond, while fluorazene (FPP) has amethylene bridge that
effectively locks the rings in an almost planar conformation.
Interestingly, both molecules have very similar photophysical
properties, and in particular, both show dual fluorescence in polar
solvents. Moreover, the planar FPP has been found to have
enhanced ICT emission compared to PP (it appears in less polar
solvents and has a higher quantum yield), which naturally leads
to the conclusion that the PICT model applies better to these
molecules.9,10 However, most theoretical calculations predict
a twisted structure for the ICT state of PP,11�15 which seems
unsatisfactory.

In this work, we have carried out a theoretical study on the
absorption and fluorescence properties of the PP molecule, both in
the gas phase and in acetonitrile solution. The electronic states of PP
are described with a multiconfigurational quantummethod, and we
used an explicit model of atomic detail for the solvent. By examining

Figure 1. Two similar compounds with dual fluorescence.
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the relative energies, geometries, and emission energies of the
different electronic states, we hope to cast further light on the
nature of the emitting ICT state of this interesting system.

Early during this research, it became evident that we were not
getting “ideal” TICT or PICT structures, and that this nomen-
clature would not be adequate to describe the results. Therefore,
in the rest of this paper, we have avoided the use of these two
terms, preferring other descriptive terms for the ICT state and its
geometries.

2. METHODS AND DETAILS

Solvent effects on the PP UV/vis spectra were calculated with
the ASEP/MD (Average Solvent Electrostatic Potential from
Molecular Dynamics) method. This is a sequential quantum
mechanics/molecular mechanics (QM/MM) method imple-
menting the mean field approximation. It combines, alternately,
a high-level quantum mechanics (QM) description of the solute
with a classical molecular mechanics (MM) description of the
solvent. One of its main features is the fact that the solvent effect
is introduced into the solute’s wave function as an average
perturbation. Details of the method have been described in
previous papers,16�18 so here we will only present a brief outline.

As mentioned above, ASEP/MD is a method combining QM
and MM techniques, with the particularity that full QM and MD
(molecular dynamics) calculations are alternated and not simul-
taneous. During the MD simulations, the intramolecular geome-
try and charge distribution of all molecules, and particularly the
solute, is considered fixed. From the resulting simulation data,
the average electrostatic potential generated by the solvent
molecules on the solute (ASEP) is obtained. This potential is
introduced as a perturbation into the solute’s quantum mechan-
ical Hamiltonian, and by solving the associated Schr€odinger
equation, one gets a new charge distribution for the solute, which
is used in the next MD simulation. This iterative process is
repeated until the electron distribution of the solute and the
solvent structure around it are mutually equilibrated.

The ASEP/MD framework can also be used to optimize the
geometry of the solute molecule.19 At each step of the ASEP/MD
procedure, the gradient and Hessian on the system’s free-energy
surface (including the van der Waals contribution) can be
obtained, and thus they can be used to search for stationary
points on this surface by some optimization method. In the
computation of the gradient and Hessian, the free-energy
gradient method20 is used, with the incorporation of the mean
field approximation to reduce the number of quantum calcula-
tions needed. In this way, after each MD simulation, the solute
geometry is optimized within the fixed “average” solvent struc-
ture by using the free-energy derivatives. In the next MD
simulation, the new solute geometry and charge distribution
are used. This approach allows the optimization of the solute
geometry in parallel with the solvent structure.

For calculating transition energies, the iterative process is
performed on the initial state of the transition (the ground state
for absorption, the excited state for emission); i.e., the atomic
charges for the MD and the energy derivatives for the geometry
optimization of the solute are calculated with the initial state’s
wave function. Then, with a frozen solvent model, the transition
energies between the different states are obtained.

Once the different solute electronic states and the solvent
structure around them have been optimized and equilibrated, the
free energy differences between those states can be calculated,

within the ASEP/MD framework, making use of the free energy
perturbation method.21,22 The expression we use to calculate the
free energy difference between two species in equilibrium in
solution, ΔG, is

ΔG ¼ ΔEþΔGint þΔV ð1Þ

whereΔE is the difference in the internal quantum energy of the
solute between the two species, ΔGint is the difference in the
solute�solvent interaction energy, which is calculated classicaly
with the free energy perturbation method, and ΔV is a term that
includes the difference in the zero-point energy (ZPE) and
entropic contributions of the solute. The last term, ΔV, is
normally evaluated by applying the harmonic approximation to
the vibrational modes of the solute in solution, and it needs the
information provided by the Hessian matrix. In this work,
obtaining an accurate enough Hessian matrix required computa-
tional resources that were too large, and we decided to approx-
imate the results by neglecting this term. It must be noted that
this ΔV term refers only to the internal nuclear degrees of
freedom of the solute; free energy contributions from the solvent
around the solute are properly accounted for in the ΔGint term.
2.1. Computational Details. The quantum calculations on

the solute molecule were done with the complete active space
self-consistent field (CASSCF)method,23 using the 6-31G* basis
set. In some cases, single-point calculations with the cc-pVTZ
basis set were also performed. The active orbitals were the six π
and π* orbitals of the phenyl ring, plus the five π and π* orbitals
of the pyrrole ring, and 12 electrons were included in these
orbitals, for a (12,11) total active space. All calculations were
performed using a state-average (SA) of the first five singlet
states, with equal weights. It is known that, in order to obtain
accurate transition energies, it is necessary to include the
dynamic electron correlation in the quantum calculations, which
we did with the complete active space second order perturbation
(CASPT2) method,24,25 using the SA(5)-CASSCF(12,11) wave
functions as a reference. An IPEA-shifted (ionization poten-
tial�electron affinity) zeroth-order Hamiltonian has been pro-
posed for CASPT2 calculations,26 which is supposed to reduce
systematic overstabilization errors in open-shell systems (as is
the case of the excited states studied here). We did all CASPT2
with the proposed IPEA shift of 0.25 Eh (CASPT2(0.25)) as well
as with no IPEA shift (CASPT2(0.00)). To minimize the
appearance of intruder states, an additional imaginary shift of
0.1 i Eh was used. No symmetry was imposed or assumed in
any case.
The MD simulations were carried out with rigid molecules,

with acetonitrile (CH3CN) as a solvent. Lennard-Jones para-
meters and solvent atomic charges were taken from the OPLS-AA
(Optimized Potentials for Liquid Simulations, all atoms) force
field,27 solute atomic charges were computed from the quantum
calculations through a least-squares fit to the electrostatic poten-
tial obtained at the points where the solvent charges are located.
The geometry of acetonitrile was optimized with the Becke’s
three-parameter Lee�Yang�Parr density functional (B3LYP)
and the 6-311G** basis set. A total of 375 CH3CNmolecules and
the solute were included at the experimental solvent density
(779.3 kg/m3). Periodic boundary conditions were applied, and
spherical cutoffs were used to truncate the interatomic interac-
tions at 12.75 Å. Long-range interactions were calculated using
the Ewald sum technique. The temperature was fixed at 298.15 K
by using the Nos�e�Hoover thermostat. A time step of 0.5 fs was
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used during the simulations; each of them was run for 50 ps after
25 ps of equilibration.
At each step of the ASEP/MD procedure, 500 configurations

evenly distributed from the MD run were used to calculate the
ASEP. The charges from each solvent molecule were kept
explicitly whenever the molecule’s center of mass was closer
than 9 a0 to any solute nucleus; the effect of the farther molecules
was included in an additional shell of fitted charges. EachASEP/MD
run was continued until the energies and solute geometry and
charges were stabilized for at least five iterations; results are
reported as the average of these last five iterations, being an
effective average of 250 ps dynamics.
For in solution calculations, a development version of the

ASEP/MD software17 was used. All quantum calculations were
performed withMolcas 6.4 andMolcas 7.4.28 AllMD simulations
were performed using Moldy.29 The electrostatic potential
generated by the solute was calculated with Molden.30

3. RESULTS AND DISCUSSION

3.1. Gas Phase. 3.1.1. Optimized Geometries. The PP geome-
try was optimized in the gas phase at the SA(5)-CASSCF-
(12,11)/6-31G* level for the electronic ground state and
different excited states. For comparing and describing the
structures, we use some geometric parameters, such as the
average bond length of the phenyl ring (Ph), the average bond
length of the pyrrole ring (Py), the phenyl�pyrrole bond length
(Ph�Py), or the phenyl�pyrrole twist angle (θ). See Figure 2
and Table 1 for the atom numbering and parameter definitions.
The optimized ground state (GS) structure features the usual

aromatic bond lengths in benzene and pyrrole (Ph = 1.397 Å, Py =
1.385 Å) and a similar Ph�Py length of 1.400 Å. The N1�C6

bond is coplanar with both rings, and the twist angle θ takes a

value of 29.7�. Similar geometries are found in the literature for
theoretical calculations,11�13,15,31,32 the θ angle ranging from 28�
with AM1 to 42.7� with CASSCF(12,11)/6-31G*. The experi-
mental determination of the twist angle in the gas phase yielded
values of 32�33 and 38.7�.34 The pyrrole moiety is more electron-
withdrawing than the phenyl, resulting in a slightly polarized
electron density for the PP molecule, with a small global dipole
moment of 1.48D.
At the ground state geometry, the first excited state corre-

sponds to a π f π* transition in the phenyl ring. When the
geometry is optimized for this state, the LE (local excitation)
geometry is reached. The rings in this geometry are also linear
and slightly twisted. Ph�Py is shorter than for the GS (1.385 Å),
and the θ angle is smaller too (20.9�). Reflecting the local
excitation character of the state, Ph increases significantly to
1.432 Å. These features agree with other theoretical calculations,
where the θ angle ranges from 1.95� with CIS/6-31þG** to
29.5� with CASSCF(12,11)/6-31G*,15,32 although Zilberg and
Haas reported a planar structure with θ = 0.0�.13 The experi-
mental data indicate that the optimum angle is 19.8�, but the
rotation barrier is on the order of 0.3 kcal/mol.34 The electron
distribution in this state is similar to that of the ground state, and
the dipole moment decreases to 0.40D.
In the higher excited states at the GS geometry, there is an

intramolecular charge transfer. The electron density polarization
is inverted with respect to the ground state, and the negative
charge is displaced toward thephenyl ring, (seebelow, in section3.1.2),
which we indicate in the tables with a negative sign in the dipole
moment. When the geometry of a charge transfer state is opti-
mized in the gas phase, at least two different structures can be
found. The lowest energy structure we could get has a pyrami-
dalized C6 atom, which is also slightly out of the main phenyl
plane. The angle φ, which measures this pyramidalization of C6,
is 134.3�, while the twist angle θ is almost 90�. The deformation
of the two rings is measured by their “quinoidality”, defined in
Table 1 as Q(Ph) and Q(Py), indicating the extent to which the
C7�C8 and C10�C11 bonds are shorter (or longer, for negative Q)
than the other bonds in the phenyl ring, and similarly for the
pyrrole. In this case, Q(Ph) is 0.050 Å and Q(Py) is �0.085 Å,
meaning that the C7�C8 and C10�C11 bonds become shorter
while the C2�C3 and C4�C5 bonds become longer. The Ph�Py
bond is longer than for the GS structure, 1.486 Å. At this geo-
metry, the charge transfer state is the first excited singlet, S1, and
has a dipole moment of 8.21D. This bent twisted structure, which
we will denote with PQ (perpendicular quinoidal), is also
reported by Xu et al.,15 and is found as well in calculations for
the DMABN molecule.35,36

In the other structure, we find for the ICT state, the two rings
remain almost linear, with a φ angle close to 180�, and the twist
angle θ, instead of becoming perpendicular, decreases from the
GS structure to 16.1�. In general, this structure, which we will call
LQ (linear quinoidal), is similar to the GS and LE structures, with
a shorter Ph�Py length (1.373 Å) and quinoidal and antiqui-
noidal phenyl and pyrrole rings, respectively (Q(Ph) = 0.074 Å,
Q(Py) =� 0.093 Å). At this geometry, the ICT state is not the
first but the second excited state, S2 (although very close to S1),
and its dipole moment is lower than for the PQ, 4.67D, but in the
same direction. A similar structure is reported by Zilberg and
Haas,13 although they use planar symmetry and give a very low
dipole moment for it, 0.75D; this smaller value may be due to the
presence of the S1 state very close in energy, and to a different

Figure 2. Atom numbering of the PP molecule and illustration of the
two angles φ and θ.

Table 1. Definition of Geometric Parameters for the PP
Moleculea

Ph = 1/6(d(C6C7) þ d(C7C8) þ d(C8C9) þ d(C9C10) þ d(C10C11)

þ d(C11C6))

Py = 1/5(d(N1C2) þ d(C2C3) þ d(C3C4) þ d(C4C5) þ d(C5N1))

Q(Ph) = 1/4(d(C6C7) þ d(C8C9) þ d(C9C10) þ d(C11C6))

� 1/2(d(C7C8) þ d(C10C11))

Q(Py) = 1/3(d(N1C2) þ d(C3C4) þ d(C5N1)) � 1/2(d(C2C3)

þ d(C4C5))

Ph�Py = d(N1C6)

φ = a(AC6N1)

ψ = a(C6N1A0)
θ = D(BC6N1B0)

a d is a bond length, a a bond angle, andD a dihedral angle. Point A is the
midpoint between C7 and C11; point B is 1 Å away from C6, in the
normal direction of the C6C7C11 plane. Points A0 and B0 are equivalent
for the pyrrole ring. The angle ψ is always very close to 180�.
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state-averaging in their calculations. A summary of the different
structures optimized in the gas phase is provided in Table 2.
Other authors have reported antiquinoidal structures for a

charge transfer state,13,14,37 where the C7�C8 and C10�C11

bonds are longer than other phenyl ring bonds, and therefore
Q(Ph) is negative. We have, however, been unable to obtain such
structures, all trials reverting to one of the quinoidal or LE
geometries.
3.1.2. Absorption. The vertical absorption properties of PP at

the optimized ground state geometry are summarized in Table 3.
We report the CASSCF transition energies for comparison, but it
is known that only transition energies calculated with dynamic
electron correlation are reliable. Therefore, we will only discuss
CASPT2 energies in the rest of the article. By comparing the
CASPT2(0.25) and CASPT2(0.00) columns, it is ascertained
that the former values are always 0.3�0.4 eV larger; this difference
has been found in previous works.35,38 Other properties like dipole
moments or oscillator strengths are much more similar between
the two CASPT2 variants, and only CASPT2(0.25) values are
reported. Of the four transitions studied, only S0 f S2 has a
relatively large oscillator strength and is therefore predicted to be
the active transition in the absorption spectrum. The experi-
mental spectrum shows a broad band at 5.03 eV,39 and in some
solvents a weak shoulder appears in the red end, indicating the
presence of a hidden band. Thus, the experimental absorption
can be safely assigned to the S0 f S2 transition.
As previously found, the CASPT2(0.00) values with the

6-31G* basis set tend to agree very well with the experiment,

while CASPT2(0.25) values are overestimated. This has been
attributed to an error cancellation in the case of CASPT2(0.00),
since in general, when increasing the basis set quality, transition
energies decrease, and then,with larger basis sets, theCASPT2(0.25)
results are closer to experimental results and CASPT2(0.00)
results are underestimated. This can be confirmed in Table 4,
where we show the results of calculations performed with the cc-
pVTZ basis set on the same geometries obtained with 6-31G*.
Other authors have also found that CASPT2(0.25) results are
more robust and in better agreement with other comparable
methods.40 In view of these facts, we will generally report
CASPT2(0.25) values, bearing in mind that transition energies
are probably overestimated by around 0.4 eV due to the limited
basis set employed. One should also be cautious when comparing
with CASPT2 results reported in the bibliography, for many of
them use the CASPT2(0.00) or similar variant.
When the electron configurations of the states are examined,

it is clear that states S3 and S4 correspond mainly to single
excitations from the pyrrole to the phenyl ring. In terms of the
simplified molecular orbitals pictured in Figure 3, S3 is a 2 f 3
transition, and S4 is 2f 4. S1 has a significant contribution from
other orbitals, resulting in a πf π* transition local to the phenyl
ring, while S2 has the larger contribution from 1f 3, but there is
significant mixture of other transitions. It is interesting to note
that, although the absorption to the S2 state is the active one and
this state has an evident charge transfer character, the optimized
ICT structures detailed above (PQ and LQ) correspond to the
electron configuration of S3 (2f 3), as suggested by the values of
Q(Ph) and Q(Py).
The energies and electron configurations of the states at the

GS geometry are in good agreement with previous calculations
by other groups,11,12,14,15 although the DFT/MRCI method
gives relatively lower energies for the S3 and S4 states.
3.1.3. Fluorescence. Experimentally, a single fluorescence

band, assigned to the LE state, is observed in the gas phase or

Table 2. Geometrical Parameters andDipoleMoments of the
Different Optimized Structures of PP in the Gas Phasea

GS (S0) LE (S1) PQ (S1) LQ (S2)

Ph (Å) 1.397 1.432 1.417 1.420

Py (Å) 1.385 1.387 1.389 1.405

Q(Ph) (Å) 0.004 �0.003 0.050 0.074

Q(Py) (Å) 0.025 0.035 �0.085 �0.093

Ph�Py (Å) 1.400 1.385 1.486 1.373

180 � φ (Å) 0.0 0.0 45.7 3.1

θ (deg) 29.7 20.9 89.6 16.1

μ (D) 1.48 0.40 �8.21 �4.67
aGeometries optimized at the SA-CASSCF level, dipoles calculated at
the CASPT2(0.25) level. The negative sign in the dipole indicates the
negative charge is displaced towards the phenyl ring.

Table 3. Vertical Absorption Energies (in eV), Dipole Mo-
ments (in D), and Oscillator Strengths for the PPMolecule in
Gas Phase at the GS Geometrya

vertical energies

CASSCF CASPT2(0.25) CASPT2(0.00) exp.39 μ f

S0 1.48

S1 4.77 4.85 4.51 0.59 0.004

S2 6.04 5.48 5.05 5.03 �3.43 0.436

S3 6.13 5.84 5.53 �7.15 0.012

S4 6.61 6.20 5.92 �10.09 0.037
aDipole moments and oscillator strengths calculated at the CASPT2-
(0.25) level. The negative sign in the dipole indicates the negative charge
is displaced towards the phenyl ring.

Table 4. Same as Table 3, with the cc-pVTZ//6-31G* Basis
Set

vertical energies

CASSCF CASPT2(0.25) CASPT2(0.00) μ f

S0 1.50

S1 4.72 4.71 4.28 0.42 0.004

S2 5.89 5.20 4.71 �3.83 0.449

S3 5.96 5.57 5.21 �7.41 0.012

S4 6.37 5.85 5.49 �10.08 0.061

Figure 3. Main active molecular π orbitals of PP (simplified). Dashed
contributions appear in more planar structures (lower θ). In the
dominant ground state configuration, orbitals 1 and 2 are doubly
occupied, while 3 and 4 are empty (12223040).
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nonpolar solvents,10,34,39,41,42 with a maximum at around
4.10�4.15 eV. In Table 5, we have summarized the calculated
emission properties from the three excited-state structures
obtained. The predicted LE fluorescence agrees very well with
the experimental value, as does the Stokes shift, and the low
oscillator strength is in accord with the findings of Belau et al.,43

who conclude that the observed fluorescence occurs from a state
different from that populated at excitation. The two charge
transfer geometries have very different fluorescence properties:
emission from the charge transfer state in PQ is around 0.9 eV
lower in energy than in LQ, and its oscillator strength is
significantly weaker. The ΔE values indicate that, while all three
states are below the Franck�Condon absorption to S2 (5.48 eV,
see Table 3), only LE has a lower energy than S1 at the GS
structure (4.85 eV). This may explain why a single fluorescence
band, corresponding to LE, is observed in the gas phase. TheΔE
value for the LE structure, 4.67 eV, can be compared with the
experimental 0�0 transition which is found at around 4.40 eV.34

A scheme of the relative energies of the states at the different
geometries is presented in Figure 4.
As happened in the case of absorption, calculations with the cc-

pVTZ basis set yield lower transition energies by around 0.2 eV
andmake the CASPT2(0.00) values underestimated with respect
to the experimental results. For comparison, cc-pVTZ result are
given in Table 6.
3.2. Acetonitrile Solution. 3.2.1. Optimized Geometries. The

same structures obtained in the gas phase for the PP molecule
were also optimized in acetonitrile solution, using the ASEP/MD
method16�18 to model the solvation. The resulting geometries
are given in Table 7. In the case of the LQ structure, it was
not found to be a minimum but yielded the BQ structure when
fully optimized (see below). The reported LQ geometry in
solution corresponds to an optimization with the C8�C7�
C6�N1 and C10�C11�C6�N1 dihedrals fixed to the ground
state geometry values (an unconstrained optimization from the
Franck�Condon point proceeds first to LQ and then to BQ).
The GS and LE geometries are hardly affected by the solvent,

and only a small increase in the dipole moment is observed. The
charge transfer structures PQ and LQ, as expected, suffer more
significant changes. The φ angle in PQ becomes more linear, and
the θ angle in LQ becomes more planar. The bond lengths are
more similar between both structures than in the gas phase. The
dipole moments are also quite similar and greatly enhanced from
the gas phase values. These findings are in agreement with results
obtained with the PCM method.15

In solution, we found another optimized structure for a charge
transfer state, characterized by pyramidal C6, like PQ, but with a

nonperpendicular θ; this structure will be called BQ (bent
quinoidal). In Table 7, it can be seen that the bond lengths
and dipole moment are rather similar to PQ and LQ. The
optimized charge transfer state in all three quinoidal structures
obtained (PQ, LQ, and BQ) is dominated by the single excitation
2 f 3 (see Figure 3), suggesting that they belong to the same
electronic energy surface. As in the gas phase calculations, we
could not obtain an optimized geometry of antiquinoidal
(negative Q(Ph)) character.
3.2.2. Absorption. The results for ground state absorption

properties of PP in CH3CN are summarized in Table 8. The
values obtained are very similar to those in the gas phase, with a
small blue shift in the transition energies. The dipole moments of
the S0 and S1 states are slightly increased, while the dipoles
decrease for the other states due to their opposite direction. The
calculated solvatochromic shift, 0.07 eV, contrasts with the
experimental shift, �0.12 eV. A similar discrepancy was found
in DMA (N,N-dimethylaniline) and DMABN,35,38 and we attri-
bute it to the neglect of the dispersion component in the electron
transition energies. The dispersion component is expected
to be quite uniform among solvents of similar refractive indexes,
such as hexane (n = 1.375) and acetonitrile (n = 1.342). By
comparing the transition energies in the gas phase (5.03 eV) and
in hexane (4.87 eV),10 we can get an estimation for the dispersion
contribution to the solvatochromic shift. If this estimation
(�0.16 eV) is added to the calculated gas�acetonitrile shift, an
almost perfect agreement with experimental results is obtained.
Otherwise, the blue shift in a vertical transition can be expected,
in view of the opposite direction of the dipole moments in the S0
and S2 states.
3.2.3. Fluorescence. The calculated emission energies from the

different optimized excited states in solution are shown in Table 9.

Table 5. Vertical Emission Energies (Transitions to S0, in
eV), Dipole Moments (in D), and Oscillator Strengths for the
PP Molecule in the Gas Phasea

vertical energies

CASPT2(0.25) CASPT2(0.00) μ f ΔE

LE (S1) 4.45 4.12 0.40 0.005 4.67

PQ (S1) 3.80 3.55 �8.21 0.001 5.12

LQ (S2) 4.71 4.41 �4.67 0.011 5.42
aΔE is the relative energy (in eV) with respect to S0 at the ground state
minimum, GS. Dipole moments, oscillator strengths, and ΔE calculated
at the CASPT2(0.25) level. The negative sign in the dipole indicates the
negative charge is displaced towards the phenyl ring.

Table 6. Same as Table 5, with the cc-pVTZ//6-31G* Basis
Set

vertical energies

CASPT2(0.25) CASPT2(0.00) f ΔE

LE (S1) 4.32 3.90 0.005 4.56

PQ (S1) 3.64 3.34 0.001 5.04

LQ (S2) 4.52a 4.15 0.010 5.22
aAt this level, the charge transfer state is S1.

Table 7. Geometrical Parameters and Dipole Moments of the
Different Optimized Structures of PP in Acetonitrile Solutiona

GS (S0) LE (S1) PQ (S1) LQ (S1)
b BQ (S1)

Ph (Å) 1.397 1.432 1.415 1.415 1.415

Py (Å) 1.385 1.387 1.388 1.393 1.391

Q(Ph) (Å) 0.004 �0.003 0.056 0.063 0.061

Q(Py) (Å) 0.023 0.034 �0.092 �0.095 �0.096

Ph-Py (Å) 1.404 1.386 1.468 1.417 1.446

180 � φ (�) 0.1 0.1 36.5 1.3 32.0

θ (�) 29.4 19.0 87.0 32.7 41.7

μ (D) 1.96 0.56 �11.92 �10.79 �10.91
aGeometries optimized at the SA-CASSCF level; dipoles calculated at
CASPT2(0.25) level. The negative sign in the dipole indicates the
negative charge is displaced towards the phenyl ring. bNot a fully
optimized minimum, see the text.
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As with the absorption, there is very little change in the emission at
the LE geometry, something that is also observed experimentally for
the LE band (4.05 eV in CH3CN,

10 4.10 eV in the gas phase).
The most interesting results are obtained by comparing the

emissions from the ICT structures. There is a large variation
in the transition energies for PQ, LQ, and BQ, of almost 1 eV,
and the oscillator strength ranges from practically zero (less than
3� 10�5) to approximately the same value as for the LE emission,
both quantities increasing in the order PQ < BQ < LQ. The band
maximum for the experimentally observed CT band in aceto-
nitrile is located at 3.48 eV; this would agree (considering the
overestimation of the transition energies with CASPT2(0.25)
already discussed) with the LQ emission, the emissions for PQ
and BQ being too low.
The relative free energy of the states at their respective

structures is listed in the ΔG column. A scheme of the energies
of the first five states for each structure is shown in Figure 5. The
three ICT structures have a similar energy, well below S2 at GS
and comparable to S1, and are therefore accessible from the initial
excitation of the molecule; they are also very close to the energy
of the fluorescing LE state.

The almost constant energy from LQ to BQ and PQ indicates
that the free energy surface is probably very flat between these
structures, and fluorescence would be more likely wherever the
oscillator strength for the S1f S0 transition is larger. This would
favor emission at LQ and BQ, while the PQ geometry, although
energetically available, would give rise to almost no fluorescence.
Druzhinin et al.10 have estimated some thermodynamic quan-

tities for the PP system from the fluorescence properties; in
particular, they conclude the free energy difference between the
emitting LE and ICT states is lower than 1 kcal/mol in
acetonitrile at room temperature. Our results yield an ICT state
about 4 kcal/mol (0.18 eV) higher in energy than the LE state;
considering the errors, approximations and assumptions in the
experiments, interpretations, and calculations, there is qualitative
agreement with the recent experimental findings.
It is interesting that the best accord with the experimental

fluorescence is obtained for the LQ structure, which is not a true
minimum in our calculations. This could be due to a limitation in
the calculation level used in this work, and it is possible that by
including a more complete description in the quantum calcula-
tions a true minimum with lower relative energy would be

Table 8. Vertical Absorption Energies (in eV), Dipole Mo-
ments (in D), and Oscillator Strengths for the PPMolecule in
Acetonitrile at the GS Geometrya

vertical energies

CASPT2(0.25) exp.10 μ f

S0 1.96

S1 4.89 1.22 0.003

S2 5.55 4.91 �2.41 0.413

S3 5.96 �6.26 0.014

S4 6.38 �9.48 0.037
aThe negative sign in the dipole indicates the negative charge is
displaced towards the phenyl ring.

Table 9. Vertical Emission Energies (Transitions to S0, in
eV), Dipole Moments (in D), and Oscillator Strengths for the
PP Molecule in Acetonitrilea

vertical energies

CASPT2(0.25) μ f ΔG

LE (S1) 4.47 0.56 0.005 4.68

PQ (S1) 3.02 �11.92 0.000 4.86

LQ (S1) 3.95 �10.79 0.004 5.03

BQ (S1) 3.31 �10.91 0.002 4.86
aΔG is the relative free energy (in eV) with respect to S0 at the ground
state minimum, GS. The negative sign in the dipole indicates the
negative charge is displaced towards the phenyl ring.

Figure 4. Relative energies (CASPT2(0.25), in eV) of the calculated electronic states of PP in the gas phase at the optimized geometries. The state for
which each geometry is optimized is drawn as a wavy line. States of equivalent electron configuration are joined by lines. For the nature of the different
states, labeled on the left, refer to Table 3, Figure 3, and the corresponding text.
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obtained. On the other hand, the experimental fluorescence band
maximum need not correspond to aminimum in the excited state
surface, and other elements such as the system’s dynamics and
the Franck�Condon factors should be included. Some of these
considerations favor the fluorescence at an LQ-like structure.
First, as pointed out above, the oscillator strength for the electron
transition is higher at LQ than at BQ or PQ. Also, the overall
molecular shape in LQ is more similar to GS and LE; this means
that the structure can be reached with less important solvent
reorganization around the solute, while for reaching BQ or PQ
more significant solvent changes are needed.
To investigate this suggestion, we optimized the ICT state

keeping the solvent frozen in equilibrium with the ground state.
The result was a geometry practically identical to LQ in the gas
phase, and the transition energywas very similar as well (4.80 eV). It
indicates, nevertheless, that the frozen solvent does not pose
significant electrostatic or steric impediments to the solute’s attain-
ing a geometry close to LQ.When afterward the solvent geometry is
relaxed and the solute and solvent are mutually equilibrated, as we
mentioned above, the solute geometry proceeds by first keeping the
φ angle around 180�, and only later is the molecule bent.
In another calculation, the solute geometry was fixed at GS,

and the solvent was equilibrated with the active absorption state
(identified by its large oscillator strength, initially S2). In this
situation, S0 and S1 are destabilized by 0.33 eV and 0.20 eV,
respectively, while S3 and S4 are stabilized by 0.36 eV and 0.61 eV.
This is expected given the orientation and magnitude of the
dipole moments of the states. The result is that the S2 and S3
states become almost degenerate, but the S1 state still corre-
sponds to a local excitation.
Considering the above two calculations together, it can be

concluded that the solvent’s direct influence alone is not
sufficient to stabilize the ICT state below the LE one, and a
change in the solute geometry is needed. This change, however, is
not necessarily a twist of the two rings (θ angle), themodification
of the rings’ bond lengths, combined with the solvent equilibra-
ton, being enough to ensure the ICT state becomes the first
excited state, S1.

Xu et al.,15 in a theoretical study of PP and FPP with a similar
computational level to the present work, but using the PCM
solvent model, arrived to different conclusions. They report, as
we do, a considerably flat energy surface for the ICT state. On
this surface, they locate a minimum ICT structure comparable to
our PQ and two other structures with linear φ angle, planar and
twisted (PICT and TICT), with θ equal to 0� and 90�,
respectively (these two with symmetry constraints). The solva-
tochromic shift they obtain with PCM for PQ is about half of
what we get (0.30 eV vs 0.78 eV), which may be due to the
absence of specific interactions in PCM, or to the different active
space used in both calculations. The lower solvent shift in their
calculations led Xu et al. to discard the linear structures as
responsible for the observed “anomalous” band and to accept
the PQ structure as the source of the band, in spite of its
fluorescence energy being underestimated and the computed
oscillator strength being very small.

4. CONCLUSIONS

We have studied the ground and excited singlet states of
1-phenylpyrrole in the gas phase and in acetonitrile solution,
using a high-level quantum method for the electronic structure
and an explicit MMmodel for the solvent. The optimized ground
state, GS, and locally excited state, LE, structures provide good
agreement with the observed absorption bands and the higher-
energy fluorescence band. These states have very low dipole
moments and are very weakly affected by the solvent; conse-
quently, the absorption and emission properties show little
change between the gas phase and solution.

The case is different for the internal charge transfer state, ICT.
We could optimize different geometries for an ICT state, all of
them belonging apparently to the same electronic surface
(corresponding to a 2 f 3 single excitation, see Figure 3) and
featuring a quinoidal deformation in the phenyl ring. In gas
phase, the lowest-energy structure has perpendicular rings and a
pyramidal C6 atom, and another minimum was found for a
structure more similar to GS, with a small θ angle and a linear φ

Figure 5. Relative free energies (CASPT2(0.25), in eV) of the calculated electronic states of PP in acetonitrile solution at the optimized geometries. The
state for which each geometry is optimized is marked as a wavy line; this is also the state with which the solvent is in equilibrium. States of equivalent
electron configuration are joined by lines. For the nature of the different states, labeled on the left, refer to Table 8 and Figure 3.
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angle. Both ICT structures are significantly higher in energy than
the LE minimum and higher than the Franck�Condon point on
absorption too, explaining why no fluorescence from this state is
observed in the gas phase.

In acetonitrile solution, the ICT state is stabilized, and its
energy becomes similar to the LE minimum. The free energy
surface seems very flat from the LQ (linear) to the PQ (perpen-
dicular and bent) structure, which makes emission possible from
any point of the path. In this direction of geometry change, the
emission energy decreases, but so does the oscillator strength,
which gives a measure of the probability of transition. Thus,
fluorescence is more likely in earlier structures, closer to LQ,
where the solute molecule remains linear and with a low twist,
and without requiring a large reorganization of the solvent.

Our proposal for the dual florescence in 1-phenylpyrrole is
therefore that there are several ICT geometries accessible in
polar solvents. The twist between the two rings is not necessary
to stabilize the ICT state; the needed changes are the quinoidal
deformation of the phenyl and the solvent equilibration with the
charge transfer state. The fact that ICT fluorescence is more
likely in geometries near LQ can explain why this fluorescence is
relatively more intense in the planar and rigidized fluorazene:
part of the ICT population of PP can change the geometry and
relax through other paths, something that cannot happen in
fluorazene.
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Introduction of aNewTheory for the Calculation ofMagnetic Coupling
Based on Spin�Flip Constricted Variational Density Functional
Theory. Application to Trinuclear Copper Complexes whichModel the
Native Intermediate in Multicopper Oxidases
Hristina Zhekova, Michel Seth, and Tom Ziegler*
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ABSTRACT:Wehave introduced a newmethod for the calculation of spin�exchange betweenweakly interacting electron spins on
different metal centers. The method is based on spin�flip constricted variational density functional theory (SF-CV-DFT). The
application of SF-CV-DFT to two trinuclear systems [Cu3(L)(μ3�O)]4þ and [(L0)3]Cu3(μ�OH)3]

3þ revealed that SF-CV-DFT
affords exchange coupling constants that are similar to the values obtained by the traditional broken-symmetry (BS) scheme for the
same functional. The BHandHLYP functional affords for both systems the best fit to experiment and results from high-level theory
in the case of BS-DFT as well as SF-CV(2)-DFT. All methods and functionals predict [Cu(L)(μ3�O)]4þ to be ferromagnetic and
the [(L0)3Cu3(μ�OH)3]

3þ system to be antiferromagnetic. The SF-CV(2)-DFT method is not only able to evaluate exchange
coupling constants, it can in addition calculate the full multiplet spectrum with complete use of spatial symmetry. Further, in its
restricted formulation, calculations can be carried out with use of full spin�symmetry without spin�contamination.

1. INTRODUCTION

The two trinuclear copper complexes of the present
study, [Cu(L)(μ3�O)]4þ (where L is a complex dodecaaza
macrotetracycle)1 and [(DBED)3Cu3(μ�OH)3]

3þ (where
DBED stands for N,N0-ditert-butyl-ethylenediamine),2 have at-
tracted considerable attention as synthetic analogues of the native
intermediate (NI) occurring during the catalytic reactions at the
active sites of the multicopper oxidases.3�5 The latter is a metal-
loenzyme found in some plants, fungi and animals and involved in
the four e� reduction of O2 to H2O.

6�8 The reduction process is
coupled with four one-electron oxidations of a substrate and leads
to the synthesis of key metabolite substances of vital importance.
Some of the most studied multicopper oxidases are laccase,9

ascorbate oxidase,10 ceruloplasmin,11 and Fet3p.12

Two potential models of NI,1,2 [Cu3(L)(μ3�O)]4þ and
[(DBED)3Cu3(μ�OH)3]

3þ, were synthesized and studied ex-
tensively with X-ray diffraction, magnetic susceptibility, absorption
spectroscopy, electron paramagnetic resonance (EPR), and con-
ventional and ariable-temperature, variable-fieldmagnetic circular
dichroism (VTVH MCD).1�5 [Cu3(L)(μ3�O)]4þ was found to
be ferromagnetic with a quartet 4A ground state and a low-lying
doublet 2E excited state situated 163.5 cm�1 above the ground
state.1,3 The second structure, [(DBED)3Cu3(μ�OH)3]

3þ is
antiferromagnetic2,4 and has a doublet 2E ground state and a
quartet 4A1 excited state with a

2E� 4A1 energy gap of 315 cm
�1.

The VTVH MCD studies5,13 point to the [Cu3(L)(μ3�O)]4þ

model as the one that best reproduces the observed MCD
spectrum of NI.

The ground and the lowest excited states of the two synthetic
models were analyzed theoretically with density functional
theory (DFT)3�5,13 and multireference complete active space
second-order perturbation theory/complete active space
self-consistent field (CASPT2/CASSCF) and multireference

difference dedicated CI 2-degrees of freedom (MRDDCI2)
methods.14�17 The DFT calculations employed the broken
symmetry approach18 for the simulation of the doublet
states in C3 and D3 symmetry for [Cu3(L)(μ3�O)]4þ and
[(DBED)3Cu3(μ�OH)3]

3þ, respectively. CASPT2/CASSCF
calculations with and without spin�orbit coupling corrections
were done16 in order to estimate the quartet�doublet splitting
for [Cu3(L)(μ3�O)]4þ and [(DBED)3Cu3(μ�OH)3]

3þ in Cs

and C2 symmetry, respectively. These results were then corre-
lated to the structures in their original symmetry (C3 and D3,
respectively). The CASPT2/CASSCF studies afford good agree-
ment with the experimental data with regard to spin multiplicity
and the relative energy of the ground and low-lying excited
states.16,17

The multireference methods, albeit more accurate than DFT,
are computationally expensive and difficult to apply for systems
larger than 40 atoms. On the other hand, conventional DFT,
which is a good compromise between accuracy and model size,
has problems in describing some of the open shell spin states
encountered in the two model systems discussed here. The
difficulties arise from the fact that conventional DFT as a single
determinantal method has problems with the description of spin
states that even to zero order must be represented by a multi-
determinantal wave function.18,19

This problem is partially circumvented within the conven-
tional DFT formalism by the broken symmetry method,18 where
use is made of a simple Heisenberg Hamiltonian.20 The single
determinantal broken symmetry state is represented as a
weighted average of the pure spin states of a system. The
difference of the energy of the broken symmetry states and the
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pure symmetry state of highest spin (which can be described
easily by a single determinant) can be related directly to the
exchange coupling constants Jij of the Heisenberg Hamiltonian

18

and hence to the difference in energy of the various spin states.
This approach is straightforward and computationally feasible.
However it does not provide detailed separate information about
each individual spin state aside from their relative energies.

Time-dependent density functional theory (TDDFT)21,22 is
in contrast to conventional DFT and is able to describe states of a
multideterminantal nature as “excited states” relative to a single
determinantal reference. In conventional TDDFT this reference
is the ground state. However based on the constricted variational
DFT (CV-DFT) formulation23 of the reference can be any state.
We shall in the following demonstrate that we can describe the
different spin states in our two model compounds with the help
of CV-DFT using the pure symmetry state of highest spin as a
reference. As some of the spin states are related to the reference by
spin�flip, we will make use of spin�flip theory24 based on our
noncollinear exchange�correlation potential formulation25�27 as
implemented into the Amsterdam Density Functional (ADF)
package.28,29 It is the objective of the present investigation to apply
the novel spin�flip CV-DFT scheme23 to the difference in energy
of the various spin states encountered in the two model systems
[Cu3(L)(μ3�O)]4þ and [(DBED)3Cu3(μ�OH)3]

3þ. We hope
in addition to provide the first test of the novel spin�flip CV-DFT
scheme as an alternative to the broken symmetry method18 in
DFT-based studies of magnetic coupling between weakly interact-
ing metal centers.

2. COMPUTATIONAL METHODS AND DETAILS

Formulation of the CV-DFT to Second Order. We shall in
accordance with Kohn�Sham (KS) theory19 describe our re-
ference state by a single Slater determinant:

Ψ0 ¼ jψ1ψ2 , ..., ψiψj , ..., ψnj ð1Þ
constructed from a set of occupied spin�orbitals {ψi(1); i = 1,
occ} The related density matrix19 is given by

Fð1, 10Þ ¼ ∑
occ

i
ψ

�
i ð10Þψið1Þ ð2Þ

The energy of the reference system corresponding to the density
matrix in eq 2 can be expressed as

EKS ¼ ETþVNe þ EC þ EXC, KS

¼
Z

½ĥ0ð10ÞFð1, 10Þ�ð1¼ 10Þdτ1 þ
1
2

Z
Fð1, 1Þ 1

r12
Fð2, 2Þdτ1dτ2

þ
Z

EXC, KS½Fð1, 1Þ�dτ1 ð3Þ

The one-electron Hamiltonian ĥ0 includes the kinetic energy
operator (T̂) for a single electron and the potential (VNe) from
the nuclear-electron interactions. EC represents the coulomb
interactions of themolecular electron density with itself. EXC,KS is
the exchange�correlation energy, defined as a functional of the
electron density F(1,1).
The spin�orbitals {ψi(1); i = 1,occ} of eq 1 that afford the

minimum energy according to eq 3, satisfy the one-electron KS
equation:

F̂KSð1Þψið1Þ ¼ εiψið1Þ ð4Þ

with the KS operator F̂KS defined as

F̂KSð1Þ ¼ ĥ
0 þ

Z
Fð2, 2Þ 1

r12
dτ2þVXCð1Þ ð5Þ

Here

VXC½F� ¼ δEXC
δF

ð6Þ

is the exchange�correlation potential expressed as the functional
derivative of the exchange�correlation energy with respect to
the density.
The solution of eq 4 yields a set of optimized occupied {ψi(1);

i = 1,occ} and virtual {ψa(1); a = 1,vir} spin orbitals. Given that
the complete set of spin orbitals {ψp(1); p = 1,occ þ vir} are
solutions to eq 4, we can write

FKSrs ¼
Z

ψ
�
r ð1ÞF̂KSð1Þψsð1Þdτ1 ¼ δrsεr ð7Þ

In CV-DFT23 we seek new determinantal wave functions:

Ψ0 ¼ jψ0
1ψ

0
2 , ..., ψ0

iψ
0
j , ..., ψ

0
nj ð8Þ

that ultimately will represent excited states. Here the orbital set
{ψ0

i(1); i = 1,occ} in eq 8 is constructed by mixing into each of
the occupied reference orbitals {ψi(1); i = 1,occ} a fraction of the
virtual reference orbitals {ψa(1); a = 1,vir}:

δψi ¼ ∑
vir

a
Uaiψa ð9Þ

where the mixing coefficient Uai shall serve as a variational
parameter that minimizes the energy associated with the excited
state that is represented by Ψ0.
After orthonormalization to second order in U, we can write

the new set of occupied orbitals as

ψ0
ið1Þ ¼ ψið1Þ þ ∑

vir

a
Uaiψað1Þ �

1
2∑

vir

a
∑
occ

k
UaiU

�
akψkð1Þ þOð3Þ½U�

ð10Þ
The density matrix corresponding to ψ0 of eq 8 now reads to
second order in U:

F0ð1, 10Þ ¼ Fð1, 10Þ þΔF0ð1, 10Þ ¼ Fð1, 10Þ

þ ∑
occ

i
∑
vir

a
U

�
aiψ

�
aið1Þψað10Þ þ ∑

occ

i
∑
vir

a
U

�
aiψ

�
að1Þψið10Þ

þ ∑
vir

a
∑
vir

b
∑
occ

i
U

�
aiUbiψ

�
að1Þψbð10Þ

� ∑
occ

i
∑
occ

k
∑
vir

a
U

�
akUaiψ

�
i ð1Þψkð10Þ þOð3Þ½U� ð11Þ

A substitution of eq 11 into eq 3 affords23 the energy of Ψ0 to
second order in U as

EKS½F0 þΔF0� � EKS½F0� ¼ ΔEKS½ΔF0� þOð3Þ½U�

¼ 1
2
ðU� UÞ AKS BKS

BKS AKS

 !
U
U�

 !
þOð3Þ½U� ð12Þ
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The 2 � 2 supermatrix in eq 12 is also known as the electronic
ground-state Hessian. Its matrix elements Aai,bj

KS and Bai,bj
KS of AKS

and BKS, respectively, are given by

AKS
ai, bj ¼ δabδijðεa � εiÞ þ KKS

ai, bj; B
KS
ai, bj ¼ KKS

ai, jb ð13Þ
where

KKS
rs, tq ¼ KKS

rs, tq þ KKS, XC
rs, tq

¼
Z

ψ
�
r ð1Þψsð1Þ

1
r12

ψ
�
t ð2Þψqð2Þdτ1dτ2

þ
Z

ψ
�
r ð1Þψsð1ÞfXC½F0, s0�ψ�

t ð1Þψqð1Þdτ1 ð14Þ

In eq 14 fXC[F0,s0] represents the exchange�correlation kernel
evaluated at the reference state with density F0 and spin density
s0. It can be expressed21,22 in terms of the functional derivatives
of the exchange�correlation potential VXC given in eq 6 with
respect to the density F and spin s.
The CV-DFT23 method considers an excitation as a pertur-

bation of the reference system in which a single electron is
moved from the space of the occupied orbitals, represented by
ΔFocc =�∑i

occ∑k
occ∑a

virUak* Uaiψi*(1)ψk(10) in eq 11, to the virtual
space, represented by ΔFvir = ∑a

vir∑b
vir∑i

occUai*Ubiψa*(1)ψb(10) of
eq 11. The total charge of ΔFocc is readily found by integration to
be �∑i

occ∑a
virUai*Uai, whereas the total charge of ΔFvir is

∑a
vir∑i

occUai*Uai. We now identify excited states with stationary points
on EKS[F0þ ΔF0]� EKS[F0] for which ∑avir∑ioccUai*Uai =U

t
3U = 1.

An optimization of EKS[F
0þΔF0]� EKS[F

0] from eq 12 with
respect to U under the constraint Ut

3U = 1 affords23 the eigen-
value equation:

ðAKS þ BKSÞUðIÞ ¼ λðIÞUðIÞ ð15Þ
Here λ(I) is the transition energy for the excited state I andU(I) is
the corresponding optimized set of Uai coefficients. Within the

Tamm�Dancoff approximation30 Bai,bj
KS = 0 so that eq 15 can be

rewritten as

AKSUðIÞ ¼ λðIÞUðIÞ ð16Þ
The eigenvalue eq 16 is identical to that obtained from

TDDFT21,22 in the adiabatic formulation after invoking the
Tamm�Dancoff approximation.30 However, in TDDFT the
reference Ψ0 must be21,22 the ground state, whereas Ψ0 in
CV-DFT23 can be any state that can be represented to zeroth
order by a single Slater determinant. In deriving eqs 15 and 16 it
was assumed that the set of spin orbitals {ψp(1); p = 1,occþ vir}
are solutions to eq 4. However this condition does not need to be
satisfied. If the condition is not satisfied, then

AKS
ai, bj ¼ � δabF

KS
ij þ δijF

KS
ab þ FKSai, bj; B

KS
ai, bj ¼ KKS

ai, jb ð17Þ

Here Frs
KS was defined in eq 7. Note that the operator F̂KS (1) is

defined with respect to the density F0 and spin density S0

evaluated from Ψ0 using the unoptimized orbital set {ψi(1);
i = 1,occ} that defines the determinant. As the energy in eq 12 is
evaluated only to second order in U we refer23 to our scheme as
second-order CV-DFT [CV(2)-DFT].We shall shortly return to
the application of CV(2)-DFT to our two model systems.
Computational Parameters. The two models used in the

present study are shown in Figures 1a and 2a, respectively. They
were derived from the X-ray structures1,2 of [Cu3(L)(μ3�O)]4þ

and [(DBED)3Cu3(μ�OH)3]
3þ. We shall refer to them as μ3O

and TrisOH, respectively, for consistency with other available
experimental and theoretical studies on these systems.3�5,13 Each
copper atom in μ3O is coordinated to five ligands in a distorted
trigonal bipyramidal geometry.1,3 The three copper atoms are
bridged through a central oxygen atom. The initial X-ray
structure has C3 symmetry. TrisOH features three copper atoms,
each coordinated with four ligands in a distorted tetrahedral
configuration.2,4 The connection between the copper atoms is

Figure 1. (A)The μ3Omodel inC3V symmetry: front view (up) and side view (down). Included are the copper centered coordinate systems x0,y0,z0. (B)
Frontier SUMO orbitals of (μ3O)C3v

. Up: Front and side view of a1, along with the values of the orbital energies. Down: Front view of the ex and ey
orbitals with the orbital energies and the orientation of the molecular coordinate system x,y,z. The SOMOorbitals a1, ex, and ey are not shown, since they
have similar spatial distribution as their SUMO counterparts.
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made through three OH bridges which results in a planar
hexagonal Cu3O3 structure. The ethylene bridges between the
equatorial and axial N atoms in the μ3O structure were truncated
with H atoms reducing the size of the model to 58 atoms. In the
TrisOH structure, a 45 atom model was created by replacement
of the bulky tert-butyl groups by H atoms. The models on
Figures 1a and 2a were optimized in C3v and D3 symmetry (see
below) for μ3O and TrisOH, respectively, with the C3 axis
perpendicular to the plane of the three copper atoms.
All calculations were based on the KS formalism,19 as im-

plemented in ADF (version 2009)28,29 employing an all-electron
TZ2P basis set. Geometry optimizations of the quartet reference
states (see below for more details) were done in C3v for μ3O
(configurations a1

1ex
1ey

1) and D3 for TrisOH (configurations
ex
1ey

1a2
1) using the regular unrestricted KS formalism.19 Additional

restricted KS-DFT calculations were carried out for a given
geometry on the quartet reference states with occupation of
0.5 electrons assigned to the six orbitals which are in the original
quartet reference state, the highest-occupied R- and the lowest-
unoccupied β-molecular orbitals.
The calculations presented here made use of the following

functionals: local density approximation Vosko�Wilk�Nusair
(LDA-VWN),31 BP86,32,33 Becke�Lee�Yang�Parr (BLYP),32�34

Perdew,Burke andErnzerhof (PBE)35B3LYP,36 andBHandHLYP.36

The microstates for the two models in the different symmetries
were generated with the clebeschgordan.exe program, written by
M. A. Buijse.37

3. RESULTS AND DISCUSSION

Electronic Structure of μ3O. Figures 1b and 2b display
the frontier orbitals of μ3O and TrisOH with their respective
energies based on unrestricted DFT calculations using the LDA-
VWN31 functional. The quartet reference state has three un-
paired electrons ofR-spin in the a1 and e orbitals for (μ3O)C3v

and
in the a2 and e orbitals for (TrisOH)D3

. We shall refer to these
orbitals as singly occupied molecular orbitals (SOMO’s). The
three lowest vacant orbitals have β-spin, and we shall refer to

them as singly unoccupied molecular orbitals (SUMO’s). The
SUMO’s have roughly the same composition as their SOMO
counterparts but are higher in energy as the smaller number of
β-electrons leads to fewer stabilizing exchange interactions for
electrons of β-spin. In the description of the orbitals we shall
make use of the local copper-centered coordinate axes x0,y0,z0
(Figures 1a and 2a) introduced in ref 5.
The lowest SOMO and SUMO of (μ3O)C3v

are of a1 symme-
try. They feature a pseudo σ-antibonding interaction between
the copper dz02 orbitals and the pz orbital of the central oxygen
atom. This interaction appears upon a displacement of the
oxygen atom above the plane of the three copper atoms. If the
oxygen lies in the Cu3 plane, then the overlap between these two
sets of orbitals ceases. The position of the oxygen with respect to
the plane of the metal atoms has been previously discussed in
connection with the magnetic behavior of the μ3O complex.1,3,5

The vanishing overlap between the metal dz02 orbitals and the
oxygen pZ orbital when the O atom is positioned in the Cu3 plane
leads to a decrease of the energy of the a1 orbital, which increases
the e�a1 energy gap. As a consequence the out-of-plane con-
formation might be ferromagnetic with a a1

1e2 configuration (see
below), whereas the in-plane conformation potentially could be
antiferromagnetic with a a1

2e1 configuration.1,3,5

The doubly degenerate SOMO and SUMO of e symmetry are
of higher energy than the corresponding a1 orbitals due to the larger
σ-antibonding overlap between the dz02 orbitals of three or two
copper atoms and the px or py orbitals of the oxygen. Themotion of
the O atom into the Cu3 plane increases the antibonding interac-
tions between the metal and oxygen orbitals leading to a higher
energy of the e orbitals and a larger e�a1 energy gap.
The three unpaired electrons in (μ3O)C3v

can be distributed
within the six frontier spin orbitals to afford three possible
electron configurations: a1

2e1, a1
1e2, and e3. In addition, each of

these configurations can give rise to microstates of different
multiplicity and symmetry.
The construction of the symmetrized microstates is done

with the clebeschgordan.exe program.37 The number of the

Figure 2. (A) Side view of the TrisOH model in D3 symmetry. Included are the copper centered coordinate systems x0,y0,z0. (B) Frontier SUMO
orbitals of (TrisOH)D3

. Up: Front view of the ex and ey orbitals with the orbital energies and the orientation of the molecular coordinate system x,y,z.
Down: Front and side view of a2, along with the values of the orbital energies. The SOMO orbitals a2, ex, and ey are not shown, since they have similar
spatial distribution as their SUMO counterparts.
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microstates is calculated from combinatorics to be 20 of which
many are degenerate. Tables 1 and 2 display all 20 doublet and
quartet microstates which can be built with the 3 unpaired
electrons and the 6 frontier SOMO and SUMO of (μ3O)C3v

.
The overall symmetry of the microstates can be evaluated from
group theory.38

Detailed Description of Spin�Flip CV-DFT as Applied to
(μ3O)C3v

.The high-spin quartet reference state which is a starting
point in most of our SF-CV(2)-DFT calculations arises from the
a1

1e2 configuration. It is labeled as a(4A2)3/2 and has Ms = 3/2
(Table 2). All other microstates can be obtained from the
reference state by replacing one or more of the orbitals a1, ex
or eywith a1, ex, or ey, where a1, ex, and ey refer to the R�orbitals,
while a1, ex, and ey refer to the β-orbitals.
The energy of a certain basic single determinantal microstate

Ψifa relative to the reference Ψ0 can by analogy to single
excitation configuration interaction (CIS)39 in wave function
mechanics be identified in CV(2)-DFT (or TDDFT) with the
diagonal elements of the A matrix in eqs 13 and 17 according to

Aai, ai ¼ ÆΨi f ajHKSjΨi f aæ ¼ εa � εi þ KKS
ai, ai ð18Þ

HereΨifa is a single determinantal wave function obtained from
Ψ0 after a promotion of an electron from one of the occupied
reference orbitals (including the SOMO’s) with energy εi to one
of the unoccupied reference orbitals (including the SUMO’s)
with energy εa. Further Kai,aj

KS is the combination of two-electron
coulomb and exchange�correlation integrals defined in eq 14.
It is possible in general37 to make symmetrized microstates of

all the basic determinants Ψifa that span the irreducible
representation of the point group for the molecule under
investigation as it was done specifically for the first 20 states in
Tables 1 and 2. In order to evaluate the energy of each
symmetrized microstate, one needs the diagonal elements of

eq 18 as well as the off-diagonal elements given by

Aaibj ¼ ÆΨi f ajHKSjΨj f bæ ¼ KKS
ai, bj ð19Þ

in analogy to the single excitation CIS39 in wave function
mechanics.
It is now possible to determine the energy of all the doublet

states with Ms = 1/2 within the a1
2e1, a1

1e2, and e3 configurations
relative to the (4A2)3/2 reference by solving an eigenvalue
equation AU = λU similar to that of eq 16. Here

AIJ ¼ ÆΨI jHKSjΨJæ ð20Þ
are matrix elements between symmetrized microstates of the
same representation. These states (I,J) include not only those
doublet states with Ms = 1/2 within the a1

2e1, a1
1e2, and e3

configurations, but all other Ms = 1/2 doublets generated by a
spin�flip replacement of an occupied (4A2)3/2 reference orbital
ψi with a virtual reference orbital ψa. The elements in eq 20 can
all be calculated based on eqs 18 and 19. The construction of AIJ

in eq 20 corresponds to a symmetry blocking40 in space and spin
of Aai,bj over all basic microstates.
It should be noted that a and i, as well as b and j, in eqs 18 and

19 are of different spins as all Ms = 3/2 doublets are generated
from (4A2)1/2 by a spin�flip (if a), where i is ofR-spin and a is
of β-spin. The formulas for Kai,bj

KS required to evaluate eqs 18 and
19 were first derived in 2004 byWang and Ziegler25�27 based on
a noncollinear exchange�correlation expression, see also refs 41
and 42. The same integrals would be zero in the collinear
exchange�correlation formulation. We have

KKS, XC
ai, bj ¼

Z
½ψa

�ð rB1Þψið rB1Þψbð rB1Þψ
�
j ð rB1Þ�

1
s0

DEKSXC
DFR

� DEKSXC
DFβ

 ! !
ðF0, s0Þ

2
4

3
5drB1 ð21Þ

where integration over spin already has taken place so thatψha*(rB1)
andψhb(rB1) represent the spatial part of the two virtual orbitals of
β-spin. The evaluation of Kai,bj

KS,XC by numerical integration might
lead to numerical instabilities if s0 = FR� Fβ≈ 0. We can in that
case carry out a Taylor expansion of ∂EXC

KS/∂FR and ∂EXC
KS/∂Fβ

from F = FR þ Fβ = F0 and s = 0. Thus

KKS, XC
ai, bj ¼

Z
½ψa

�ð rB1Þψið rB1Þψbð rB1Þψ
�
j ð rB1Þ�

� D2EKSXC
DF2R

þ D2EKSXC
DF2β

� 2
D2EKSXC
DFRDFβ

 !
ðF0, s¼ 0Þ

2
4

3
5drB1

¼ KKS, XC
ai, bj � KKS, XC

ab, ij ð22Þ

Table 2. Quartet microstates for μ3O in C3v symmetry

C3v microstates Ms C3v symmetrized microstate functions

(a1)
1e2 Configurationa,b

a(4A2) 3/2 |a1exey|

1/2 1/
√
3(|a1exey| þ |a1exey| þ |a1exey|)

�1/2 1/
√
3(|a1exey| þ |1exey| þ |a1exey|)

�3/2 |a1exey|
a Electron configuration. b a1,ex,ey are the frontier orbitals of R-spin,
whereas a1,ehhx,ey are the frontier orbitals of β-spin.

Table 1. Doublet Microstates for μ2O in C2ν Symmetry

C3v microstates Ms C3v symmetrized microstate functions

(a1)
2e1 Configurationa,b

a(2Ex) 1/2 |a1a1ex|

�1/2 |a1a1ex|

a(2Ey) 1/2 |a1a1ey|

�1/2 |a1a1ey|

(a1)
1e2 Configuration

a(2A1) 1/2 1/
√
2(|a1exex| þ |a1eyey|)

�1/2 1/
√
2(|a1exex| þ |a1eyey|)

a(2A2) 1/2 1/
√
6(�2|a1exey| þ |a1exey| þ |a1exey|)

�1/2 1/
√
6(2|a1exey| � |a1exey| � |a1exey|)

b(2Ex) 1/2 1/
√
2(|a1exex| � |a1eyey|)

�1/2 1/
√
2(|a1exex| � |a1eyey|)

b(2Ey) 1/2 1/
√
2(�|a1exey| þ |a1exey|)

�1/2 1/
√
2(�|a1eyey| þ |a1exey|)

e3 Configuration

c(2Ex) 1/2 |exeyey|

�1/2 |exeyey|

c(2Ey) 1/2 |exexey|

�1/2 |exexey|
a Electron configuration. b a1,ex,ey are the frontier orbitals of R-spin,
whereas a1,ex,ey, are the frontier orbitals of β-spin.
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where Kai,bj
KS,XC,Kab,ij

KS,XC are well-defined integrals from reg-
ular TDDFT.21,22 The expression in eq 22 is correct to (s0)3

and has no singularities for s0 ≈ 0. It can thus be used for small
values of s0 where eq 21 becomes singular. In practice we have
found that eq 21 can be used for the LDA-VWN31 functional. For
functionals based on the generalized gradient approximation
(GGA), such as BP86,32,33 BLYP,32�34 and PBE,35 where we can
write the exchange�correlation energy as EXC

GGA = EXC
LDA þ

ΔEXC
GGA, we calculate the contribution from EXC

LDA according to
eq 21 and the contribution from ΔEXC

GGA according to eq 22. For
the hybrid functionals B3LYP36 and BHandHLYP36 we need
in addition to calculate the regular exchange integrals

KHF,XC
~ai,~bj ¼

ZZ
~ψ

�
a r!1

� �
ψi r!2

� �
1=r12ð Þ~ψb r!1

� �
ψ�

j r!2

� �
d r!1d r!2

already implemented in ADF.43

Results from SF-CV(2)-DFT Calculations on (μ3O)C3v
. By

solving the eigenvalue equation AΓUΓ
(I) = λΓ

(I)UΓ
(I) for each

symmetry representation Γ, where AΓ is defined in eq 20, we
obtain the state functions:

ΦðIÞ
Γ ¼ ∑

q
UðIÞ
Γ, qΨΓ, q ð23Þ

as a linear combination of symmetrized microstates summed
over q as well as the energies λΓ

(I) relative to (4A2)3/2. Table 3
presents λΓ

(I) for the lowest doublet states withMs = 1/2 based on
SF-CV(2)-DFT calculations. In Table 3 is included also for each
excited state I the participating microstates ΨΓ,q with their
percent contribution toΦΓ

(I) of eq 23. Some of the contributions
are close to 100% which is indicative of a predominance of a
certain symmetrizedmicrostate in each excited state. However, in
principle ΦΓ

(I) can have contributions from the microstates of
Table 1 and from all the microstates used to construct AΓ of eq 20.
Table 3 displays results from restricted and unrestricted LDA

SF-CV(2)-DFT calculations based on the unrestricted LDA KS-
DFT geometries of the reference states a(4A2)3/2 optimized with
C3v constraints. Here the unrestricted calculations make use of
orbitals optimized for a(4A2)3/2, whereas the restricted calcula-
tions employ orbitals from a SCF calculations in which a1, ex, ey,
a1, ex, and ey each are assigned half an electron. The first real

excited doublet is the doubly degenerate 1(2Ex,y) state. It is due to
coupling of the a(2Ex,y) and b(

2Ex,y) microstates with significant
predominance of a(2Ex,y). The complementary coupling with
predominance of the b(2Ex,y) microstates from the a1

1e2 config-
uration gives rise to excited state 2(2Ex,y) which is of higher
energy. This result corresponds to the qualitative conclusions
drawn for themicrostates on the basis of the orbital energies (eq 18)
with a1

2e1 below a1
1e2, with the exception of the ground state (4A2)3/2

which also belongs to the electron configuration a1
1e2.

The following two excited states 1(2A1) and 1(
2A2) are based

solely on the a(2A2) and a(2A1) microstates, respectively. They
originate from the same a1

1e2 configuration as 2(2Ex,y). The last
spin�flip excitation of Table 3 yields a doublet degenerate 3(2Ex,y)
state with a large contribution from the c(2Ex,y)microstate,
consistent with the analysis based on the orbital energies.
The positive values in Table 3 for the energies λΓ

(I) of the
Ms = 1/2 doublets mean that these states are all above the (4A2)3/2
reference. This is in line with experiment1,3 that finds (μ3O)C3v

to
have a 4A ground state. The (μ3O)C3v

system is seen to favor for
its ground state the high-spin quartet configuration a1

1e2 stabi-
lized by extra exchange interaction integrals KKS but having two
electrons in e of high energy, instead of the low-spin doublet
configuration a1

2e1 with two electrons paired on a1 of low energy.
It is also in agreement with experiment that our calcula-

tions find a low lying 1(2Ex,y) excited state for (μ3O)C3v
. This

state is (based on magnetization experiments)1,3 situated at
ΔE=163.5 cm�1 above 4A2 .We findΔE fromour LDASF-TDDFT
calculations to be somewhat higher with ΔE = 863 cm�1 for
the unrestricted case (where ΔE = E[(2Ex,y)] � E[(4A2)3/2],
see below) and ΔE = 645 cm�1 for the restricted case (where
ΔE = E[(2Ex,y)] � E[(4A2)1/2]). In general the λΓ

(I) values of
Table 3 are slightly larger for the unrestricted results compared to
the restricted SF-TDDFT numbers. This is understandable since
the orbitals for the unrestricted calculations are optimized with
respect to the (4A2)3/2 reference with three electrons in a1, ex,
and ey, respectively, whereas the restricted calculations make use
of orbitals from an averaged configuration with 1/2 electron in
each of the orbitals a1, ex, ey, a1, ex, and ey.
The energies in Table 3 were all based on the simple LDA31

functional. We shall next examine how the energy difference ΔE
between the lowest 4A2 and 1(

2Ex,y) states depends on the choice of
functional. The differenceΔE is a key parameter and, as mentioned
already, has beenmeasured. It can be related directly to the exchange
coupling constants J of theHeisenbergHamiltonian5,18,44 asΔE=3J.
Here |J| is a measure of the strength of the coupling between spins of
weakly interacting electrons on different metal centers. Further, J < 0
indicates antiferromagnetic coupling with a low-spin ground state,
whereas J > 0 correspond to ferromagnetic coupling with a high-spin
ground state.
We shall in the following determine ΔE as

ΔE ¼ E½ð2EX, Y Þ� � E½ð4A2Þ1=2� ð24Þ

where both E[(2Ex,y)] and E[(4A2)1/2] are found from SF-
CV(2)-DFT calculations with (4A2)3/2 as the reference. We have
adopted eq 24 as it gives a more balanced description where both
states are described on the same footing as opposed to the
definition ΔE = E[(2Ex,y)] � E[(4A2)3/2], where one state
(4A2)3/2 is described by a single determinant and the other
(2Ex,y) by SF-CV(2)-DFT (Table 3). Such a practice is common
in studies based on multiconfiguration wave function theory.45

Table 3. Lower Excited States forμ3O ofC3v Symmetry Based
on SF-CV(2)-DFT Calculationsa

C3v symmetry
b

state E, cm�1 contributing microstatesc %

1(2Ex,y) 863d (645)e a(2Ex,y) 70 (69)e

b(2Ex,y) 18 (18) e

2(2Ex,y) 4630d (4533)e b(2Ex,y) 74 (74) e

a(2Ex,y) 23 (24) e

1(2A1) 5275d (5167)e a(2A2) 100 (100) e

1(2A2) 6525d (6462)e a(2A1) 100 (100) e

3(2Ex,y) 7985d (7929)e c(2Ex,y) 87 (87) e

a LDA calculations. b LDA SF-CV(2)-DFT calculations carried out with
C3v symmetry and based on a (μ3O)C3v

geometry optimized for the
a(4A2)3/2 microstate using unrestricted KS-DFT. cMicrostates defined
in Tables 1 and 2. dUnrestricted calculations (E[(State)] � E[(4A2)3/
2]) with orbitals optimized for (4A2)3/2, relative to (4A2)3/2 reference.
eRestricted calculations (E[(State)] � E[(4A2)1/2]) with orbitals opti-
mized from average configuration with 0.5 electrons in ex, ey, a1, ex, ey, a1,
relative to (4A2)3/2 reference.



1864 dx.doi.org/10.1021/ct200141v |J. Chem. Theory Comput. 2011, 7, 1858–1866

Journal of Chemical Theory and Computation ARTICLE

It is also possible5,18,44 to estimate ΔE within DFT by the
“broken-symmetry approach” (BS), where one performs one
high-spin calculation on a1

1e2 followed by one low-spin calculation
in which the symmetry of a1, ex, and ey is allowed to break by letting
each of the orbitals localize on a different Cu center. It is possible to
relate ΔE to the energy difference between the high- and low-spin
calculations. We compare in Table 4ΔE from BS calculations with
those obtained by employing either the unrestricted or restricted
SF-CV(2)-DFT method for different functionals.
We see in Table 4 that the calculatedΔE values have the same

large dependence on the functionals for all three methods. Thus
LDA31 affords the largest estimate whereas the GGA
(BP86,32,33BLYP,32�34PBE35) values for ΔE are close and inter-
mediate. The two hybrids (B3LYP36 and BHandHLYP)36 give
rise to the smallest values withΔE(BHandHLYP) <ΔE(B3LYP)
For LDA, the GGA’s and B3LYP the ΔE values for the same

functional tend to be somewhat larger (100�150 cm�1) for the
BS scheme than the SF-CV(2)-DFT methods. This gap might
close somewhat if use is made of the more refined BS formulation
due to Yamaguchi et al.46 in which the overlap between the
broken symmetry orbitals is taken into account. For LDA, the
GGA’s and B3LYP we find further that the restricted SF-CV(2)-
DFT method affords ΔE values that on average are some
50 cm�1 smaller than the unrestricted estimates. The trend is
what one would expect for reasons already mentioned. The
margin is also an indication of the possible error for spin
contamination present in the unrestricted scheme but not in
the restricted method. We recommend the restricted SF-CV(2)-
DFT method as the more accurate of the two SF-CV(2)-DFT
schemes as it is free of spin contamination.
Chalupsky et al.16 have in a recent high-level CASPT2

calculation obtained an estimate for ΔE of 165 cm�1 in very
good agreement with the experimental value of 163.5 cm�1. We
obtain the best agreement for the BHandHLYP functional with
values of 134 cm�1 (BS), 142 cm�1 (unrestricted SF-CV(2)-
DFT), and 152 cm�1 (restricted SF-CV(2)-DFT), respectively.
It is interesting to note that the BS scheme and the SF-CV(2)-
DFT method, which appear very different, afford quite similar
results especially for the BHandHLYP functional.
Electronic Structure and Ground-State Geometry of

TrisOH. The frontier orbitals of TrisOH (Figure 2b) feature σ-
antibonding interactions between the copper dx02�y02 orbitals and
px, py on oxygen. The a2 orbital is the highest in energy since all
six atoms of the planar Cu3O3 cycle are involved in the σ-
antibonding overlap. The antibonding interaction is reduced in
the e-set as it can be seen for exwhere it is confined to two copper
and three oxygen atoms.

Table 4. Calculateda Energy DifferenceΔEb,c in (μ3O)C3v between Lowest Quartet State (4A2)1/2 and Doublet State (
2Ex,y)1/2 for

Different Functionals and Methods

brokend symmetry unrestrictede,g SF-CV(2)-DFT restrictedf,g SF-CV(2)-DFT

functionals ΔEd ΔEb ΔEb

LDA 879 664 645

BP86 617 468 365

BLYP 561 414 334

PBE 613 465 363

B3LYP 471 385 318

BHandHLYP 134 142 152
aBased on geometry optimized for (4A2)3/2.

b E[(2Ex,y)]� E[(4A2)1/2].
c In cm�1. dCalculated according to ref 5 asΔE = E(LS)� E[(4A1)3/2] = 3J =

(3/2){E(BS)� E[(4A1)3/2]}, where E(BS) is the energy from a broken symmetry calculation.5,18,44 eUnrestricted calculations with orbitals optimized
for (4A2)3/2.

fRestricted calculations with orbitals optimized from average configuration with 0.5 electrons in ex, ey, a1, ex, ey, a1.
gRelative to (4A2)3/2

reference.

Table 5. Doublet Microstates for TrisOH in D3 Symmetry

D3 microstates Ms D3 symmetrized microstate functions

e3 Configurationa,b

a(2Ex) 1/2 |exeyey|

�1/2 |exeyey|

a(2Ey) 1/2 |exexey|

�1/2 |exexey|

e2(a2)
1 Configuration

a(2A2) 1/2 1/
√
2(|exexa2| þ |eyeya2|)

�1/2 1/
√
2(|exexa2| þ |eyeya2|

a(2A1) 1/2 1/
√
6(2|exeya2| � |eyeya2| � |exeya2|)

�1/2 1/
√
6(�2|exeya2| þ |eyeya2| þ |exeya2|)

b(2Ex) 1/2 1/
√
2(|exeya2| � |exeya2|)

�1/2 1/
√
2(|exeya2| � |exeya2|)

b(2Ey) 1/2 1/
√
2(|eyeya2| � |exexa2|

�1/2 1/
√
2(|eyeya2| � |exexa2|)

e1(a2)
2 Configuration

c(2Ex) 1/2 |exa2a2|

�1/2 |exa2a2|

c(2Ey) 1/2 |eya2a2|

�1/2 |eya2a2|
a Electron configuration. b a2,ex,ey are the frontier orbitals of R-spin,
whereas ah2,ex,ey are the frontier orbitals of β-spin.

Table 6. Quartet Microstates for TrisOH in D3 Symmetry

D3 microstates Ms D3 symmetrized microstate functions

e2(a2)
1a,b

a(4A1) 3/2 |exeya2|

1/2 1/
√
3(|exeya2| þ |ex eya2| þ |exeya2|)

�1/2 1/
√
3(|exeya2| þ |exeya2| þ exeya2|)

�3/2 |exeya2|
a Electron configuration. b a2,ex,ey are the frontier orbitals of R-spin,
whereas a2,ex,ey are the frontier orbitals of β-spin.
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Similarly to (μ3O)C3v0
, (TrisOH)D3

has three different low-
energy electron configurations, e3, e2a2

1, and e1a2
2. The micro-

states corresponding to these configurations are shown in
Tables 5 and 6. Their relative energies can be evaluated qualita-
tively from the orbital energies (eq 18). Microstates a(2Ex) and
a(2Ey) arise from configuration e3. They should be the doublet
microstates of lowest energy. Configuration e2a2

1 contains the
doublets a(2A1), a(

2A2), and b(2Ex,y), which are the micro-
states of intermediate energy. The sole quartet microstate
a(4A1) belongs to configuration e2a2

1 as well. The last electron
configuration e1a2

2 affords the microstates c(2Ex,y) of highest
energy.
Results from SF-CV(2)-DFT Calculations on TrisOH.Table 7

displays the “restricted” and “unrestricted” LDA SF-TDDFT
excitation energies for (TrisOH)D3 relative to the (

4A1)3/2 reference.
Here the energy of (4A1)3/2 has been obtained by optimizing
both the orbitals and the geometry from high-spin unrestricted
KS calculations based on the a(4A1)3/2 microstate of Table 6.
Further, all the LDA excited-state energies given in Table 7 are
based on the optimized structure for a(4A1)3/2. The lowest
doubly degenerate excited state [1(2Ex,y)] features coupling of
microstates a(2Ex,y) and b(

2Ex,y) with a significant predominance

of a(2Ex,y). The negative excitation energy in Table 7 is an
indication that 1(2Ex,y) has in fact a lower energy than the
reference quartet a(4A1)3/2. It can thus be regarded as the
ground state of the (TrisOH)D3

model. This is consistent with
the experimental results according to which TrisOH has a 2E
ground state and a low-lying quartet excited state situated
315 cm�1 (ΔE = �315 cm�1) above the ground state.2,4

Our doublet�quartet splitting is however overestimated with
ΔE = �2351 cm�1 for the unrestricted SF-CV(2)-DFT LDA
calculation and ΔE = �2333 cm�1 for the restricted
SF-CV(2)-DFT LDA calculation. The BS-DFT approach yields
ΔE = �2783 cm�1 (Table 8).
The three states based on the e2a2

1 configuration [2(2Ex,y),
1(2A1), and 1(

2A2)] are as expected of higher energy than 1(
2Ex,y).

The state 2(2Ex,y) is a product of the coupling of microstates
b(2Ex,y) and a(

2Ex,y) with predominance of b(2Ex,y), and 1(
2A1)

and 1(2A2) arise from microstates a(2A1) and a(2A2), respec-
tively. A few states due to transitions between the SOMO’s and
virtual orbitals closely above the SUMO’s or from occupied
orbitals below the SOMO’s to the SUMO’s are found after
1(2A2) and are not presented in Table 7, since they do not
belong to the discussed electron configurations. The last
SOMO to SUMO excitation gives rise to state 4(2Ex,y) origi-
nating from the e1a2

2 electron configuration and microstates
c(2Ex,y).
We present inTable 8 values forΔE =E[(2Ex,y)]� E[(4A1)1/2]

based on different functionals. The gap ΔE was calculated with
both the unrestricted and restricted SF-CV(2)-DFT schemes
using the same procedure as the one outlined earlier for μ3O.
Also shown are estimates due to the BS method. We find for
LDA and the GGA’s that ΔE in absolute terms is somewhat
larger for the BS scheme compared to the unrestricted
SF-CV(2)-DFT method. Most likely some of the discrepancy
can be reduced by the Yamaguchi correction46 not available
in the ADF program. In going from the unrestricted to the
restricted estimates forΔE we encounter as expected for LDA,
the GGA’s and B3LYP a reduction in the gap. The CASPT2
method16 affords for (TrisOH)D3

a value of �196 cm�1 for
ΔE compared to the experimental estimate2,4 ofΔE =�315 cm�1.
Our BHandHLYP results come close to the experimental
value with �249 cm�1 (BS), �239 cm�1 (unrestricted), and
�284 cm�1 (restricted). Thus as for μ3O, BHandHLYP affords
for all three methods the closest fit with experiment in the case
of TrisOH.

Table 7. Lower Excited States for TrisOH in D3 Symmetry
Based on SF-TDDFT Calculationsa

D3 symmetry
b

state E, cm�1 contributing microstatesc %

1(2Ex,y) �2315d (�2333)e a(2Ex,y) 86(85)e

b(2Ex,y) 8(9)e

2(2Ex,y) 4815d (4790)e b(2Ex,y) 86(84)e

a(2Ex,y) 11(12)e

1(2A1) 6686d (6733)e a(2A1) 100(100)e

1(2A2) 6791d (6868)e a(2A2) 100(100)e

4(2Ex,y) 11 042d (11 061)e c(2Ey) 87(79)e

a LDA calculations. b LDA SF-TDDFT calculations carried out with D3

symmetry and based on a (TrisOH) geometry optimized for the
a(4A1)3/2 microstate.

cMicrostates defined in Tables 5 and 6. dUnrest-
ricted calculations (E[(State)] � E[(4A1)3/2]) with orbitals optimized
for (4A1)3/2, relative to (4A1)3/2 reference. eRestricted calculations
(E[(State)] � E[(4A1)1/2]) with orbitals optimized from average
configuration with 0.5 electrons in ex, ey, a2, ex, ey, a2, relative to
(4A1)3/2 reference.

Table 8. Calculateda Energy Difference ΔEb,c in TrisOH between Lowest Quartet State (4A1)1/2 and Doublet State (
2Ex,y)1/2 for

Different Functionals and Methods

Brokend Symmetry Unrestrictede,g SF-CV(2)-DFT Restrictedf,g SF-CV(2)-DFT

functionals ΔEd ΔEb ΔEb

LDA �2783 �2463 �2333

BP86 �2074 �1951 �1826

BLYP �2082 �1948 �1824

PBE �2094 �1968 �1840

B3LYP �720 �721 �572

BHandHLYP �249 �239 �284
aBased on geometry optimized for (4A1)3/2 .

b E[(2Ex,y)]� E[(4A1)1/2].
c In cm�1. dCalculated according to ref 5 asΔE = E(LS)� E[(4A1)3/2] = 3J =

(3/2){E(BS)� E[(4A1)3/2]}, where E(BS) is the energy from a broken symmetry calculation.5,18,44 eUnrestricted calculations with orbitals optimized
for (4A1)3/2.

fRestricted calculations with orbitals optimized from average configuration with 0.5 electrons in ex, ey, a2, ex, ey, a2.
gRelative to (4A1)3/2

reference.
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4. CONCLUDING REMARKS

We have here applied the spin�flip formalism24 in con-
junction with the noncollinear exchange�correlation formu-
lation25�27,41,42 ofCV(2)-DFT23 to study spin�exchange andmulti-
plet splittings in the two model systems [Cu3(L)(μ3�O)]4þ and
[(DBED)3Cu3(μ�OH)3]

3þ. We have shown that SF-CV(2)-DFT
affords exchange coupling constants (J) that are similar to the
values obtained by the broken-symmetry scheme due to
Noodleman18,44 and Yamaguchi46 for a given functional.
For the two systems at hand both BS-DFT and SF-CV(2)-
DFT predict correctly that [Cu3(L)(μ3�O)]4þ is ferromag-
netic, whereas the [(DBED)3Cu3(μ�OH)3]

3þ system is
antiferromagnetic for all functionals. Both LDA and the GGA’s
overestimate in absolute terms the exchange coupling constants
(J). On the other hand, theBHandHLYP functional affords estimates
for both [Cu3(L)(μ3�O)]4þ and [(DBED)3Cu3(μ�OH)3]

3þ

that are in good agreement with experiment1�4 and high-level
theory16 in the case of BS-DFT as well as SF-CV(2)-DFT. More
work has to be done to establish SF-CV(2)-DFT as an alternative
to BS-DFT in the calculation of exchange coupling constants.

The SF-CV(2)-DFT method is not only able to evaluate
exchange coupling constants, it can in addition calculate the full
multiplet spectrum with complete use of spatial symmetry.
Further, in its restricted formulation calculations can be carried
out with use of full spin symmetry without spin contamination.
Finally, SF-CV(2)-DFT can also be used to optimize47 the
geometry of each individual spin state, an option we plan to
pursue in the near future. Our study adds to the increasing body
of work based onDFT (or TDDFT) directed toward the study of
spin multiplets48,49 and weakly interacting spin systems.50,51
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ABSTRACT: The Cartesian Tensor Transfer Method (CTTM) was proposed as an efficient way to calculate infrared, Raman, and
Raman Optical Activity (ROA) spectra for large molecules from the Hessian matrix and property tensor derivatives calculated for
smaller molecular fragments. Although this approach has been widely used, its reliability has not been analyzed in depth yet.
Especially for ROA spectra, such an analysis became only recently possible because of methodological advances that allow for the
calculation of full ROA spectra of fairly large molecules with large basis sets. In this work, we investigate an R-helical polypeptide of
20 alanine amino acids, for which we reported the full ROA spectra earlier, in order to study the CTTM for protein subunits. By
comparing the full first-principles calculation of the vibrational spectra with spectra reconstructed with the CTTM from different
fragment sizes, we find that infrared and Raman spectra are mostly well reproduced. However, this is not the case for the ROA
spectrum. This might have implications for peptide and protein CTTM ROA spectra that have already been published in the
literature.

1. INTRODUCTION

Vibrational spectra are a widely used tool to study biomole-
cules, in particular, polypeptides and proteins. Conventional
infrared (IR) and Raman spectroscopy,1�4 their chiral variants,
vibrational circular dichroism (VCD)5�8 and Raman optical
activity (ROA),9�14 as well as other specialized techniques such
as resonance Raman spectroscopy15�18 or multidimensional IR
spectroscopy19�21 can provide detailed insight into the structure
and dynamics of biomolecules in solution. Biomolecules in the
gas phase can be investigated using infrared multiple-photon
dissociation (IR-MPD) spectroscopy22�24 and IR-UV double
resonance spectroscopy.25,26

However, the interpretation of experimental vibrational spec-
tra is hampered by the difficulty of establishing a direct relation-
ship between observed spectra and the molecular structure.
Therefore, first-principles calculations of the vibrational spectra
(for a review, see ref 27) are often necessary to unambiguously
assign vibrational spectra. Such calculations can provide informa-
tion that is not available from experimental results alone, such as
the precise atomic displacements corresponding to each of the
observed vibrational transitions. In combination with appropri-
ate analysis tools,28�30 this can be utilized to understand the
relationship between molecular structure and vibrational spectra
in detail.31�34

The computational cost for such first-principles calculations is
very high because of the higher derivatives of the total electronic
energy and of molecular property tensors that are required for
the vibrational frequencies and intensities, respectively. Hence,
more efficient approaches for the calculation of vibrational
spectra have been developed. For instance, the mode-tracking35�37

and intensity-tracking38�41 methods allow for the direct calcula-
tion of particular normal modes or of only the intensemodes. For

the targeted modes, these approaches give results identical to
those of a full calculation.

In addition, methods that introduce further approximations
have been investigated.42,43 An interesting and popular approx-
imation is the so-called Cartesian Tensor Transfer Method
(CTTM) proposed by Bou�r et al. in 1997.44 The CTTM
constructs the second derivatives of the electronic energy (i.e.,
the Hessian matrix) and the intensities of a large molecule from
the Hessian matrices and molecular property tensor derivatives
calculated for smaller molecular fragments. Obviously, depend-
ing on the size of these fragments, this approximation neglects
long-range interactions between atoms in the large molecule,
which are further apart from one another so that they do not
belong to the same fragment. Since information about these long-
range interactions is not contained in the properties of the smaller
fragments, it cannot be accounted for. In terms of the underlying
Hessian matrix, this means that the far-off diagonal elements are
set to zero. Similarly, the use of small fragments might significantly
alter the electronic structure and in turn the property tensor
derivatives determining the vibrational intensities.

The CTTM has been applied in numerous studies to calculate
IR45�49 and Raman45,50 spectra of biomolecules. Also for the
corresponding chiral analogues VCD7,8,51�66 and ROA,50,67�74

the CTTMhas been applied extensively. An example is a study by
Kapitan et al., who employed the CTTM for β-peptides,70 where
both the force field (i.e., the Hessian matrix) and the polariz-
ability tensors’ derivatives were constructed with the CTTM. In
that work, the β-peptide under study was decomposed into
fragments separately representing the backbone and the side

Received: February 28, 2011
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chain, and the backbone was further decomposed into two
fragments. In another study,67 Kapitan et al. calculated Raman
and ROA spectra of poly-L-proline with the CTTM from
HCO-(L-Pro)3-NH2 fragments.

Despite its wide use, the CTTM has never been analyzed in
detail for such large biomolecules by performing a comparison to
full calculations. Mostly, this is because full calculations for such
large systems have only become possible in recent years. In
particular, for ROA spectroscopy, full calculations are now
possible for rather large polypeptides31,75,76 and even for small
proteins77 by using efficient density-fitting techniques for the
calculation of the required polarizability tensors.78 In the future,
analytical derivative methods developed for Raman79,80 and
ROA spectroscopy81�84 will push the limits even further.

In this work, we intend to close this gap by investigating the
accuracy and reliability of the CTTM in detail. As a test system,
we chose an R-helical polypeptide consisting of 20 alanine
residues. To allow for a direct comparison, all calculations for
the large molecules and the corresponding smaller fragments are
carried out with the same basis set and exchange-correlation
functional. Only the fragment size was varied in order to assess its
influence. As a consequence, we should be able to determine the
limits of this method and the reliability of the spectra of
polypeptides calculated with the CTTM.

This work is organized as follows. In section 2, we review the
theory of calculating vibrational spectra as well as the CTTM and
outline our CTTM implementation, before explaining the com-
putational details in section 3. This is followed in section 4 by two
tests on small molecules in order to validate our implementation
of the CTTM before we proceed to a detailed analysis of the
CTTM for an R-helical polypeptide in section 5. Finally, con-
clusions are presented in section 6.

2. METHODOLOGY

Within the harmonic approximation, the vibrational frequencies
νp and the normal modesQp can be obtained by diagonalizing the
mass-weighted molecular Hessian matrix H(m) with the elements

HðmÞ
iR, jβ ¼ 1ffiffiffiffiffiffiffiffiffimimj

p D2E
DRiRDRjβ

 !
0

ð1Þ

where E is the total energy, RiR is the R = x,y,z Cartesian com-
ponent of the position of nucleus i,mi is the atomicmass of nucleus
i, and the subscript “0” indicates that the derivative is taken at the
molecular equilibrium structure R0. Here and in the following, we
will use Greek indices R,β,γ,δ, etc. to refer to the Cartesian com-
ponents x,y,z of a vector or tensor and indices i,j,k, etc. for nuclei.

The intensities for infrared, Raman, and ROA spectroscopy
corresponding to each vibrational transition can be expressed as

Ip � ∑
l
cl

DPðiÞl
DQ p

 !
0

DPðiÞl
DQ p

 !
0

ð2Þ

where cl are coefficients depending on the type of spectroscopy as
well as the experimental setup and Pl

(i) are components of the
appropriate property tensors. In the case of infrared spectrosco-
py, these are the components of the dipole moment μ, and for
Raman spectroscopy, those of the electric-dipole�electric-dipole
polarizability tensor R. For ROA spectroscopy, the electric-
dipole�magnetic-dipole polarizability tensor G0 and the elec-
tric-dipole�electric-quadrupole polarizability tensor A are also

required. For explicit intensity expressions of these different
types of vibrational spectroscopy, see, e.g., Appendix D in ref 29.
The derivatives with respect to normal modes in eq 2 can be
obtained from the derivatives of the property tensors with respect
to Cartesian displacements (∂Pl

(i)/∂RiR)0.
For large molecular systems, such as polypeptides, the calcula-

tion of the second energy derivatives in eq 1 and of the property
tensor derivatives becomes a very expensive step, in particular for
calculations of ROA spectra. Therefore, in the CTTM of Bou�r
et al., these derivatives are approximated by those calculated for
smaller fragments. In the following, we briefly outline the CTTM
as well as the details of our implementation.

In the simplest case, one considers a molecule constituted of
several identical monomers such as, for instance, an alanine
polypeptide. In this case, a smaller fragment of only a few
monomers is used to perform the actual calculations of the
Hessian matrix and the property tensor derivatives, and these
results are then transferred to the larger molecule. A schematic
example is illustrated in Figure 1. The large molecule is in this
case a heptamer, and as a small fragment a trimer is used. The
small fragment can then be moved along the large fragment, and
for each position, a mapping between atoms of the small
fragment and atoms of the large molecule can be defined
(following the terminology of ref 44, this mapping will be called
an overlap). As shown in the figure, the atoms in the central part
of the large molecule can be mapped to the smaller fragment in
several different ways; i.e., different overlaps are possible. Of
course, by using several different small fragments, such a proce-
dure can be generalized to polymers consisting of different
monomers and to entirely general large molecules.

The Hessian matrix is then calculated in the following way:
For each pair of atoms i and j, one finds those overlaps that map
both atoms to the same small fragment. If no such overlap is
found, the corresponding elements of the Hessian are set to zero.
If one or more overlaps are found, the corresponding elements of
the Hessian of the small fragment are transferred to the large
molecule (see below for details). This results in a band-diagonal
Hessian matrix, as is illustrated in Figure 1. Initially, Bou�r et al.
suggested to fill the gaps where the Hessian has been set to zero
with entries of a semiempirical or empirical force field.44 How-
ever, since in most of the published papers so far this possibility
was not used, we will only investigate the generic method here as
a true ab initio method without any empirical contributions.

To transfer the Hessian matrix elements from the small
fragment to the large molecule, one has to determine a rotation
matrixU(ij) that maps the relevant atoms of the small fragment to
the corresponding atoms of the large molecule. For this, one
considers the atoms i and j as well as their next neighbors (as
defined by a connectivity table). If this results in less than three
atoms, another set of next neighbors is included. Then, both
sets of atoms {Rk

(large)} and {Rk
(small)} are translated to their

Figure 1. An abstract example for defining the overlaps: A large
polymer (heptamer) is reconstructed from a fragment (trimer). The
numbers above the bar show howmany overlaps exist for one unit of the
large polymer. An approximation of the Hessian matrix of the large
molecule is then constructed with the ones of the fragments as illustrated
on the right.
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geometric centers (R large
(ij) = 1/N ∑kRk

(large) and Rsmall
(ij) = 1/N

∑kRk
(small), respectively, where the index k runs over the N

relevant atoms). Subsequently, the rotation matrix U(ij) is
determined such that the mean square error

δðUðijÞÞ ¼ ∑
k
jðRðlargeÞ

k � RðijÞ
largeÞ �UðijÞðRðsmallÞ

k � RðijÞ
smallÞj2 ð3Þ

is minimized, where the index k runs over the relevant atoms. For
this minimization, one can apply different methods. Some
methods employ a Euler angle parametrization, which can raise
different problems such as the Gimbal lock;85,86 others employ
a quaternion parametrization.85,86 The latter has the advantage
that it allows one to apply algebraic methods to solve the
minimization problem, which is then turned into an eigenvalue
problem, rather than to deal with trigonometric functions. For
these reasons, an algorithm based on quaternions, similar to the
one described in ref 87, is employed in this work.

It is important to note that a different rotation matrix U is
determined for each pair of atoms i and j, which is indicated by
the superscript index “(ij)”. Alternatively, it would also be
possible to apply a common rotation matrix for each overlap of
a small fragment with the larger molecule. However, by read-
justing the rotation such that the agreement is optimal for the
atoms i and j and their neighbors, a more accurate Hessian (and
property tensor derivatives) should be obtained. Finally, if there
are several overlaps that contain the atom pair i and j, one has to
decide which of them (i.e., which small fragment) is used. The
papers of Bou�r and co-workers mention that there are several
possibilities for handling such cases44 (e.g., always choosing the
fragment for which the geometry matches best or performing a,
possibly weighted, average). However, they are not very clear in
explaining which option has actually been used in their calcula-
tions. On the basis of our own tests, we chose to always use the
overlap for which the smallest error δ(U(ij)) is obtained.

Given the rotation matrix U, the entries of the Hessian matrix
for the atom pair i and j can be transformed with44

D2EðlargeÞ

DRiRDRjβ
¼ UðijÞ

RγU
ðijÞ
βδ

D2EðsmallÞ

DRiγDRjδ
ð4Þ

The usual sum convention is used throughout (i.e., a Greek
index occurring more than once on the right-hand side is summed
over all Cartesian components) if no explicit sum sign is used.

For the spectral intensities, one has to obtain the different
derivatives of electric property tensors (i.e., the electric-dipole
polarizability μ, the electric-dipole�electric-dipole polarizability
tensor R, the electric-quadrupole�electric-dipole polarizability
A, and the electric-dipole�magnetic-dipole polarizability G0)
with respect to Cartesian coordinates. These are also obtained by
transferring the property tensor derivatives from the small
fragments to the large molecule. However, since these derivatives
only depend on one atom i (in contrast to the elements of the
Hessian, which depend on two atoms), the rotationmatricesU(ii)

found for the diagonal elements of the Hessian can be used.
The dipole moment μ and the electric-dipole�electric-dipole

polarizability R of an uncharged molecule are not origin-depen-
dent and transform as44

D
DRiε

μðlargeÞR ¼ UðiiÞ
εη U

ðiiÞ
Rπ

D
DRiη

μðsmallÞπ ð5Þ

D
DRiε

RðlargeÞ
Rβ ¼ UðiiÞ

εη U
ðiiÞ
RπU

ðiiÞ
βF

D
DRiη

RðsmallÞ
πF ð6Þ

The electric-dipole�magnetic-dipole polarizabilityG0 and the
electric-quadrupole�electric-dipole polarizability A change un-
der a gauge transformation (i.e., a shift of the origin).9,78 There-
fore, for transferring their derivatives from the small fragments to
the large molecule, it is not sufficient to transform them with the
rotation matrix U(ii), but the translation by �Rsmall

(ii) applied
before the rotation and the translation by R large

(ii) applied after
the rotation have also to be considered. This way, it is ensured
that the property tensor derivatives for the largemolecule all refer
to the same common origin. This is only relevant for the
calculation of ROA spectra, but (as long as neutral molecules
are studied) not for IR or Raman spectra.

The first step is a translation of the small fragment to its
geometric center, i.e., by the vector�Rsmall

(ii) . This corresponds to
shifting the origin O to O þ Rsmall

(ii) . Under this transformation,
the Cartesian derivatives of G0 and A change as9,44,78

D
DRiε

G0 ðsmallÞ
Rβ ðOþ RðiiÞ

ðsmallÞÞ ¼ D
DRiε

G0 ðsmallÞ
Rβ ðOÞ

þ 1
2
ωεβγδR

ðiiÞ
small, γ

D
DRiε

RðsmallÞ
Rδ ð7Þ

D
DRiε

AðsmallÞ
R, βγ ðOþ RðiiÞ

ðsmallÞÞ ¼ D
DRiε

AðsmallÞ
R, βγ ðOÞ

� 3
2
RðiiÞ
small, β

D
DRiε

RðsmallÞ
Rγ � 3

2
RðiiÞ
small, γ

D
DRiε

RðsmallÞ
Rβ

þ δβγR
ðiiÞ
small, δ

D
DRiε

RðsmallÞ
Rδ ð8Þ

where ω is the angular frequency of the incident light, δβγ is the
Kronecker delta, and εβγδ is the Levi�Civita symbol. After this
transformation, the rotation U(ii) has to be applied:

D
DRiε

G0 ðlargeÞ
Rβ ðOþ RðiiÞ

ðlargeÞÞ ¼ UðiiÞ
εη U

ðiiÞ
RπU

ðiiÞ
βF

D
DRiη

G0 ðsmallÞ
πF ðOþ RðiiÞ

ðsmallÞÞ

ð9Þ
D

DRiε
AðlargeÞ
R,βγ ðOþ RðiiÞ

ðlargeÞÞ ¼ UðiiÞ
εη U

ðiiÞ
RπU

ðiiÞ
βF U

ðiiÞ
γσ

D
DRiη

AðsmallÞ
π, Fσ ðOþ RðiiÞ

ðsmallÞÞ

ð10Þ
Following this rotation around the origin, the polarizability
tensor derivatives refer to the large fragment that has been
shifted such that its geometric center is at the origin, i.e., by
�R large

(ii) . Thus, the G0 tensor and the A tensor have to be
translated back to the original position of the large molecule.
This corresponds to shifting the origin from O þ R(large)

(ii) to O
and therefore,

D
DRiε

G0 ðlargeÞ
Rβ ðOÞ ¼ D

DRiε
G0 ðlargeÞ
Rβ ðOþ RðiiÞ

ðlargeÞÞ

� 1
2
ωεβγδR

ðiiÞ
large, γ

D
DRiε

RðlargeÞ
Rδ ð11Þ

D
DRiε

AðlargeÞ
R, βγ ðOÞ ¼ D

DRiε
AðlargeÞ
R, βγ ðOþ RðiiÞ

ðlargeÞÞ

þ 3
2
RðiiÞ
large, β

D
DRiε

RðlargeÞ
Rγ þ 3

2
RðiiÞ
large, γ

D
DRiε

RðsmallÞ
Rβ

� δβγR
ðiiÞ
large, δ

D
DRiε

RðlargeÞ
Rδ ð12Þ
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Once all (pairs of) atoms of the large molecule have been
considered, the IR, Raman, and ROA spectra can be computed
from the final Hessian matrix and property tensor derivatives
using the usual procedure.

3. COMPUTATIONAL DETAILS

All calculations of Hessians and property tensor derivatives
have been performed using the SNF program.88,89 The Hessian
matrix is calculated by numerical differentiation of analytical
gradients calculated with density-functional theory in the
Turbomole program package.90 For the calculation of the property
tensor derivatives, the dipole moment as well as the electric-
dipole�electric-dipole, electric-dipole�magnetic-dipole, and
the electric-dipole�electric-quadrupole polarizability tensors
calculated with Turbomole are differentiated numerically. The
polarizability tensors are obtained with time-dependent density-
functional theory from a modified version of Turbomole’s escf
program.78 The electric-dipole�electric-dipole polarizabilityR is
calculated both in the length and in the velocity representation,
the electric-dipole�magnetic-dipole polarizability G0 is calcu-
lated in the velocity representation, and the electric-dipole�
electric-quadrupole polarizability A is calculated in the length
representation. All Turbomole calculations employ the BP86
exchange-correlation functional91,92 and Ahlrichs’ valence triple-
ζ basis with one set of polarization functions (def-TZVP)93,94

and the corresponding auxiliary basis sets.95,96

The CTTM method as described in the previous section has
been implemented in an add-on package to SNF written in the
Python programming language. A pseudocode representation of
the calculation of vibrational spectra with our implementation of
the CTTM is shown in Figure 2. This add-on reads the Hessian
matrices and property tensor derivatives calculated by SNF for the
small fragments and assembles the Hessian matrix and property

tensor derivatives of the large molecule. For determining the
rotation matrix U, a quaternion-based algorithm86,87 is used. For
this step, our program makes use of the routines provided by the
PyVib2 library of Fedorovsky.97

The Hessian matrix and the property tensor derivatives
constructed using the CTTM are then read back into the SNF
program, so that the usual routines can be employed for
calculating the vibrational frequencies and normal modes, as
well as IR, Raman, and ROA intensities. When calculating the
ROA intensity differences, the β(G0)2 invariant is calculated in
the velocity representation to ensure gauge invariance, whereas
the β(A)2 invariant, which is always gauge invariant, is calculated
in the length representation.78 All Raman scattering factors are
calculated for linearly polarized incident light and for the
scattered light detected at 90�, ROA intensity differences are
for 180� backscattering. Both the Raman and the ROA spectra
use an excitation wavelength of 799 nm. In all plotted spectra, the
calculated transitions have been broadened using a Lorentzian
line shape with a full-width at half-maximum of 15 cm�1. If
included in the plots, the line spectrum has been scaled by 0.05
compared to the broadened spectrum.

4. VERIFYING THE CTTM IMPLEMENTATION

First, we carefully tested that our implementation of the
CTTM is correct. As a simple test case to verify that the various
transformation steps have been implemented correctly, we
study the L-alanine molecule. The IR, Raman, and ROA spectra
calculated for L-alanine are shown in Figure 3 as “Original” at
the bottom of each plot. Themolecule is then rotated by 120� in
the xy plane and afterward translated by 1.0 bohr in the x and y
directions. The spectra calculated for this rotated and translated
molecule are shown in Figure 3 as “Rotated&Translated” at the
top of each plot. The Hessian and the property tensor deriva-
tives calculated for the rotated and translated L-alanine mole-
cule are then transformed back to the coordinates of the original
molecule. The resulting spectra are shown in Figure 3 in the
middle of each plot as “Transferred”. The IR, Raman, and ROA
spectra are identical in all three cases, which demonstrates that
the implementation is working correctly. For a more detailed
comparison, the IR intensities as well as the Raman and ROA
invariants for all normal modes are listed in the Supporting
Information. From the calculation for the translated and rotated
molecule and from the CTTM identical values are obtained.
For the original L-alanine molecule, very small deviations are
observed. These are due to the numerical integration grid in
the DFT calculations, which depends on the orientation of
the molecule.

However, since the origin dependence of theG0 tensor and the
A tensor drops out when the ROA invariants are calculated, one
still has to verify that the translation of the molecule (eqs 7�8,
11, and 12) is performed correctly. Therefore, in the Supporting
Information, also the elements of derivatives of theG0 tensor and
the A tensor with respect to some of the nuclei are given. Again, a
close agreement between all three calculations is found. This
validates our implementation of the CTTM.

As a first test of the CTTM itself, we consider a simple case
where the CTTM gives correct results. To this end, we chose two
L-alanine molecules which are located far apart from each other,
separated by approximately 10.5 Å. The IR, Raman, and ROA
spectra calculated for these two L-alanine molecules in a full
calculation are shown in Figure 4 as “Original” at the bottom of

Figure 2. Pseudocode for the calculation of vibrational spectra of large
molecules according to the CTTM.
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each plot. The “Reconstructed” spectra are obtained by merging
two separately calculated L-alanine molecules with exactly the
same structure as in the full calculation with the CTTM. The IR,
Raman, and ROA spectra show no differences between the result
of the full calculation and of the CTTM, which also demonstrates
that our implementation is correct.

In an additional test, we consider a N-methyl-acetamide
(NMA) trimer. A similar test case was already used by Bou�r
et al.44 The structure of the trimer is fully optimized, and as a
reference, the full IR, Raman, and ROA spectra are calculated.
From the trimer structure, we then constructed two NMA
dimers, one by taking the two N-terminal NMA units and

Figure 4. Test case for our implementation of the Cartesian Tensor
Transfer Method: Reconstruction of the spectrum of two distant L-
alanine molecules from two separately calculated L-alanine molecules.

Figure 3. Test case for the implementation of the Cartesian Tensor
Transfer Method: Reconstruction of the spectrum of L-alanine from an
L-alanine molecule translated and rotated in space.
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another one by considering the two C-terminal NMA units. For
these dimers, the atomic coordinates are fixed to those in the
trimer, and only the positions of the additional terminal hydro-
gen atoms are optimized. The IR, Raman, and ROA spectra of the
trimer are then reconstructed by transferring the Hessians and
property tensor derivatives from the two dimers to the trimer.
Note that since the atomic coordinates of the dimers match those
of the trimer, a rotation or translation is actually not required in
this case, and the Hessian matrix elements and property tensor
derivatives calculated for the dimers could be used directly.

The comparison of the IR and Raman spectra from the full
calculation and from the CTTM are compared in the plots in the
left column of Figure 5. Even though there are some slight
differences (e.g., the peak at about 850 cm �1 in the Raman
spectrum from the full calculation is split into two peaks in the
reconstructed Raman spectrum), the agreement is very good.
Also for the ROA spectra, shown in the right column of Figure 5,
the full calculation (bottom spectrum) and the reconstructed
spectrum from the CTTM (top spectrum) match closely in most
regions. However, there are also some clear deviations: For
instance, around 1500 cm �1 (where combinations of amide II
and side chainCH3 bending vibrations appear), the spectrum from
the full calculation shows a couplet, while in the reconstructed
spectrum, there are only negative peaks. Similarly, there are
deviations in the amide III region between 1200 and 1300 cm �1.

To shed light on the origin of these deviations, Figure 5 also
includes the spectra obtained if only the Hessian matrix is
transferred and the property tensor derivatives from the full
calculation are used (labeled “Hessian only”) and if only the

property tensor derivatives are transferred but the Hessian from
the full calculation is used (labeled “Intensities only”). In both
cases, there are still differences in the full calculation, but if the
Hessian from the full calculation is used, the spectrum agrees
more closely with the reference. Therefore, it appears that the
ROA spectrum is, in contrast to the IR and Raman spectra, rather
sensitive to (small) changes in the normal modes.

5. ANALYSIS OF THE CTTM FOR AN (ALA)20
POLYPEPTIDE

Since the CTTM has extensively been applied to calculate
vibrational spectra of biomolecules, in particular polypeptides, it
is crucial to assess its accuracy for such systems. As a typical test
case, we choose a polypeptide of 20 alanine residues (Ala)20 in an
R-helical conformation. Full DFT calculations of the IR and
Raman spectra as well as the ROA spectrum of this model system
have previously been performed in our group and were analyzed
in detail.29,31,32 The structure of this (Ala)20 R-helix is shown in
Figure 6a. Even though these calculations might only partly agree
with experimental spectra because of limitations of the computa-
tional methodology (i.e., the approximations applied for the
exchange-correlation functional as well as the neglect of anhar-
monic effects) and the neglect of solvent effects, these full
calculations can serve as a reference for the CTTM. Since the
calculations for the small fragments are based on the very same
approximations, any deviations of the reconstructed vibrational
spectra from the full calculations are caused solely by the CTTM.

Of course, the accuracy of the CTTMwill strongly depend on
the size of the small fragments employed. The structure of the

Figure 5. Vibrational spectra of anN-methyl-acetamide trimer reconstructed from two dimer calculations with the CTTM (IR, top left; Raman, bottom
left; ROA, right). In the Raman spectra, the region below 2000 cm �1 has been magnified by a factor of 8.
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R-helix is stabilized by hydrogen bonds, which could strongly
affect the vibrational frequencies as well as the property tensor
derivatives. In too small fragments, these hydrogen bonds are not
present. Furthermore, the size of the fragments determines the
number of off-diagonal elements of the Hessian that are included
in the CTTM.

To test the sensitivity of the CTTM to the size of the small
fragments, four different sizes are compared. As the smallest
fragment, an alanine tetramer (Ala)4 is used. This fragment is cut
from the C-terminal end of the R-helix and contains only one
internal hydrogen bond. Next, a hexamer (Ala)6, also taken from
the C-terminal end of the R-helix, has been employed. In this
hexamer, there are two hydrogen bonds. Additionally, a hepta-
mer (Ala)7 and an octamer (Ala)8 have been considered. The
structures of these larger fragments have been cut from the
central part of the (Ala)20 (starting from the eighth and from the
second amino acid counting from the C-terminus for the
heptamer and the octamer, respectively) and thus have an mostly
undistorted R-helical structure. The octamer is the smallest
possible fragment in which the central peptide group is involved
in hydrogen bonds both at the N�H and at the CdOgroup. The
structures of these four different small fragments are shown in
Figure 6b. For all of these small fragments, all molecular
coordinates, except for the ones of the terminal NH2 group,
have been fixed in order to keep their structures as close to the full
helix as possible. Therefore, the small fragments are nominimum
structures with respect to the energy anymore, and the Hessians
calculated for these fragments have negative eigenvalues.

The IR and Raman spectra obtained for the (Ala)20 R-helix
with the CTTM are compared to the full calculation in Figure 7.
In general, a good agreement between the full calculation and the
CTTM is found already for the spectra reconstructed from the

alanine tetramer. When going to a larger fragment size, the
spectra only change slightly. There are only a few exceptions
where the agreement is worse. First, in the region between 3300
and 3600 cm�1, where the N�H stretching (amide A) vibrations
appear, the CTTM cannot reproduce the full calculations. Since
the hydrogen bonds in theR-helix are formed between the N�H
and the CdO groups of the backbone, these N�H stretching
vibrations are especially sensitive to the (partial) neglect of these
hydrogen bonds in the CTTM. Only for the octamer, the shape
of the amide A band resembles the full calculation, but its
intensity is still underestimated, both in the IR and in the Raman
spectrum. The peak at 3309 cm�1 in the full calculation (slightly
below the amide A band), which stems from the N�H stretch
vibration of the terminal NH2 group, is missing in all CTTM
spectra. Since we took the structure of our fragments from the
central parts or from theC-terminal end of the helix, the structure
and chemical environment of the terminal NH2 are not well
described.

Second, the IR and Raman spectra from the CTTM do not
agree with the full calculation in the extended amide III region
between 1100 and 1350 cm�1 (i.e., for the amide III and the
CR�H bending vibrations). While the positions of most of the
bands in this region agree in all cases, their relative intensities
change significantly between the different fragment sizes. It is
known that the extended amide III region is particularly sensitive
to structural changes because of the coupling between the
classical amide III and the CR�H bending vibrations.98,99,34

Finally, there are also deviations in the lower wavenumber region,
for instance, around 500 cm�1 in the IR spectra or between 650
and 700 cm�1 in the Raman spectra. For these features, one can
observe that the agreement of the CTTMwith the full calculation
improves if larger fragments are used.

Figure 6. (a) Molecular structure of the (Ala)20 R-helix. (b) Molecular structures of the different fragments used to reconstruct the vibrational spectra
with the CTTM. In the octamer, there is one peptide bond, which has one H bond in both directions.
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Amore quantitative comparison can be obtained by looking at
the differences in the vibrational frequencies of each individual
transition. For such a comparison, we identify the normal modes
corresponding to the same transition in the full and CTTM
calculations by identifying those pairs of normal modes that have
the largest overlap (as defined, for instance, in ref 30). For the
CTTM calculations starting from the different fragment sizes,
Figure 8 highlights the error in the wavenumber for each of the
normal modes. The comparison shows quite significant errors in
the vibrational frequencies. For each of the bands, the errors in
the individual vibrational frequencies are not systematic but
scatter (usually around zero) by about 20 to 50 cm�1. When
ignoring the low-frequency vibrations (below about 300 cm�1),
the largest errors of up to 80 cm�1 are found for the N�H

stretching (amide A) vibrations. Also, for the extended amide III
region, larger deviations are observed. Nevertheless, it appears
that for most of the other regions the errors in the vibrational
frequencies—even though they are considerable—do not affect
the overall IR and Raman spectra significantly.

For the ROA spectrum, the comparison of the CTTMwith the
full calculation is shown in the upper part of Figure 9. Some
features found in the ROA spectrum from the full calculation can
(at least qualitatively) also be found in all the spectra, e.g., the
negative peak for the skeletal stretch vibrations at about
1150 cm�1, the strong positive peak at the lower-wavenumer
end of the CR�H stretching region, or the small positive peak for
the symmetric CH3 bending vibrations. Other features, such as
the negative peak at the lower-wavenumber end of the amide III

Figure 7. Comparison of the IR and Raman spectra from the full calculation on an (Ala)20R-helix and the spectra obtained with the CTTMby using an
alanine tetramer, hexamer, heptamer, and octamer as small fragments. In the Raman spectra, the region up to 2000 cm�1 is enlarged by a factor of 20.
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region or the couplet for the asymmetric CH3 stretching vibra-
tions at 1450 cm�1 appear with the CTTMonly for the heptamer
and the octamer. In general, one notices that there is a much
stronger dependence on the size of the fragments used in the
CTTM, and in some regions, the spectrum changes significantly
with fragment size. An example is the amide I region: While there
is a negative�positive couplet in the full calculation,31 a positive
peak is found with the CTTM using the tetramer; a couplet is
found for the hexamer, and negative peaks are found for the
octamer. It is important to point out that, while in some regions
the CTTM is able to approach the full calculation if large enough
fragments are used, this is not true in general. Even with the
octamer, theCTTMproduces—in contrast to the full calculation—a
strong negative amide II band, an additional negative peak in the
amide III region, and an additional positive peak at about
1000 cm�1. Moreover, there are significant deviations from the
full calculation in the extended amide III (i.e., amide III and
CR�H bending) region.

One reason for the dissatisfying performance of the CTTM for
ROA spectra could be the influence of the terminal residues in
the small fragments. These have a different electronic structure
than the central residues, which will affect both the Hessian and
the property tensor derivatives but are still considered in the
reconstruction of the Hessian and property tensor derivatives of
the central parts of the full helix. To test their influence on the
reconstructed ROA spectra, we repeated the CTTM calculations,
but this time the terminal residues are excluded when mapping

the atoms of the small fragment to the full R-helix (except for the
“ends” of the helix). For the tetramer, the two central peptide
groups; for the hexamer, the three central peptide units; and for
the heptamer and octamer, the four and three central peptide
groups, respectively, are included. The spectra obtained with
these smaller overlaps in the CTTM are shown in the lower part
of Figure 9. However, while the ROA spectra change in some
parts, the disagreement between the CTTM and the full calcula-
tions remains.

To better understand why the CTTM is in disagreement with
the full calculation of the ROA spectra, we also performed
calculations where the CTTM is applied only to the property
tensor derivatives, but where theHessian from the full calculation
is used (“Intensities only”), as well as calculations where the
CTTM is applied only for the Hessian, but where the property
tensor derivatives from the full calculation are used (“Hessian
only”). The results are shown in Figure 10. For the “Intensities
only” spectra (shown in the upper part), there are still large
deviations from the full calculation, and in some parts, the ROA
spectrum changes completely when the fragment size is in-
creased. On the other hand, for the “Hessian only” CTTM
calculations, the ROA spectra agree rather well with the full
calculation. Nevertheless, there are still some smaller differences,
for instance, in the extended amide III region or for the amide II
band. Therefore, the dissatisfying performance of the CTTM for
ROA calculations is mainly caused by the transfer of the property
tensors, not by approximations introduced for the Hessian.

Figure 8. Comparison of the vibrational frequencies obtained with the CTTM starting from a tetramer, hexamer, heptamer, and octamer to those
obtained in a full calculation. For each normal mode in the reconstructed spectrum, the corresponding normal mode in the full calculation is identified by
considering the overlap between the modes.



1876 dx.doi.org/10.1021/ct2001478 |J. Chem. Theory Comput. 2011, 7, 1867–1881

Journal of Chemical Theory and Computation ARTICLE

As the ROA intensities depend on the derivatives of three
different property tensors (the electric-dipole�electric-dipole
polarizability tensor R, the electric-dipole�magnetic-dipole ten-
sor G0, and the electric-dipole�magnetic-quadrupole polariz-
ability tensor A),9 it is instructive to investigate the degree to
which the individual tensors are affected by the CTTM. The R
tensor cannot be the reason for the disagreement with the full
calculation because good results were obtained for the Raman
intensities. To determine which one of the other two tensors is
responsible for the errors, pseudospectra treating the two ROA
invariants β(G0)2 and β(A)2 separately are plotted in Figure 11.
In these pseudospectra, only the property tensor derivatives have

been reconstructed with the CTTM, whereas the Hessian from
the full calculation has been used. From the plots, it is evident
that the derivatives of theA tensor are less affected by the CTTM
than the G0 tensor derivatives. In addition, the invariants β(G0)2

and β(A)2 enter the ROA intensity expression in a 3:1 ratio (the
pseudospectra in Figure 11 have been scaled accordingly).
Keeping in mind that the A tensor hardly contributes to the full
ROA spectrum,100 it is obvious that the error in the CTTM-
constructed ROA spectrum stems from theG0 tensor derivatives
when compared to the full ROA calculation.

To further understand the origin of the errors in the ROA
intensities introduced by the CTTM, an analysis in terms of local

Figure 9. Comparison of the ROA spectra from the full calculation on an (Ala)20 R-helix and the spectra obtained with the CTTM by using an alanine
tetramer, hexamer, heptamer, and octamer as small fragments. In the top part, all atoms of the small fragments are included for the CTTM calculation,
while in the bottom part, the terminal residues of the small fragments are not considered. In all spectra, the region up to 2000 cm�1 is enlarged by a
factor of 20.
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modes29 can provide additional insight. In such an analysis, the
delocalized normal modes contributing to one band are unitarily
transformed to a set of localized modes. In general, these
localized modes are vibrations of a single amino acid residue or
peptide group. Even though they do not correspond to the
transitions observed in the experiment, a wavenumber and a
ROA intensity can be assigned to each localized mode, and the
total intensity of a specific band is invariant under the transfor-
mation from normal modes to localized modes. For more details,
we refer to refs 29 and 32. For the ROA spectrum of (Ala)20, such
an analysis has previously been performed in our group for the
full ROA calculation,31 to which we may compare here.

As an example, we consider the amide III band between ca.
1200 and 1260 cm�1. For this band, the full ROAcalculation yields

a rather small negative peak, while amuch stronger negative peak is
obtained in the CTTM calculation, even when using the large
octamer fragment. The ROA intensities of the amide III localized
modes are listed in Table 1 for both the full calculation and the
intensities-only CTTM calculation employing the octamer frag-
ment. Note that because the CTTM is applied for the property
tensor derivatives only, the normal modes and also the localized
modes are identical in both cases. For the terminal residues, the
localized-mode intensities from the CTTM qualitatively agree
with the full calculation. However, for the central residues, there
are larger differences. While in the full calculations, the ROA
intensities of the localized modes are approximately�10� 10 �3

Å4/amu, those obtainedwhen applying theCTTMare about twice
as large. This is then reflected by the sum of the intensities for the

Figure 10. Comparison of the ROA spectra from the full calculation on an (Ala)20R-helix and the spectra obtained with the CTTM applied only for the
intensities (top part) or only for the Hessian (bottom part). In all spectra, the region up to 2000 cm�1 is enlarged by a factor of 20.
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amide III band, resulting in a much stronger negative peak in the
CTTM calculation. In addition, the ROA intensities of the
octamer fragment can also be analyzed in terms of local modes.
The resulting wavenumbers and ROA intensities of the localized
modes are included in Table 1. A comparison shows that the
localized mode intensities of the (Ala)20 CTTM calculation are
similar to the ones of the octamer fragment calculation. This is not
surprising, since the property tensors of the fragment were used to
reconstruct the corresponding property tensor derivatives of the
complete helix. In conclusion, one would obtain correct ROA
intensities if the localizedmode intensities of the fragment and the
largemolecule were similar. However, our analysis shows that, even
with the relatively large octamer fragment, this is not the case, in

particular for the central residues. Finally, we note that for the
other bands in the ROA spectrum, similar observations could
be made.

6. DISCUSSION AND CONCLUSION

By comparing the vibrational spectra reconstructed from small
fragments to those from a full calculation, the accuracy of the
CTTM has been investigated. For IR and Raman spectra, we find
that the CTTM yields spectra which are generally in good
agreement with the full calculation. However, we also find that
for the vibrational frequencies of the individual normal modes,
there are rather large deviations of 20 to 50 cm�1, and in some

Figure 11. Comparison of the pseudospectra showing only the β(G0)2 and β(A)2 invariants from the full calculation on an (Ala)20R-helix and from the
CTTM. The pseudospectra are scaled such that their sum corresponds to the total ROA intensity, as shown in the upper part of Figure 10. In all spectra,
the region up to 2000 cm�1 is enlarged by a factor of 20.
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problematic cases (such as the N�H stretching vibrations), even
larger errors are found. The observation that these errors hardly
affect the overall IR and Raman spectra can be understood
through an analysis in terms of local modes: As was discussed
in ref 32, the positions and total intensities of the bands observed
in the IR and Raman spectra of polypeptides are determined by
local properties (i.e., vibrational frequencies and intensities of
localized modes). These local properties can be described
adequately by small fragments. On the other hand, the coupling
between local modes determines the observed band shapes.
Some of these couplings (i.e, off-diagonal elements of the
Hessian) are neglected in the CTTM,which affects the individual
normal modes but leaves the overall band shapes unchanged,
particularly if the nearest-neighbor couplings are included.
However, for bands where the local mode properties are very
dependent on the environment, such as the N�H stretching
vibrations, or in regions that are very sensitive to changes in the
coupling between different modes, such as the extended amide
III region,34 the approximations introduced by the CTTM show
up as errors in the IR and Raman spectra.

For ROA spectroscopy, a different picture emerges. The
CTTM spectra are strongly dependent on the size of the
fragments. Even with the largest fragment used here, an octamer,
the agreement of the CTTM ROA spectra with the full calcula-
tion is not satisfying. However, if the CTTM is applied only to
the Hessian and not to the property tensor derivatives, a much
better agreement with the full calculation is found. Thus, the

poor performance of the CTTM for ROA is due to the
approximations introduced when calculating property tensor
derivatives for smaller fragments. On the other hand, applying
the CTTM to the Hessian and neglecting the vibrational
coupling between some residues only has a minor effect.
Revisiting the analysis of the ROA spectrum of (Ala)20 in terms
of local modes31 helps to understand these errors. The compar-
ison of the localized mode intensities from the CTTM to those
from the full calculation clearly shows the reason for these errors.
The localized ROA intensities of the octamer fragment are quite
different compared to those of the larger (Ala)20R-helix. Already
in ref 31, it was found that the ROA intensities of the localized
modes are very different for the terminal residues than for the
central ones (see Tables in the Supporting Information of ref 31).
Thus, because of the neglect of hydrogen bonding in the smaller
fragments, the “local” ROA intensities can change significantly.
Because this fragment is then used to reconstruct the complete
(Ala)20 R-helix, wrong ROA intensities are obtained, and since
the ROA intensities can even change sign, the effect on the
overall spectra is more dramatic than in the case of CTTM-
constructed IR and Raman spectra.

Of course, there are several details of our implementation of
the CTTM and of its application that could be changed in order
to attempt to improve on the present results. Most important,
other choices would be possible for the small fragments. Instead
of extracting their geometry from the full calculation, the small
fragments could be constructed to resemble an idealized R-helix.
Moreover, instead of fixing their geometry, the small fragments
could be (at least partly) optimized. In their applications of the
CTTM method, Bou�r, Keiderling and co-workers mostly em-
ployed a geometry optimization in normal coordinates for the
small fragments, in which the low frequency modes are kept
fixed.101 Furthermore, our calculations used a single small
fragment for reconstructing the whole R-helix. Instead, it would
be possible to employ different small fragments for different parts
of the helix. However, because the small fragments have to
overlap, the additional computational cost for the calculations on
the small fragments might then render the CTTM more ex-
pensive then a full calculation.

Another issue is the definition of the mapping between the
atoms of the small fragment and the large molecule. For this, we
tested two different options, either to include all atoms of the
small fragment or to consider only those of the central residues
(i.e., those where hydrogen bonding is accounted for and the
electronic structure should be most similar to the one of the large
molecule). Finally, if different small fragments (or different parts
of the same fragment) can be employed in the reconstruction,
there are different ways to decide which one is used. Here, we
always choose the one that has the structure most similar to the
large molecule. An average of all matching small fragments or a
weighted average that prefers the central parts of the small
fragment could be employed instead.

Carefully testing these different options might improve the
agreement of the CTTM with the full calculations for ROA
spectra. Nevertheless, this would also imply that the CTTM
applied to ROA spectroscopy is very sensitive to the choice of
these parameters. In conclusion, our analysis indicates that
applying the CTTM for ROA spectra is strongly dependent on
the details of how the CTTM is applied, most importantly on the
size and structure of the small fragments. Therefore, many ROA
results obtained previously with the CTTM will have to be re-
evaluated carefully. It is particularly puzzling that the CTTMwas

Table 1. Wavenumbers Ω~ii (in cm �1) and ROA Intensities
(in 10 �3 Å4/amu) for the Amide III Localized Modes of the
Full Calculation and the Intensity-Only CTTM Calculation
on the (Ala)20 Helix and for the Amide III Localized Modes
Obtained for the Octamer Fragment Used in the CTTM

(Ala)20 helix octamer

residue Ω~ii

ROA int.

(full)

ROA int.

(CTTM) Ω~ii

ROA int.

(full)

1 1225.7 1.87 9.84 1215.0 14.32

2 1198.6 �26.20 �26.58 1217.2 �23.43

3 1219.6 �18.22 �20.24 1218.9 �32.55

4 1250.0 �8.07 �19.30 1228.4 �23.94

5 1235.7 �5.41 �15.42 1239.5 �30.21

6 1228.5 10.71 3.16 1222.0 15.08

7 1237.0 �9.64 �9.27 1237.5 �27.05

8 1242.6 �10.42 �20.61 1225.0 44.62

9 1242.0 �6.85 �22.02

10 1243.2 �12.93 �18.01

11 1243.4 �12.62 �20.89

12 1244.1 �13.95 �19.73

13 1243.8 �18.18 �20.07

14 1238.7 �19.76 �41.18

15 1246.0 �20.44 �43.80

16 1240.3 �20.43 �32.27

17 1224.4 16.59 20.09

18 1239.6 �14.72 �17.43

19 1223.2 58.46 51.84

20 1254.3 �14.38 �5.73

20 1221.7 33.75 32.51

sum �110.86 �235.10 �63.16
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found to work well in direct comparison to the experiment (see
references provided in the Introduction), which might point to a
fortunate error compensation. If this is not the case, it might even
be necessary to revise the conclusions previously drawn from
such calculations. Moreover, it appears to be necessary to also
investigate the reliability of the CTTM for the calculation of
VCD spectra.

One solution to these problems could be to perform the
calculations on the small fragments not for the isolatedmolecules
but for embedded structures which feature an appropriate
environment. A first step is to apply a continuum solvation
model that could partly account for the effect of hydrogen
bonding, as has already been done in applications of the CTTM
(whether this is the reason for the high reliability previously
reported remains to be shown). More accurate environment
models, such as combined quantum mechanics/molecular me-
chanics (QM/MM) methods,102,103 have already been adopted
for use in computational vibrational spectroscopy, for instance, in
the mobile block Hessian method.42,43 Additionally, more ad-
vanced embedding approaches based on a subsystem formula-
tion of DFT have been shown to provide an accurate description
of the effect of hydrogen bonds.104,105 Combining the general-
ization of such methods to polypeptides and proteins106

and to the subsystem calculation of polarizabilities107,108

could lead to accurate and efficient methods for the calculation
of ROA spectra that go beyond the CTTM.
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ABSTRACT: Vibrationally resolved absorption spectra of a series of anthraquinoidic dyes have been obtained with a polarizable
continuummodel time-dependent density functional theory approach. Firstly, we assessed the impact of the atomic basis set on both
the transition energies and the vibronic shapes of 1,4-NH2-anthraquinone using a large panel of Pople’s basis sets, up to the
6-311þþG(3df,3pd). In a second stage, an extensive functional benchmark has been performed to determine an adequate approach
for the same compound. In the third step, a complete analysis of the origin of the band shape was performed for the same derivative.
In the fourth stage, a set of functionals has been applied to investigate the position isomers in the dihydroxy anthraquinone series.
Finally, in a last phase, the methodology has been used for three dyes of technological interest. It turns out that the chosen basis set
has a relatively limited impact on the computed transition energies as well as the topology of the vibronic shape, but both are
significantly influenced by the selected functional. In the present case, no single functional simultaneously provides highly accurate
positions and intensities of the different bands, but ωB97XD appears to be a good compromise. This analysis allows to rationalize
the difference in shapes experimentally noticed for the visible band of apparently similar anthraquinones.

1. INTRODUCTION

Commonly referred to as anthraquinone (AQ), 9,10-anthra-
quinone is composed of three fused aromatic rings, the central
entity bearing two carbonyl groups (see Scheme 1). AQ deriva-
tives are essential building blocks in several fields,1�4 but the
most common application of AQ compounds remains the dyeing
of both natural and synthetic fibers. Indeed, substituted AQ may
provide a complete and tunable panel of vivid colors if the auxo-
chroms placed in positions 1�8 of the central core (see Scheme 1)
are adequately selected.5�10 Together with the existence of
straightforward synthetic pathways and their thermal stability,
the broad color palette explains why AQ dyes represent about
one-fourth of today’s organic world production of dyes.6,8,11�18

The most simple anthraquinoidic dyes present an intense bell-
shaped and structureless visible band, and the typical structure�
property relationships used in color chemistry can be applied to
adequately predict their absorption wavelength.5 However, if two
or more hydrogen-bond donors (typically alcohols or amines)
are grafted in positions 1, 4, 5, or 8, strong interactions with the
carbonyl groups play a key role andmodify the properties of both
the ground and the excited states. Consequently, the visible band
of these AQ derivatives often features a characteristic multipeak
structure.5,7,8,13,19 The origin of multiple absorption maxima in
quinoidic dyes is not necessarily unique, and proposals to explain
this effect include aggregation,20 tautomeric equilibrium,21�23

and vibrational effects.24,25 As we will demonstrate in this con-
tribution, the latter explanation is by far the most appropriate for
neutral AQ.

While there are numerous specific theoretical investigations
aiming to simulate the absorption spectra of AQ dyes, only a few

have focused on a large set of compounds in a way to obtain
statistically relevant conclusions.26�33 Without performing a
detailed description of these previous studies, it turns out that
time-dependent density functional theory (TD-DFT), within the
popular vertical approximation is generally a (very) adequate tool
to predict the λmax of AQ derivatives but is obviously less accurate
for the dyes presenting multiple absorption bands, e.g., the TD-
DFT errors are larger for 1,4-NH2-AQ (I in Scheme 1) than for
2-OH-AQ.28 In this contribution, we aim to accurately simulate
the absorption spectra of I as well as other challenging amino-
and hydroxy-AQ presenting a structured visible band. To this
end, we have to evaluate the vibronic couplings, in order to pinpoint
one or more vibrational modes that hook up with the electronic
transition and induce the experimentally observed specific shape of
the visible band. To perform such task, one needs to calculate the
Hessian of both the ground state and relevant (generally first)
singlet excited state. While the first task is straightforward for
molecules including a few dozen of atoms, the second job remains
extremely challenging as the only available analytic method is the
gas-phase configuration interaction singles (CIS) approach.34 It is
well-known that the quality of the CIS geometries for well-behaved
excited states is comparable to its HF counterpart for the ground
state, i.e., CIS is only sufficient if a qualitative picture is sought for.35

In addition, CIS presents drawbacks to evaluate solvatochromic
shifts.36 To improve the accuracy of the simulations, one needs to
include electron correlation. In practice, this can be done with TD-
DFT. The first TD-DFT derivatives (gradients) allowing to

Received: April 15, 2011
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optimize the excited-state geometries are available since the seminal
work of van Caillie and Amos37 and the subsequent extensions and
improvements.38�40 An extra advantage of TD-DFT, compared to
more refined electron correlated wave function theories is the
possibility to include bulk solvation effects during excited-state
force minimizations, through the use of dielectric approximations,
typically the polarizable continuum model (PCM).40,41 Though
PCM-TD-DFT vibronic simulations are becomingmore andmore
popular,25,42�50 they remain at the border of today’s computational
possibilities, as a numerical differentiation of the gradients is a pre-
requisite to obtain the excited-state Hessian, and therefore to
simulate the vibronic spectrum. Therefore, PCM-TD-DFT calcula-
tions are generally applied to relatively compact (or symmetric)
molecules using a predefined approach (basis set/functional) in
order to limit the computational burden. For the first time, we
tackle the vibronic spectra of AQ dyes, and we start with a complete
benchmark work. In this framework, we have to highlight the key
work of Dierksen andGrimme,39 who computed (in the gas phase)

the structured bands of a large set of molecules, principally fused
aromatic, using three functionals. To the best of our knowledge, this
2004 paper that concluded that ca. 30�50% of exact exchange was
optimal to reproduce experimental band shapes stands as the most
complete vibronic benchmark to date.

This paper is organized as follows. In Section 2, we describe
our computational protocol. In Sections 3.1 and 3.2, we investi-
gate the basis set and functionals effects for I. Section 3.3 provides
an in-depth analysis for this specific dye, whereas Section 3.4
gives the vibronic spectra of three dihydroxy AQ. In Section 3.5,
we report vibrationally resolved spectra for selected “real-life”
dyes, and eventually, we conclude.

2. METHOD

All our calculations have been performed with the
Gaussian0951 program, using default thresholds and algorithms
except when noted. We have selected a large set of atomic basis

Scheme 1. Representation of the Systems Investigated Hereina

a For the generic anthraquinone (AQ), the numbering of substitution positions is also given.

Table 1. Basis Set Effects on the Ground and Excited-state of I.a

ground state excited state vibronic

basis set PG dCdO dC�N dHbond λvert (f) ZPVE PG dCdO dC�N dHbond λvert (f) ZPVE ΔG P1
conv (Ir) P2

conv (Ir) P3
conv (Ir)

STO-3G C2v 1.312 1.360 1.280 527 (0.23) 6.10 Cs 1.310 1.397 1.372 667 (0.11) 6.08 2.12 517 (1.00) 429 (0.34) 367 (0.20)

6-31G C2v 1.273 1.356 1.791 520 (0.27) 5.97 C2v 1.279 1.354 1.746 578 (0.26) 5.90 2.17 561 (1.00) 524 (0.61)

6-31G(d) Cs 1.242 1.354 1.822 516 (0.24) 5.87 Cs 1.249 1.348 1.761 590 (0.24) 5.80 2.13 561 (1.00) 527 (0.78)

6-31þG(d) Cs 1.245 1.353 1.828 521 (0.26) 5.83 C2v 1.251 1.348 1.769 587 (0.26) 5.78 2.23 550 (0.92) 523 (1.00)

6-31þþG(d,p) C2v 1.245 1.352 1.813 521 (0.26) 5.83 C2v 1.252 1.347 1.749 587 (0.26) 5.77 2.17 559 (1.00) 527 (0.88)

6-31þþG(2d,2p) Cs 1.240 1.352 1.808 521 (0.25) 5.83 Cs 1.247 1.345 1.739 592 (0.24) 5.76 2.13 564 (1.00) 530 (0.79)

6-311G(d) Cs 1.237 1.351 1.844 520 (0.25) 5.84 C2v 1.243 1.345 1.785 591 (0.24) 5.78 2.14 561 (1.00) 528 (0.85) 464 (0.18)

6-311þG(d) Cs 1.238 1.352 1.845 518 (0.26) 5.83 Cs 1.245 1.347 1.786 589 (0.25) 5.77 2.12 561 (1.00) 527 (0.81)

6-311þþG(d,p) Cs 1.238 1.352 1.823 519 (0.26) 5.81 Cs 1.246 1.347 1.758 592 (0.25) 5.75 2.15 562 (1.00) 528 (0.81)

6-311þG(2d,p) Cs 1.238 1.351 1.811 519 (0.25) 5.82 Cs 1.246 1.344 1.742 596 (0.24) 5.76 2.14 563 (1.00) 529 (0.82)

6-311þþG(2d,2p) Cs 1.238 1.352 1.815 518 (0.25) 5.83 Cs 1.245 1.344 1.746 595 (0.24) 5.76 2.13 563 (1.00) 529 (0.82)

6-311þþG(2df,2pd) C2v 1.237 1.348 1.812 520 (0.25) 5.82 Cs 1.244 1.342 1.739 590 (0.25) 5.76 2.17 556 (1.00) 526 (0.97)

6-311þþG(3df,3pd) C2v 1.236 1.348 1.810 521 (0.25) 5.79 Cs 1.243 1.342 1.738 591 (0.24) 5.74 2.13 558 (1.00) 528 (0.94)
a Point group (PG), selected distances (in Å), vertical transition energies (in nm) and zero-point vibrational energies (ZPVE in eV) are reported. The
positions and relative intensities of the vibronic peaks (Pi

conv) obtained after convolution with a 0.05 eV fwhmGaussian as well as the difference of Gibbs
energies (ΔG, in eV) are also given. All results use a PCM(cychlohexane)-PBE0 approach.
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sets (ABS) and DFT functionals: SVWN5,52,53 BLYP,54,55 PBE,56

τ-HCTH,57 O3LYP,58 B3LYP,59,60 X3LYP,61 PBE0,62,63 M06,64

BMK,65 BHHLYP,66 M06-2X,67 M06-HF,64 CAM-B3LYP,68

LC-PBE,69,70 ωB97,71 ωB97X,71 and ωB97XD72 to perform
benchmarks for I, and we redirect the reader to these original
references for complete description of these functionals. Though
we have used the popular Pople’s ABS in this paper, other
possibilities, such as Jensen pc�n73 ABS could have been selected
as well. The ground-state (excited-state) geometries have first
been optimized with DFT (TD-DFT) until the residual mean
square forces are smaller than 1 � 10�5 au (tight threshold).
Next, the vibrational frequencies have been computed analyti-
cally (numerically) for the S0 (S1) state. They confirmed the
presence of minima characterized by the absence of imaginary
modes (and transition states characterized by a single imaginary
mode). In several cases, we have performed both force and
frequency calculations using two or three point groups (PG) in
order to ascertain the symmetry of all states. During all calcula-
tion steps, we have included bulk solvent effects by using the
PCM41 that correctly models the major solvent effects as long as
no specific solute�solvent interactions are implied. Several
solvents have been used (see below), but we havemainly selected
an aprotic apolar solvent, so that the selection of the PCMmodel
is fully legitimate. Vibrationally resolved spectra within the
harmonic approximation were computed using the FCclasses
program.42,44,45 The reported spectra have been simulated at
298.15 K using a convoluting Gaussian functions presenting a full
width at half-maximum (fwhm) of 0.05 eV during benchmark
investigations. In other cases, the fwhmwas adjusted according to
the available experimental data as in ref 39. Amaximal number of 25
overtones for eachmode and 20 combination bands on each pair of
modes were included in the calculation. The maximum number of
integrals to be computed for each class was set to 1 � 106.

3. RESULTS AND DISCUSSION

3.1. Basis Set Investigation. For I, the results of the ABS
investigation can be found in Table 1, whereas Figure 1 compares
the corresponding vibronic shapes.74 Separate representations of
the stick and convoluted spectra, using a tighter Gaussian for
convolution, can be found in the Supporting Information. We
have used an uniform PCM-PBE0 method since global hybrids,
and more specifically B3LYP and PBE0, have been found

efficient within the vertical PCM-TD-DFT approximation for
AQdyes.27,28 To the best of our knowledge, there are no previous
investigations aiming at assessing the influence of the size of the
chosen ABS on the shape of the vibronic bands of real-life mole-
cules. This is certainly understandable, because computing
numerically the vibrational TD-DFT spectrum is a very demand-
ing task (several months of CPU for the largest ABS used here).
Therefore, most TD-DFT benchmarks available in the
literature31�33,75�83 have been performed in the vertical model,
whereas the studies also optimizing the excited-state geometries
performed by Grimme and co-workers used a given basis
set,39,78,82 typically TZVP, a diffuseless triple-ζABS to determine
the geometrical and vibrational parameters.
As can be seen in Table 1, the point groups of the ground and

excited states are affected by the chosen ABS, the amino groups
being perfectly coplanar to the AQ core (C2v) or not (Cs). In the
X-ray diffraction (XRD) structure84 available for the dihydrate
form of I, the amine groups are almost fully flat (torsion angles of
ca. 2�3�), but they interact with water molecules, making
straightforward comparisons with our cyclohexane simulations
uneasy. In the XRD structure we obtained (see the cif file in
Supporting Information and discussion below), the deviation of
the amino groups is also trifling (ca. 4�). The energetic variations
related to this change of PG are however limited, e.g., for
6-31G(d), the C2v structures are, respectively, only 0.2 and 1.0
kcal 3mol�1 less stable than the true Cs minima for the S0 and S1
states. In that sense, the obtained PG is probably not the most
important discriminating factor. For I, it is striking that the ABS
effects on the spectral properties are quite limited, as all selected
Pople’s basis leads to similar results, except for the two smallest
that lack polarization functions. Even the compact 6-31G(d)
provides vertical transition wavelengths and positions of the
vibronic bands within 5 nm of the results obtained with
6-311þþG(3df,3pd). The zero-point vibrational energy
(ZPVE) computed for the ground and excited states are also
nearly ABS independent, and the same holds for the small ZPVE
decrease (ca. 0.05 eV) related to the S0 f S1 transition. These
findings may probably be quite specific to AQ dyes,27 and we do
not advocate to systematically use 6-31G(d) for TD-DFT
calculations. As expected, the most sensitive geometrical param-
eter is the hydrogen bond (H-bond) distance between the
carbonyl and the amine, that is significantly shortened when
diffuse functions are added on both carbon and hydrogen atoms.

Figure 1. Comparison of the obtained vibronic shapes for system I using double-ζ (left) and triple-ζ (right) basis sets. In both cases, the reference
6-311þþG(3df,3pd) black curve appears in bold.
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For the carbonyl bond, going from a double-ζ to a triple-ζ ABS
decreases its length by ca. 0.01 Å, but this effect is constant for
both S0 and S1 states. At the exception of the 6-31þG(d), all
double-ζ and triple-ζ basis sets predict that the longest wave-
length peak is slightly more intense than its short-wavelength
counterpart. As a compromise ABS in the following, we have
selected 6-31þþG(d,p) that presents both polarization and
diffuse orbitals on all atoms and delivers relative intensities for
the vibronic bands relatively close to the 6-311þþG(3df,3pd)
reference. Of course other basis sets, e.g., 6-311þG(d), could
have been reasonable choices.
3.2. Functional Benchmark. The results obtained for 18

functionals are summarized in Table 2, whereas representations
of the vibronic shapes may be found in Figure 2 as well as in the
Supporting Information. Obviously, the selected functional im-
pacts significantly on the computed S0 f S1 ΔG and the cor-
responding transition energies, that tend to increase when more
exact exchange is plugged in an expected trend for π�π* tran-
sitions (see previous benchmarks).31,32,39,77,82 The predicted
elongation of the carbonyl group upon electronic transition is
also dependent on the DFT/HF blend, as it tends to increase
when larger shares of exact exchange are applied. Even more
striking are the evolutions of the C�N and H-bond distances
induced by photon absorption. The former lengthens with the
four pure functionals and O3LYP but shortens with all other
functionals, an effect that is much larger with M06-HF (�0.027
Å) or LC-PBE (�0.019 Å) than with B3LYP (�0.004 Å). The
H-bond distance is smaller in the S1 than S0 state but with a
variation that is not a simple function of the exact exchange
mixing parameter(s).
In ref 82, the authors have computed the geometries (and

hence the ZPVE energies) at the PBE/TZVP level but selected
a much larger basis set and a wide panel of functionals for
determining the vertical transition energies. It is indeed com-
mon to use a given geometry and to benchmark the transition

energies, a procedure that we have also used several
times,32,33,83,85 as the geometry optimization process may be
time-consuming. For the ZPVE, the results listed in Table 2
justify such an approach: the PBES0f S1 ZPVE shift is�0.08 eV,
whereas B3LYP and ωB97XD estimates are relatively close,
�0.06 and �0.05 eV, respectively. Therefore the implied
error is negligible. For the vertical transitions, the impact of
using a given geometry is apparently larger. Indeed, the vertical
B3LYP and ωB97XD absorption wavelengths computed using
the PBE ground-state structure are 554 and 502 nm, respectively,
implying variations of �0.08 and �0.19 eV compared to the
corresponding data calculated with a consistent structure (536
and 467 nm, see Table 2). The ωB97XD λvert computed on the
B3LYP geometry is 482 nm, closer to the 467 nm reference value,
but still implying a �0.08 eV deviation, that we recently
neglected.83 This is just one more illustration that the exact
benchmark procedure could slightly tune the results and that
such an outcome is inherent to all computationally tractable
processes.
In the most recent experimental measurements,13 the visible

absorption band has been found to present three peaks in
cyclohexane: 578.4, 567.2, and 537.6 nm with a shoulder (sh)
at ∼500 nm.13 The relative intensities are estimated to be 0.82,
0.82, 1.00, and 0.61 for the three peaks and the shoulder,
respectively.13 In dioxan, the first two bands are not distin-
guishable, and Perkampus reports in his famous book: 585
(0.92), 547 (1.00), and 510 nm (sh, 0.59).9 The same holds in
the protic and more polar solvant, ethanol: 592 (1.00), 551
(1.00) and 522 nm (sh, 0.81).86 Obviously, the visible spectra
provided by pure functionals (SVWN5, BLYP, PBE, and
τ-HCTCH) and by approaches including a very large ratio of
exact exchange (M06-HF,ωB97, and LC-PBE) are not satisfying
neither for the predicted shapes nor for the transition energies.
Hybrids including 15�30% of exact exchange yield accurate
positions for the different bands but incorrectly predict a more

Table 2. Functional Benchmarks Obtained Using System Ia

ground state excited state vibronic

functional PG dCdO dC�N dHbond λvert (f) ZPVE PG dCdO dC�N dHbond λvert (f) ZPVE ΔG P1
conv (Ir) P2

conv (Ir) P3
conv (Ir)

SVWN5 C2v 1.264 1.343 1.630 611 (0.21) 5.65 Cs 1.267 1.346 1.602 670 (0.18) 5.57 1.85 650 (1.00) 520 (0.09) 449 (0.00)

BLYP C2v 1.271 1.369 1.813 617 (0.20) 5.59 Cs 1.273 1.375 1.790 698 (0.17) 5.53 1.85 653 (1.00) 524 (0.21) 439 (0.01)

PBE C2v 1.267 1.360 1.769 614 (0.20) 5.62 Cs 1.270 1.367 1.741 692 (0.17) 5.56 1.87 647 (1.00) 518 (0.21) 439 (0.01)

τ-HCTH C2v 1.257 1.353 1.770 605 (0.21) 5.68 C2v 1.260 1.359 1.743 681 (0.18) 5.63 1.92 638 (1.00) 511 (0.25) 428 (0.02)

O3LYP Cs 1.250 1.357 1.836 561 (0.22) 5.76 Cs 1.254 1.359 1.803 646 (0.20) 5.71 2.06 592 (1.00)

B3LYP C2v 1.251 1.360 1.835 536 (0.25) 5.77 C2v 1.257 1.356 1.781 603 (0.25) 5.71 2.12 573 (1.00) 543 (0.95)

X3LYP C2v 1.250 1.359 1.834 531 (0.25) 5.78 C2v 1.257 1.354 1.778 598 (0.25) 5.73 2.14 568 (1.00) 537 (0.95)

PBE0 C2v 1.245 1.352 1.813 521 (0.26) 5.83 C2v 1.252 1.347 1.749 587 (0.26) 5.77 2.17 559 (1.00) 527 (0.88)

M06 Cs 1.242 1.357 1.850 514 (0.26) 5.78 C2v 1.250 1.351 1.793 584 (0.26) 5.73 2.23 548 (0.98) 520 (1.00)

BMK C2v 1.236 1.358 1.884 482 (0.29) 5.85 C2v 1.246 1.348 1.801 558 (0.28) 5.79 2.37 491 (1.00)

BHHLYP Cs 1.230 1.356 1.870 445 (0.32) 6.02 C2v 1.244 1.339 1.773 529 (0.31) 5.96 2.48 487 (0.84) 461 (1.00)

M06-2X Cs 1.236 1.360 1.888 465 (0.29) 5.84 C2v 1.250 1.345 1.782 548 (0.29) 5.77 2.36 508 (0.89) 482 (1.00)

M06-HF C2v 1.227 1.358 1.881 415 (0.34) 5.87 C2v 1.252 1.331 1.669 538 (0.32) 5.77 2.56 443 (1.00)

CAM-B3LYP C2v 1.241 1.357 1.844 470 (0.31) 5.85 C2v 1.254 1.345 1.749 549 (0.30) 5.81 2.43 477 (1.00)

ωB97 Cs 1.239 1.367 1.891 421 (0.34) 5.89 C2v 1.256 1.345 1.771 520 (0.32) 5.83 2.57 441 (1.00)

ωB97X Cs 1.238 1.362 1.876 438 (0.33) 5.89 C2v 1.253 1.344 1.764 527 (0.32) 5.83 2.52 454 (1.00)

ωB97XD Cs 1.240 1.359 1.856 467 (0.31) 5.86 C2v 1.252 1.346 1.758 546 (0.30) 5.81 2.39 505 (0.90) 479 (1.00)

LC-PBE C2v 1.229 1.347 1.817 415 (0.36) 5.97 C2v 1.246 1.328 1.673 514 (0.34) 5.93 2.65 431 (1.00)
aAll results use a PCM(cychlohexane)-(TD-)DFT/6-31þþG(d,p) level of theory, see Table 1 for more details.
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intense first band, whereas global hybrids including 40�60% of
exact exchange as well as range-separated approaches relying on a
relatively small damping parameter give the opposite trends: too
short wavelengths but accurate intensities and topology. For
these reasons, we have chosen to use five functionals in Section
3.4: the popular B3LYP and PBE0 that provide wavelengths on
the experimental spot (573 and 543 nm, for the former) but
incorrect relative intensities; M06-2X, a global hybrid including a
large share of HF exchange, that overestimates the transition
energy but gives a correct topology (see Supporting Information
and ref 13); as well as CAM-B3LYP and ωB97XD, two range-
separated hybrids providing an interesting compromise between
wavelengths and intensities.
3.3. Analysis for 1,4-NH2-AQ. Figure 3 compares the experi-

mental and theoretical (ωB97XD) shapes of the visible band of
I in cyclohexane. This figure also provides the main vibronic
contributions through a stick spectrum. The agreement between
themeasured and the predicted topologies is obvious, though the
selected functional locates the maximal absorption at 512.9,
508.8, and 479.8 nm and therefore undershoots the experimental
wavelengths,13 as already discussed in the previous section.
However, the separation between the first and second (third)
peaks attains 274 (1345) cm�1 with PCM-TD-ωB97XD, in very

good match with the measurement 341 (1312) cm�1, thus
substantiating the predictive power of the selected approach.
As expected, the first maximum principally originates from the
0�0 line. Although a blend of several vibrational modes con-
tribute to the second and third peaks, one can mainly ascribe the
bands to modes 14 (408 cm�1) and 18 (479 cm�1), 56
(1421 cm�1) and 58 (1491 cm�1) of the excited state, respec-
tively (see Figure 3). Representations of these modes can be
found in Supporting Information. Modes 14 and 18 correspond
to bending of the amino groups and breathing of the aromatic
ring bearing the two amines. On the other hand, the high-
intensity band is related to stretchings of the same ring and
displacements of the hydrogen atoms of the amines. Therefore,
the substituents play a key role in the experimental shape, though
the main coupling mode does not correspond to very intense IR
C�N elongation (computed at an higher 1604 cm�1 for S1) as
historically proposed for amino-AQ.24 We have also simulated
the spectra of I in dioxane. Convoluting the spectrum with a 0.04
eV fwhm Gaussian, we obtain two maxima at 510 and 481 (579
and 543) nm with relative intensities of 0.89 and 1.00 (1.00 and
0.94) applyingωB97XD (B3LYP), and this nicely fits the relative
experimental intensities (positions of the bands): 585 (0.92) and
547 (1.00) nm.9

Figure 2. Comparison of the obtained vibronic shapes for system I using different DFT functionals and a PCM-TD-DFT/6-31þþG(d,p) level. Top left:
pure functionals; top right: global hybridswith less than 30%of exact exchange; bottom left: other global hybrids; and bottom right: range-separated hybrids.



1887 dx.doi.org/10.1021/ct200259k |J. Chem. Theory Comput. 2011, 7, 1882–1892

Journal of Chemical Theory and Computation ARTICLE

For I, these results seem to confirm the experimental analysis24

that the shape of the visible absorption band is related to vibronic
interactions. Let us nevertheless assess the possibility to form
“conventional” tautomers corresponding to the transfer of one or
two protons between the carbonyl and the amine (Figure 4).
Using ωB97XD, a functional accurate for electronic spectra,
H-bond and other weak interactions,83,87,88 we computed λvert of
467, 496, and 447 nm for the canonical structure, the tautomer

corresponding to a first proton transfer between the amine and
carbonyl groups and the double tautomer, respectively (see
Figure 4). Such results may apparently fit the two peaks and
shoulder topology found in polar environments.9,86 However, by
analyzing the relative energies of all species as well as the
corresponding transition states, one clearly notes that the apparent
agreement is purely fortuitous. Indeed, on the ground-state
potential energy surface, the first proton transfer not only
requires an energy more than 20 times the thermal energy
(13.6 kcal 3mol�1) but also yields a product very close to the
transition state. This implies that even if the transfer occurs
(a very unlikely event), the back reaction will be instantaneous;
the computed back reaction barrier is <0.05 kcal 3mol�1. For the
second proton transfer, the situation is quite similar and leads to a
very unstable product. Of course, one has also to probe the S1
potential energy surface, as a more complex process (absorption
of the canonical form, excited-state proton transfer, relaxation to
the ground-state tautomer, and photon absorption of this
tautomer) may also occur. To test this hypothesis, we have tried
to optimize the S1 geometries of both tautomers, but they
systematically converged to the canonical form. This can be
explained by examining Figure 4 that indicates that there is no
minimum on the excited-state surface for the tautomers. Fain and
co-workers have recently proposed that the multiple bands of I
correspond to the presence of several more exotic species (see
refs 22 and 23 as well as references therein) corresponding to
tautomers of 4,9-diamino-1,10-anthraquinone (see central mo-
lecule in Figure 5), itself obtained by exchanging of one carbonyl
and one amine in I. These authors did not propose a chemical
path to obtain their structure (and there is, to the best of our
knowledge, no experimental proof of their existence), but they
justify this choice with the correlation between the λmax com-
puted with a semiempirical approach for the different tautomers
and the measured positions for the maxima.22 This 4,9-diamino-
1,10-anthraquinone derivative is less stable than I by 6.3 kcal 3mol

�1

and presents a S0 dipole moment of 1.7 D at the PCM-
(cyclohexane)-ωB97XD/6-31þþG(d,p) level. This value can

Figure 3. Computed ωB97XD spectra of I, using a convoluting
Gaussian with fwhm 0.03 eV. The main contributions to the stick
spectrum are shown, with numbers corresponding to the vibrational
modes for the four largest contributions. The top panel is the experi-
mental graph reprinted with permission from Khan, M. S. and Khan, Z.
H. Electronic absorption spectra of amino-substituted anthraquinones
and their interpretation using the ZINDO/S and AM1 methods.
Spectrochim. Acta, Part A 2003, 59, 1409�1426. Copyright 2003,
Elsevier.

Figure 4. Representation of the relative total energies of the tautomers of I together with the transition states. All values are in eV. The S1 energies are
computed within the vertical approximation (PCM-(TD-)ωB97XD/6-31þþG(d,p)). Representation of the imaginary modes characteristics of the
transition states can be found in Supporting Information.



1888 dx.doi.org/10.1021/ct200259k |J. Chem. Theory Comput. 2011, 7, 1882–1892

Journal of Chemical Theory and Computation ARTICLE

be compared to the 3.6 D value obtained for I, with the same
method and, to the 3.1 D figure obtained by the most recent
experimental measurements.89 Likewise, the excited-state dipole
moment is estimated to be larger than its ground-state counter-
part by 0.6�1.8 D (depending on the selected experimental
method, see ref 89), and we compute a variation of �0.4 D for
4,9-diamino-1,10-anthraquinone and þ2.3 D for 1,4-diamino-
9,10-anthraquinone. Clearly, these values are not in favor of a
significant contribution of the former “exotic” structure. Never-
theless, we have investigated its tautomers and the corresponding
transition states (see Figure 5). First let us note that a stable
“double” tautomer could not be located on the ground-state
surface despite several attempts. It systematically reverts to one
of the two possible “single” tautomeric forms, hinting that it is
risky to attribute one band to such compound. For the most
stable tautomer, we find a reaction barrier of 4.4 kcal 3mol�1. If
one uses classical Boltzmann and transition-state theories, one
obtains only 9% of this tautomer (that presents a smaller oscillator
strength than both I and 4,9-diamino-1,10-anthraquinone) and a
back reaction 10 times faster than the foward reaction. The
second tautomer is too high in energy to impact significantly. In
short, our analysis rules out any significant proportion of con-
ventional or exotic tautomers in solution.
We have also tested the possible presence of aggregates in

solution. For I, the only available XRD structure corresponds to a
dihydrate with inter-AQ interactions mostly proceeding through
water-assisted H-bonds.84 In the course of defining reasonable
starting points for our geometry optimizations, we have therefore
decided to recrystallize I90 and actually obtained a new XRD
structure (see cif files and Supporting Information). This water-
free structure has a completely different packing than the pre-
viously reported one, with AQ arranged in a slipped antiparallel
orientation along the first axis, bonded through intermolecular
H-bonds between the amine and the carbonyl for the second and
displaying a weaker π�π stacking along the third direction. The
data from both XRD structures as well as chemical intuition have
been used to define the initial coordinates for our geometry

optimizations of the dimers of I. We have reached four different
structures that are represented in Supporting Information: two,
A and B presents cofacial head-to-tail I with H-bonds between
both carbonyl and amino groups, and two, C and D, are char-
acterized by H-bonded side-by-side (but not coplanar) AQ.
Their spectral features are listed in Table 3. At the PCM-
ωB97XD/6-31þþG(d,p) level, only the two first aggregates
are characterized by a stabilizing interaction energy compared to
the monomer: �3.51 kcal 3mol�1 for A and �1.04 kcal 3mol

�1

for B. Their spectra display small bathochromic (A) and hypso-
chromic (B) shifts compared to the isolated case but only possess
a major absorption band. In a naive view, one could imagine that
the first experimental band at 578.4 nm corresponds to the most
stable dimer, the 567.2 nm absorption to the monomer, and the
most intense band 537.6 nm to the B dimer. However, with these
assignments, the energetic separation between the first and the
most intense band would be 0.11 eV, in poor agreement with
experiment (0.16 eV) and with vibronic simulations (0.17 eV).
Consistently with experimental investigations carried out for
different concentration of dyes,24 this analysis therefore hints
that aggregation falls short to provide a convincing explanation to
the experimental findings.
3.4. The Dihydroxy Series. The results obtained with five

functionals for three dihydroxy-AQ are listed in Table 4. Though

Figure 5. Representation of the relative total energies of the tautomers of 4,9-diamino-1,10-anthraquinone obtained at the PCM-(TD-)ωB97XD/6-
31þþG(d,p) level of theory.

Table 3. Relative Free Energies (kcal 3mol�1) and Vertical
Transition Wavelengths (nm) for Four Dimers of Ia

ΔG λmax

A π�π þ H-bond 0.00 474 (0.35)

B π�π þ H-bond 2.47 455 (0.51)

C H-bonded 9.16 468 (0.51)

D H-bonded 8.94 478 (0.52) and

469 (0.16)
a See Supporting Information. All calculations performed at the
PCM-(TD-)ωB97XD/6-31þþG(d,p) level.
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II�IV are all characterized by two H-bonds between carbonyl
and alcohol groups, they differ by their symmetry. Recent
experimental data in n-pentane show a significantly variations
of the position for the characteristic visible band, each band
possessing a specific vibronic signature.19 The ZPVE computed
with all functionals is similar for the three dyes and shows only aT
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Figure 6. Comparison between the experimental and theoretical shapes
for the visible absorption band of (from top to bottom) II�IV taking the
first maximum as reference. The measured data have been extracted
from ref 19 and recast on the energy scale, whereas theoretical values
have been obtained at the PCM-TD-ωB97XD/6-31þþG(d,p) level of
theory, using a convoluting sum of Gaussian functions with a fwhm of
0.023 eV for all cases.
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ca.�0.1 eV shift when going from the ground state to the excited
state, confirming that the ZPVE variation may be rapidly
estimated with any functional. As noted in Section 3.2, the
predicted vertical wavelengths increase with the amount of exact
exchange included in the hybrid.
For II, Table 4 shows the same trends as for its amino

counterpart, I: photon absorption yields an extension of the
carbonyls and a concomitant shortening of both the single C�O
bonds and the H-bond intervals. Nevertheless, for the latter the
variation accompanying the electronic transition is much more
pronounced than in I, a phenomenon related to the symmetric/
asymmetric nature of the H-bond. The vibronic spectra obtained
with a fwhm of 0.03 eV are shown in Supporting Information,
and they follow the same qualitative evolution as for I when
modifying the functional. B3LYP and PBE0 not only provide a
first absorption at 531 and 516 nm, respectively, the latter being
on the experimental spot (517 nm),19 but also predict a
dominant 0�0 band, which is inconsistent with measurements.19

In terms of shape, it turns out that the best theory/experiment
match is reached with CAM-B3LYP orωB97XD, as illustrated in
Figure 6, but at the price of less accurate positions for the first
band: 469 and 461 nm, respectively. This corresponds to a ca.
0.25 eV error, which is in the line of average TD-DFT accuracy
but remains sizable for a well-behaved low-lying π�π* transition
(see the Introduction Section for reference benchmarks). As can
be seen in Figure 6, following the 0�0 band, one notices a second
absorption of equal intensity at ca. 470 cm�1, followed by a
dominating band peaking at ca. 1440 cm�1. The two main S1
vibrational modes responsible for these vibronic effects are 16
(479 cm�1) and 49 (1311 cm�1), respectively. The first corre-
sponds to an extension of the phenyl ring bearing the hydroxyl
groups, whereas the second is related to stretching of the phenyl
rings and bending of the hydrogen atoms of the alcohols
(animations may be found in the Supporting Information).
For III, the ground-state carbonyl bonds are slightly shorter

than for II, and the transition energies are larger, which agrees
with experiment. The S0 inversion symmetry is lost at the excited
state and it is quite clear from Table 4 that one hydroxyl group is
strongly affected transition. This is a marked difference with
respect to II that presented the same kinds of intramolecular
interactions in S0 and S1, indicating that the ground-state
geometries and vertical transition energies may not provide a
complete picture of the chemical differences between these two
dyes. With B3LYP, PBE0 and ωB97XD, one H-bond of III is
significantly shorten (ca. 0.25 Å) by photon absorption, whereas
for M06-2X and CAM-B3LYP, the S1 optimization actually yield

to a tautomeric form, with one alcohol function at the center of
the AQ. In other words, with these latter hybrids, the ground- and
excited-state geometries are not simple variations, and it becomes
obvious that a ‘‘conventional’’ approximation cannot be applied
to calculate the vibrationally resolved band. Consequently, in the
Supporting Information, we report the vibronic (stick and
convoluted) spectra for B3LYP, PBE0, and ωB97XD only. The
best qualitative agreement is again reached with ωB97XD (see
Figure 6) with two maxima of nearly equal intensities. For III,
theory reproduces the camel-back shape of the experimental
spectrum, though the separation between the two maxima is
clearly overshot by the model. We attribute this error to the
application of an harmonic approximation that is obviously
becoming less suitable for strongly distorted O�H bonds.
Indeed, the most important coupling mode, responsible for the
first extremum, corresponds to proton transfer between the two
oxygen atoms, whereas the second maximum originates to a large
panel of modes implying both alcohols. It is also worth noting
that the first peak (406 nm) does not exactly correspond to the
0�0 band (413 nm), making comparisons between experimental
and theoretical λmax a nontrivial task.
For IV, the highest PG is only systematically conserved with

the two range-separated functionals, all three global hybrids provid-
ing an asymmetric excited state, with one long and one short
H-bond, although contrary to III, we found no clear-cut tautomer.
Once again, B3LYP and PBE0 yield transition energies in good
agreement with experiment with deviations of ca. 20 nm. No
functional is fully satisfying in terms of shape (Figure 6
and Supporting Information), and as for III, this effect is related
to anharmonicties as the O�H bond are strongly elongated for
IV (see Table 4). This induces a too large separation in the stick
spectrum (overestimates frequencies), and subsequently, a clear-
cut minium in the convoluted spectrum that is not found in the
experiment.
3.5. Application to Other AQ Dyes.We have used ωB97XD

to compare the experimental and theoretical spectra of three
dyes of industrial interest: quinalizarin (V) a tetra-hydroxy-AQ,
disperse blue 14 (VI), and solvent blue 59 (VII), two amino-
substituted AQ presenting large extinction coefficients. All
three dyes present well-structured absorption bands,7,9,91 the
latter containing 40 atoms and represents a computational
challenge at this level of theory. The simulated spectra can be
found in Figure 7. For V, the spectrum measured in methanol is
very broad and presents two maxima reported at 512 and
490 nm by Green7 and at 517 and 495 nm by Perkampus.9

The simulation provides 486 and 462 nm, a 0.13 eV separation

Figure 7. PCM-TD-ωB97XD/6-31þþG(d,p) spectra computed for V (left, methanol), VI (central, ethanol), and VII (right, cyclohexane) using a
convoluting sum of Gaussian functions with fwhm of 0.50 eV in all cases.
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that apparently fits experiment (0.11 eV) though we do not
obtain exactly the same topology. The computed spectra of VI
and VII are similar, and this outcome fits experiment.7,91 For
VII, one can estimate the experimental wavelengths (relative
intensities) to be 643 nm (1.00), 600 nm (0.84), and 560 nm
(sh, 0.39) in cyclohexane,91 whereas TD-DFT yields 556 nm
(1.00), 521 nm (0.83), and 490 nm (sh, 0.35), in obvious
qualitative agreement but for the too large transition energies.
Nevertheless, the shift of the main band compared to I in the
same solvent is �0.19 eV in theory and �0.22 eV in the
experiment, illustrating the accuracy of auxochromic displace-
ments. Note that there is also an inversion of relative intensities
of the two first peaks compared to I, and this effect is perfectly
reproduced by ωB97XD. For disperse blue 14, experiment
yields 640 nm (1.00), 594 nm (0.83), and 550 nm (sh, 0.43) in
methanol,7 whereas TD-DFT gives: 603 nm (1.00), 560 nm
(0.89), and 522 nm (sh, 0.41), again in good qualitative
agreement. As the solvent used for this latter AQ is polar and
protic, the auxchromic displacement wrt I and VII cannot be
compared directly due to the application of a continuummodel.

4. CONCLUSIONS

We have computed vibrationally resolved absorption spectra
of a series of amino and hydroxy anthraquinone dyes, using a
time-dependent density functional approach accounting for
bulk environmental effects. It turned out that the selected atomic
basis set has a relatively modest impact on the properties,
provided polarization functions are used. On the contrary, the
selected DFT functional strongly affects the computed transition
wavelengths, the geometries as well as the topology of the
vibronic envelope, although it does not modify significantly the
ZPVE energy differences computed for the ground and excited
states. As no functional delivers fully consistent values, pinpoint-
ing the most adequate approach is not straightforward. Never-
theless, one can discard both pure functionals and hybrids
including a very large share of exact exchange. In the present
case, B3LYP and PBE0 provide accurate positions (wavelengths)
for the absorption peaks but are less efficient than two range-
separated hybrids, namely CAM-B3LYP and ωB97XD, to de-
termine the shapes of the absorption bands (that is relative
intensities). For 1,4-NH2-AQ, our calculations show that the
experimental spectrum cannot be easily explained by the pre-
sence of tautomers nor aggregates, but that it results from four
major coupling modes implying the amino groups. For 1,4-OH-
AQ, 1,4-NHMe-AQ, and 1,4-NHEt-AQ, the agreement between
simulated and measured electronic spectra is also rather aston-
ishing. This is an essential fact, as most AQ industrial dyes used
today rely on a 1,4 pattern with strong H-bond donors. On the
contrary, for 1,5-OH-AQ and 1,8-OH-AQ, the positions of
the hydrogen atoms implied in intramolecular H-bonds are
strongly modified following photon absorption, and the theo-
ry/experiment match is less satisfying. This is probably related to
the harmonic approximation that becomes nonsuitable to eval-
uate vibrations related to distorted bonds. Therefore, efforts to
include anharmonicity are of primary importance to further
improve the description of the visible bands of hydroxy-AQ.
Besides, this work illustrates the limitations of the available
functionals and the developments that are still necessary to
obtain new approaches able to correctly restore the experimental
features typical of electronically excited states.
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ABSTRACT:The two-phase thermodynamic (2PT)model is used to determine the absolute entropy and energy of carbon dioxide
over a wide range of conditions from molecular dynamics trajectories. The 2PT method determines the thermodynamic properties
by applying the proper statistical mechanical partition function to the normal modes of a fluid. The vibrational density of state
(DoS), obtained from the Fourier transform of the velocity autocorrelation function, converges quickly, allowing the free energy,
entropy, and other thermodynamic properties to be determined from short 20-ps MD trajectories. The anharmonic effects in the
vibrations are accounted for by the broadening of the normal modes into bands from sampling the velocities over the trajectory. The
low frequency diffusive modes, which lead to finite DoS at zero frequency, are accounted for by considering the DoS as a
superposition of gas-phase and solid-phase components (two phases). The analytical decomposition of the DoS allows for an
evaluation of properties contributed by different types of molecular motions. We show that this 2PT analysis leads to accurate
predictions of entropy and energy of CO2 over a wide range of conditions (from the triple point to the critical point of both the vapor
and the liquid phases along the saturation line). This allows the equation of state of CO2 to be determined, which is limited only by
the accuracy of the force field. We also validated that the 2PT entropy agrees with that determined from thermodynamic integration,
but 2PT requires only a fraction of the time. A complication for CO2 is that its equilibrium configuration is linear, which would have
only two rotational modes, but during the dynamics it is never exactly linear, so that there is a third mode from rotational about the
axis. In this work, we show how to treat such linear molecules in the 2PT framework.

1. INTRODUCTION

Carbon dioxide (CO2) is an important chemical in the bio-
sphere. It is the source of carbon for photosynthetic generation
development of plants and the product of respiration in animals.
Industrial societies produce a great deal of CO2 from combustion
and other chemical processes, and it is a popular solvent for
supercritical extraction. Above its critical pressure (72.9 atm) and
temperature (304.2 K), carbon dioxide behaves as a supercritical
fluid: it has the diffusion constant of a gas, while maintaining the
density of a liquid. This behavior facilitates the use of supercritical
CO2 (scCO2) in a wide range of industrial processes, from
chemical extraction1,2 to petroleum recovery.3,4 Recent studies
have focused on utilizing liquid and scCO2 as a cost-effective
“green” solvent5 for chemical reactions, owing to low toxicity,
high availability, and catalytic ability.6,7 More recently there is
great concern that CO2 is responsible for anthropomorphic
climate change, responsible for global warming, which is stimu-
lating many efforts to capture and sequester CO2.

8�10 The
knowledge of thermodynamic properties of CO2 under various
conditions and with various additional components is important
for studying such CO2 related problems.

Computer simulations (molecular dynamics, Monte Carlo,
quantum mechanics) are powerful tools used to estimate
physical properties of CO2. Of particular interest are the
vapor�liquid coexistence curve,11�16 supercritical behavior

(thermodynamics,15,16 transport properties,11,16�18 structural
properties,11,15,16,19,20 other properties20�22), and properties of
solid CO2.

23 The CO2 molecule is unique due to its linear
structure, zero dipole moment, and large quadruple moment.24

However, in a dynamics collection of CO2 molecules, it is
essentially always nonlinear.15,19�21 This change in character
contributes to the special properties of CO2, particularly in the
supercritical state, and challenges the prediction of its properties
using molecular simulations. A thermodynamic property of
particular interest is the absolute entropy. Recently, some theory
and methods have been developed to estimate the absolute
entropy and/or solvation free energy. However, most focus on
water,25�27 aqueous solutions,28�30 or glass-like systems.25,31

There is no report on the performance of such methods for linear
molecules such as CO2.

The two-phase thermodynamic (2PT) method is an efficient
way to estimate thermodynamic properties (energy, entropy, and
heat capacity) of a system. This method has been shown to
provide accurate properties using a short (about 20 ps) MD
trajectory for systems such as Lennard-Jones fluids,32

liquid�vapor water along the coexistence curve,33 and many
common organic liquids under standard conditions.34 The 2PT
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method has also been successfully used in calculating the entropy
of water in different regions such as the dendrimer,35 lipid
bilayer,36 and carbon nanotube.37 The method is also reasonably
accurate in describing the entropic penalty of DNAwhile binding
to dendrimer38 as well as describing the role of counterion release
entropy in macromolecular complexation.39,40 In this work,
we present the use of 2PT in the property determination of CO2.
We validate the 2PT determined entropy by comparing it to
those determined from thermodynamic integration (TI).

2. THEORY

2.1. Density of State Function and Its Decomposition.The
density of state function, S(υ), which is defined as the sum of
mass-weighed atomic spectral densities, can be obtained from the
Fourier transform of velocity autocorrelation function
(VACF),32,33 or equivalently the velocity spectrum41

SðυÞ ¼ 1
kBT

∑
N

l¼ 1
∑
3

k¼ 1
lim
τ � ¥

ml

τ

�����
Z τ

�τ
vkl ðtÞ e�i2πυt dtj2 ð1Þ

whereN is the total number of atoms in the system,ml is the mass
of atom l, and vl

k is the velocity of atom l in the k direction (k =
1�3 represents x, y, and z directions, respectively). The function
S(υ) is the distribution of normal modes of the system, i.e., S(υ)
dυ represents the number of normal modes with frequencies
from υ to υþ dυ. The integration S(υ) gives the total degrees of
freedom (DF) 3N; i.e.Z ¥

0
SðυÞ dυ ¼ 3N ð2Þ

(Note that in MD simulations the translational degrees of
freedoms are removed for the conservation of linear momentum;
therefore, the integration gives 3N � 3 instead.) For a pure
monatomic system, the zero-frequency density of state is asso-
ciated with the diffusion coefficient of particles32,33

D ¼ kBT
12mN

Sð0Þ ð3Þ

where T is the temperature and kB is the Boltzmann constant.
For systems of polyatomic molecules, Lin et al.33 suggested

that the S(υ) be decomposed into three components: translation
(trn), rotation (rot), and intramolecular vibration motions
(imv):

SðυÞ ¼ StrnðυÞ þ SrotðυÞ þ SimvðυÞ ð4Þ
where the translation component is obtained from the center of
mass velocity of the molecules

StrnðυÞ ¼ 1
kBT

∑
M

j¼ 1
∑
3

k¼ 1
lim
τ � ¥

mj

τ

�����
Z τ

�τ
v�kj ðtÞ e�i2πυt dtj2 ð5Þ

whereM is the total number of molecules in the system, mj is the
mass of molecule j, and vj

*k is the center of mass velocity of
molecule j in the k direction. The rotational density of state
function is determined by using the following equations:

SrotðυÞ ¼ 1
kBT

∑
M

j¼ 1
∑
3ð2Þ

k¼ 1
lim
τ � ¥

Ikj
τ

�����
Z τ

�τ
ωk

j ðtÞ e�i2πυt dtj2 ð6Þ

whereωj
k and Ij

k are the angular velocity and moment of inertia of
molecule j along the kth principal axis, respectively. For nonlinear

molecules (e.g., water), there are three nonzero principle mo-
ments of inertia. For linear molecules (e.g., nitrogen and carbon
dioxide), there are only two nonzero principle moments of
inertia, and the value of k runs from 1 to 2.
The intramolecular velocity can be determined by subtracting

the center of mass translation and rotation velocities

vB
imv
l ¼ vF l � vFj� �ωF j � rF lj ð7Þ

where rBlj is the position vector of atom l from the center of mass
of molecule j. Using the intramolecular velocity in eq 1 leads to
the corresponding component of the density of state function.
2.2. Thermodynamic Properties fromTwo-Phase Thermo-

dynamic (2PT) Model. The thermodynamic properties
(absolute entropy, energy, and heat capacity) are determined
from the sum of translation, rotation, and intramolecular vibra-
tion contributions33

E ¼ E0 þ Etrn þ Erot þ Eimv ð8Þ

S ¼ Strn þ Srot þ Simv ð9Þ

Cv ¼ dE0
dT

þ Cvtrn þ Cvrot þ Cvimv ð10Þ

where E0 is the reference energy.
33 For a system containing only

harmonic motions (e.g., crystals), its thermodynamic properties
can be calculated exactly from the density of state S(υ) based on
statistical mechanics for harmonic oscillators. For fluids, such a
harmonic approximation is no longer valid because of the
significant anharmonic nature of the low frequency modes. In
particular, the zero-frequency (diffusive) modes would lead to
diverged properties. In the two-phase thermodynamic (2PT)
model, the anharmonic effects are treated by dividing the density
of state distribution into solid-like and gas-like components, i.e.

SmðυÞ ¼ SsmðυÞ þ SgmðυÞ ð11Þ
where the subscript m denotes the translation (trn) or rotation
(rot) component. The gas component is determined accordingly
based on the DoS at zero frequency and the fluidicity factor fm

SgmðυÞ ¼ Smð0Þ

1þ πυSmð0Þ
6fmM

� �2 ð12Þ

and the fluidicity factor fm is determined from the dimensionless
diffusivity constant Δm as

2Δ�9=2
m f 15=2m � 6Δ�3

m f 5m �Δ�3=2
m f 7=2m þ 6Δ�3=2

m f 5=2m þ 2fm � 2 ¼ 0

ð13Þ
with

ΔmðT,V ,M,m, Smð0ÞÞ ¼ 2Smð0Þ
9M

πkBT
m

� �1=2 N
V

� �1=3 6
π

� �2=3

ð14Þ
Equation 12 ensures that all of the diffusive modes are

included in the gas-like component, i.e., S(0) = Sg(0). The
integration of eq 12 over frequency gives the degrees of freedom
of the gas-like component, 3Mfm. Once the gas-like component is
determined, the solid-like component can be obtained from the
difference between the total DoS and the gas-like DoS from
eq 11.
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Once theDoS are available, the thermodynamic properties can
be expressed as the integral of the density of state function
weighed by the corresponding weighting functions for the j
component of different motionsWi,m

j(υ) (i = E, S, or Cv; j = s or
g; m = trn, rot, or imv)

Em ¼ β�1½
Z ¥

0
dυ SsmðυÞ Ws

E,mðυÞ þ
Z ¥

0
dυ SgmðυÞ Wg

E,mðυÞ�
ð15Þ

Sm ¼ kB½
Z ¥

0
dυ SsmðυÞ Ws

S,mðυÞ þ
Z ¥

0
dυ SgmðυÞ Wg

S,mðυÞ�
ð16Þ

Cvm ¼ kB½
Z ¥

0
dυ SsmðυÞ Ws

Cv,mðυÞ þ
Z ¥

0
dυ SgmðυÞ Wg

Cv,mðυÞ�
ð17Þ

where β = (kBT)
�1. The weighing functions are

W s
EðυÞ ¼ βhυ

2
þ βhυ
expðβhυÞ � 1

ð18Þ

W s
SðυÞ ¼ βhυ

expðβhυÞ � 1
� ln½1� expð � βhυÞ� ð19Þ

W s
CvðυÞ ¼ ðβhυÞ2 expðβhυÞ

½expðβhυÞ � 1�2 ð20Þ

W g
E, trnðυÞ ¼ W g

E, rotðυÞ ¼ W g
Cv, trnðυÞ ¼ W g

Cv, rotðυÞ ¼ 0:5 ð21Þ

Wg
S, trnðυÞ ¼ 1

3
SHS

kB
ð22Þ

W g
S, rotðυÞ ¼ 1

3
SR

kB
ð23Þ

where SHS and SR are the hard-sphere entropy and rotational
entropy of molecules (rigid rotor) at the ideal gas state, respec-
tively:

SHS

k
¼ 5

2
þ ln

2πmkT
h2

� �3=2 V
ftrnN

zðyÞ
" #

þ yð3y� 4Þ
ð1� yÞ2 ð24Þ

SR

k
¼ 1þ ln

T
σΘr

� �
ð25Þ

where y = ftrn
5/2/Δrn

3/2 and z(y) is the compressibility factor of
hard sphere gases from the Carnahan�Starling equation of
state,42 Θr = h2/(8π2Irk) is the rotation temperature, and σ is
the symmetry number. It is noteworthy that the 2PT method
includes quantum correction by applying the harmonic oscillator
(HO) approximation for the canonical partition function Q,
which is included in the weighting function of the solid-like
components.32,33 The reference energy is obtained by comparing
the MD potential energy to the 2PT energy based on classical
harmonic oscillators33

E0 ¼ EMD � β�13Nð1� 0:5ftrn � 0:5frotÞ ð26Þ

where EMD is the total energy of the system from the same MD
simulation.

3. COMPUTATIONAL DETAILS

The open-source LAMMPS43 package is used for the molec-
ular dynamic simulations. The absolute entropy and energy of
CO2 fluid are determined along the experimental vapor�liquid
equilibrium (VLE) conditions and compared to the experimental
data. The experimental VLE data are taken from the steam
table.44 Three-dimensional periodic models of 256 molecules at
desired densities are created for the subsequent molecular
dynamic simulations.

The flexible version of the EPM2 force field (FEPM2; original
EPM214 with the stretching force constant by Nieto-Draghi
et al.17 and bending force constant by Anderson et al.;21 para-
meters are listed in Table 1) is used to describe the interactions in
the system. The two force constants were fitted to the vibration
frequencies of symmetric stretching and angle bending, respec-
tively. We compare the vibration frequencies of CO2 with the
experimental data45 in Table 2.

Energy minimization is performed on the initial structure. A
long 4 ns MD simulation at constant volume and temperature
(NVT) follows to equilibrate the system. To facilitate thermal
equilibration between different types of motion (translation,
rotation, and vibration), the three temperatures associated with
each motion type are rescaled to the system temperature by
rescaling the velocities of the corresponding motions at a time
interval of 1 ps. We will show that such a velocity rescaling is
critical for obtaining thermal equilibration in CO2. The system is
further equilibrated using an additional 1 ns NVT simulation
without such a velocity rescaling. An additional 20 ps simulation
for sampling is performed with the trajectory saved at every 4 fs
for the 2PT property analysis. We have examined and confirmed
that thermodynamic properties of CO2 from 2PT analysis
converge within 20 ps, which is consistent with previous
findings.33,34

The integration time step is set to 1 fs. The time constants for
the Nose-Hoover thermostat46 and velocity rescaling are set to
0.1 and 1 ps, respectively. The long-range electrostatic interac-
tion is estimated by the particle�particle particle-mesh Ewald
method47 (pppm) with an accuracy of 4.18� 10�5 kJ/mol. The
cutoff radii for the pppm and van der Waals interaction are 8.5 Å

Table 1. FEPM2 Force Field Parameters for CO2
a

element ε/kb (K) σ (Å) q (e)

O 80.507 3.033 �0.3256

C 28.129 2.757 0.6512

l0 (Å) 1.149 Kb (kcal/mol/Å2)b 1283.38

θ0 (deg) 180 Kθ (kcal/mol/rad2)b 56.53
a ε and σ are the Lennard-Jones parameters in the LJ-12�6 potential
Evdw(r) = 4ε[(σ /r)12� (σ /r)6]. q is the atomic charge for calculation of
electrostatic energy. The valence energy for CO2 is E

valence = Ebond þ
Eangle = Kb(l � l0)

2 þ Kθ(θ � θ0)
2, where l0 is the equilibrium CdO

bond length, θ0 is the equilibrium OCO angle, and Kb and Kθ are the
stretching and bending force constants, respectively. bThe value of Kb

and Kθ are taken from refs 17 and 21, respectively; all other parameters
are from ref 14.
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and 9.5 Å for liquid-phase simulations. For vapor phase simula-
tions, we use a cutoff radius of 17.0 Å for more efficient pppm
calculations.48

To validate the accuracy of the entropy from the 2PT model,
we compared it to the results from thermodynamic integration
(TI) for CO2 from 220 K to 600 K. Since TI leads only to an
entropy difference between two state points, whereas 2PT leads
to absolute entropies, we take the difference between the
absolute 2PT entropies.

The way to determine the density-of-state function for trans-
lation, rotation, and intramolecular vibration has been detailed
elsewhere.33 Briefly, the center of mass velocity (vB*), the angular
moment (LB), and the inertia tensor (I ) are determined for every
molecule at each time instant. The principle moments of inertia
(I1, I2, and I3) and the principal axis (pB1, pB2, and pB3) are then
obtained by solving the eigenvalue and eigenvector of the inertia
tensor. The angular velocity along the principal axis can be
calculated by ωBi = (LB 3 pBi/Ii)pBi. The velocity component due to
intramolecular vibration (vB

imv) can then be determined from
eq 7. These velocity components allow for the determination of
the corresponding DoS using eqs 5 (trn), 6 (rot), and 1 (vib). It
should be noted that while carbon dioxide is regarded as a linear
molecule, it is almost never linear in the molecular dynamic
simulations. For example, Saharay and Balasubramanian19 re-
ported the average value of the angle OCO to be 174.2� on the
basis of the Car�Parrinello molecular dynamic simulations. In
practice, CO2 has two large principle moments of inertia (I1 =
I2 = 43.4 g/mol Å2) and a third one that fluctuates around zero
(I3 =∼0.01 g/mol Å2). Therefore, we have set I3 and ω3 to zero
and therefore attribute suchmotions as part of the intramolecular
vibration.

4. RESULTS AND DISCUSSION

4.1. TheDensity of State of CarbonDioxide. Figure 1 shows
the DoS spectrum of liquid FEPM2 CO2 at T = 220 K. The
decomposition of S(υ) to translation, rotation, and internal
vibration is also presented. The broad band between 0 and
200 cm�1 represents the modes corresponding to librations.
Intramolecular vibrations are observed in the higher frequency
region: angle bending at 679 cm�1, symmetric stretching at 1326
and 1418 cm�1, and asymmetric stretching at 2660 cm�1 (also
listed in Table 2). The splitting peaks of symmetric stretching is a
result of the Fermi resonance.49,50 Both the translation and
rotation motions contribute to the zero-frequency density of
state function S(0), indicating translational and rotational diffu-
sion in the system.
Figure 1b and c illustrate the decomposition of translation

DoS, Strn(υ), and rotational DoS, Srot(υ), to gas-like and solid-
like contributions. It can be seen that the 2PT method nicely

separates the DoS to an exponentially decaying gas-like compo-
nent and a solid-like component with its intensity approaching
zero at zero frequency.
4.2. Thermodynamic Properties of CO2. To illustrate the

applicability of 2PT over a wide range of state conditions, the
entropy and energy of CO2 are determined at temperatures and
densities44 along the vapor�liquid coexistence curve. Table 3
summarizes the calculation results of the temperatures of the
molecular motions, internal energy, and absolute entropy and
compares the 2PT calculations with the experimental data.44 The
fluidicity factors increase from 0.36 (translation) and 0.25
(rotation) for the liquid at 220 K to 0.70 and 0.48 at the critical
point (304 K), and to 0.89 and 0.81 for the vapor at 220 K. The

Table 2. Comparison of Intramolecular Vibration Frequen-
cies of CO2 from the Experiment and MD Simulations

vibration modes

NIST data45

(gas phase)

this work

(220 K, sat’d

liquid)

this work

(220 K, sat’d

vapor)

symmetric stretching 1285.40 (Raman) 1326 1324

1388.15 (Raman) 1418 1416

angle bending 667.38 (IR) 679 681

asymmetric stretching 2349.16 (IR) 2659 2658

Figure 1. (a) Density of state spectrum of liquid CO2 at 220 K and
1.1663 g/cm3 from 200-ps sampling. (b) Translation density of state and
its components. (c) Rotation density of state and its components. This
illustrates the various DoS components used in the 2PT analysis.
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increase of the fluidicity factor implies the increasing gas-like
nature of the fluid as its density decreases along the coexistence
curve. Figures 2 and 3 illustrate the absolute entropy S(2PT) and
its components (Strn, Srot, and Simv) along the vapor�liquid
coexistence curve. The 2PT entropies are in excellent agreement
with experimental results in the vapor phase. The discrepancy
between 2PT entropy and experimental results increases
with increasing density, with the largest error observed for
the saturated liquid at 220 K (5.3%). Furthermore, the

intramolecular vibration entropy Simv is negligible compared to
the other two components (Strn and Srot) in all cases (see
Figure 3). The change of entropy along the coexistence curve
is dominated by Strn, meaning that the change of density and
temperature affects the translational motion most. Srot is about
constant in the vapor phase, whereas it increases in the liquid
phase with increasing temperature and decreasing density. That
is, under high-density conditions, the rotational motion of CO2

molecules is hindered by the surrounding molecules, while the
molecular rotation hindrance is insignificant at low density
because of the weaker intermolecular interaction.
Figure 4 shows the energy along the vapor�liquid coexistence

curve. It is interesting to note that the total energy Emd fromMD
(sum of kinetic and potential energies, shown in open diamonds)
is overestimated in both phases, especially near the critical point,
when compared to the experimental data (solid curve). This

Table 3. Comparison between 2PT Properties of FEPM2
CO2 and the Experimental Data44a

state of

aggregation d T S2PT Sexp E2PT Emd Eexp ftrn frot

saturated liquid 1.1663 220 111.82 118.12 18.91 17.71 17.25 0.36 0.25

1.1292 230 116.56 121.59 19.16 18.85 18.06 0.40 0.26

1.0896 240 119.38 125.07 19.90 20.04 18.88 0.42 0.28

1.0467 250 123.68 128.64 21.04 21.18 19.74 0.44 0.29

1.0000 260 127.50 132.24 21.30 22.39 20.65 0.47 0.31

0.9470 270 131.35 135.94 22.34 23.65 21.61 0.51 0.33

0.8850 280 136.79 139.77 22.91 24.88 22.64 0.53 0.35

0.8058 290 141.66 143.95 24.76 26.27 23.81 0.57 0.39

0.6803 300 147.53 149.32 26.50 28.18 25.33 0.63 0.43

critical point 0.4662 304 156.09 156.58 27.52 30.36 27.32 0.70 0.48

saturated vapor 0.2703 300 163.86 164.68 29.76 31.99 29.28 0.78 0.58

0.1724 290 169.50 169.61 30.03 32.53 30.19 0.82 0.64

0.1220 280 171.63 172.73 30.12 32.65 30.59 0.85 0.69

0.0885 270 175.25 175.20 29.93 32.36 30.78 0.87 0.71

0.0645 260 177.07 177.44 30.57 32.26 30.86 0.88 0.73

0.0467 250 179.85 179.51 30.78 31.77 30.87 0.89 0.77

0.0333 240 182.56 181.67 30.81 31.45 30.82 0.90 0.79

0.0234 230 184.35 183.87 30.66 31.06 30.74 0.89 0.80

0.0160 220 186.71 186.24 30.62 30.62 30.62 0.89 0.81
aReference state of energy: saturated vapor at 220 K. Units: T in K, E in
kJ/mol, S in J/mol/K, and d in g/cm3.

Figure 2. The absolute entropy of CO2 along the vapor�liquid
coexistence curve (for CO2, Ttp = 216.6 K and Tc = 304.2 K) calculated
by the 2PTmodel (open circle) from 20-ps MD trajectories. The results
are compared with the experimental data44 (black solid line). The gray
dashed line indicates the entropy at the critical state. This shows that
2PT can provide a reliable entropy of CO2 vapor and liquid over a wide
range of conditions.

Figure 3. The absolute entropy (S2PT) its components (Strn, Srot, Simv)
of CO2 along the vapor�liquid coexistence curve. This shows that the
entropy of CO2 is dominated by contributions from translation and
rotational motions.

Figure 4. The internal energy of CO2 along the vapor�liquid coex-
istence curve calculated by the 2PTmodel (open circle) from 20-ps MD
trajectories. The results are compared with classical energy from MD
simulations (open diamond) and the experimental data44 (black solid
line). The gray dashed line indicates the energy at the critical state. This
shows that while MD energy difference between the vapor and liquid
phases (energy of vaporization) may be consistent with experimental
data, the value in each individual phase is incorrect. The 2PT energies are
in better agreement with the experimental data for both phases.
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indicates that, while the heat of vaporization obtained from Emd
may be consistent with experimental data over a wide range of
temperatures, the (dynamic and thermodynamic) properties
may be in error in both the vapor and liquid phases. In contrast,
the 2PT energies, which take the quantum correction into
consideration, are in good agreement with the experiment. The
components of the total energy E2PT are illustrated in Figure 5. In
both phases, Etrn and Erot slightly increase with the increasing
temperature, whereas Eimv is nearly constant. The change of the
reference energy (E0) dominates the temperature and density
dependence of E2PT. It is noteworthy that the fluctuations
observed in E2PT are a result of the fluctuation in Eimv, which is
affected by the energy equilibration between different
vibrational modes.
4.3. Comparison of Entropy from 2PT and Thermody-

namic Integration. Here, we validate the entropy change of
CO2 between two thermodynamic states from 2PT with that
from thermodynamic integration (TI). The entropy change by

Figure 6. The relative entropy of CO2 (d = 1.1663 g/cm
3, the saturated

liquid density at 220 K) from T = 600 to 220 K using the 2PT method
and thermodynamic integration calculations. This shows that the 2PT
entropies are consistent with those determined from TI.

Figure 7. The constant volume heat capacity of liquid CO2 (d = 1.1663
g/cm3, the saturated liquid density at 220 K) from T = 600 to 220 K.
Triangle, calculated from Cv = dE2PT/dT; square, heat capacity directly
from 2PT method (eq 17); circle, from TdS2PT/dT. This shows that the
direct calculation of the specific heat from the 2PT DoS is much more
accurate than deriving it from the changes in the calculated properties of
other variables.

Figure 5. The internal energy (E2PT) and its components (E0, Etrn, Erot,
Eimv) of CO2 along the vapor�liquid coexistence curve. This shows that
the total energy E2PT is dominated by the reference energy E0.

Figure 8. (a) The temperature components (circles for translation Ttrn,
squares for rotation Trot, and triangles for intramolecular vibration Timv)
from the simulations of CO2 at the critical point. The closed symbols
indicate temperatures in the 5th ns from a regular NVT simulation. The
open symbols represent results if the first 4 ns are subjected to velocity
rescaling. (b) Cumulative vibration degrees of freedom of the intramo-
lecular vibrations from simulations with (solid line) and without (gray
line) velocity rescaling. This shows that velocity rescaling provides
effective means for energy exchange between differentmodes of motions
in CO2.
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heating a fluid from T1 to T2 under constant volume can be
obtained from the temperature integration of the energy
(referred to as TI-E) or constant volume heat capacity (TI-Cv)
as follows:

SðT2, dÞ � SðT1, dÞ ¼
Z T2

T1

dE2PTðT0, dÞ
T0dT0 dT0 ð27Þ

SðT2, dÞ � SðT1, dÞ ¼
Z T2

T1

CV , 2PTðT0, dÞ
T0 dT0 ð28Þ

where d is the density of the system. Figure 6 shows the calculated
entropy change of CO2 from a saturated liquid atT1 = 220 K (d =
1.17 g/cm3) to a higher temperature (up to 600 K) under
constant density. Twenty sets of simulations were performed at
a temperature interval of 20 K between 220 and 600 K. The
parameters and settings for the simulations are the same as the
previous cases. Note that temperature 600 K is well above the
critical temperature of CO2 (at 304.2 K), so the fluid behaves like
a system of hard spheres. The integrations in eq 27 and 28 are
calculated numerically on the basis of the midpoint trapezoidal
rule. It can be seen that the entropy changes calculated from 2PT
(open sphere) and TI (open triangle for TI-E and open square
for TI-Cv) are identical within statistical uncertainty.
It should be noted that the relatively large standard deviation

seen in TI-E is a result of the energy fluctuations, mainly
due to intramolecular vibrations. Figure 7 compares the heat
capacity from the numerical derivative of energy (Cv =
(∂E(2PT))/(∂T)|d), entropy (Cv = (T∂S(2PT))/(∂T)|d), and
the value directly obtained from eq 17. The 2PT heat capacity
(open squares) is nearly constant with the increasing of

temperature, whereas the temperature derivative of either the
energy (open triangles) or the entropy (open spheres) shows
significant fluctuations. The fluctuation in the DoS distribution
(especially in the high frequency region, i.e., internal vibrations)
causes about 0.5�1 kJ/mol fluctuations in energy, resulting in
101∼102 J/mol K fluctuations in heat capacity from the numer-
ical derivative of E. While such fluctuations may be reduced by
longer simulations, the 2PT is capable of providing converged
properties (e.g., Cv) without the use of exhaustive samplings.
4.4. Thermal Equilibration in CO2 Simulations. We notice

that there is a weak coupling of internal vibrational and libration
modes with collisions for molecules like CO2 with no net dipole.
As a result, there is a poor thermal equilibration between different
types of motions (translation, rotation, and vibration) in the
system. Figure 8a illustrates the temperatures determined from
the corresponding kinetic energies of a simulation at the critical
point (304.2 K and 0.47 g/cm3). The temperatures are calculated
from the last 1 ns of a 5 ns NVT simulation. It is seen that the
translation and rotational temperatures (closed circles and
squares) fluctuate around 325 K, while the intramolecular
vibration temperature (closed triangles) fluctuates around 275
K over a time period of 1 ns. The slow convergence of these
temperatures indicates a poor energy exchange between different
types of motions in CO2. Also shown in Figure 8a are the
temperature components (open symbols) from a simulation that
has been subjected to velocity rescaling (as described in the
Computational Details) in the first 4 ns of simulation. It is seen
that the velocity rescaling effectively equilibrates the kinetic
energies of different types of motions. The system remains in
good thermal equilibration even without the velocity rescaling in
the fifth ns. The velocity rescaling is also important for obtaining

Figure 9. The 2PT thermodynamic (S, E, and Cv) and transport (diffusivity D) properties evaluated using different lengths of trajectories for saturated
vapor (open diamonds) and liquid (open squares) CO2 at 220 K. The error bars (of all the figures presented in this paper) indicate the standard
deviations from four samplings. This shows that the 2PT thermodynamic properties converge within 20 ps.
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the correct distribution of the degrees of freedom for the internal
vibrations (two angle bending, one symmetric, and one asym-
metric stretching). Figure 8b shows that the DFs of angle
bending and symmetric stretching are overestimated (by 0.2
and 0.1, respectively) if the temperatures associated with differ-
ent motions are not fully equilibrated (the gray line). When a
good equilibration is reached, a proper DF distribution is
obtained (black line). The distribution of DF has a significant
impact on the energy associated with vibrations (especially the
zero point energy). We note that if the DF of angle bending of
CO2 is 3% higher than the expected value (2), Eimv will be about
0.5 kJ/mol too low.
4.5. Convergence of Thermodynamic Properties. Figure 9

shows the thermodynamic and transport properties of saturated
vapor and liquid CO2 at 220 K evaluated using different lengths
of MD trajectory. It can be seen that thermodynamic properties
(E, S, and Cv) are converged within 20 ps for both phases, even
though the diffusivity is not fully converged. Similar results have
been reported for other organic solvents.34 While the gas�solid
decomposition in 2PT relies on the value of diffusivity, there
seems to be a good balance between the calculated properties in
from the solid and gas components such that the total property is
not sensitive to the accuracy of diffusivity. We regard this merit of
2PT which allows for obtaining accurate thermodynamic proper-
ties using a very short MD trajectory.

5. CONCLUSION

The two-phase thermodynamic (2PT) method is extended to
obtain the thermodynamic properties of fluids of linear mol-
ecules such as CO2. In 2PT, the properties are calculated on the
basis of proper statistical mechanical weighting to the normal
modes, or density of state (DoS) distribution, of a fluid. The DoS
can be analytically decomposed to contributions from molecular
translation, rotation, and intramolecular vibrational motions. In
molecular dynamic simulations, CO2 molecules are almost never
linear, and therefore, attention is required for the evaluation of
the rotational DoS and the rotational weighting functions.We show
that with proper treatment, both the energy (with quantum
corrections) and the absolute entropy of CO2 can be obtained
froma short, 20 psMD trajectory (when the system is equilibrated).
We have examined the calculations over a wide range of conditions
along the vapor�liquid coexistence curve. It is found that both the
2PT entropy and energy obtained from the FEPM2 force field are
in good agreement with the experiment. The agreement in energy
of vaporization between classical MD energy and experimental data
is a cancellation of errors in the energy of both the vapor and the
liquid phase. The 2PT energy, however, properly captures the
experimental energy variations along the coexistence curve. Our
results suggests that the classical force field may be refined on the
basis of the 2PT properties. Finally, we also validate the 2PT
entropy with those obtained from thermodynamic integration.
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ABSTRACT: We have developed a quantum chemistry-based polarizable potential for poly(ethylene oxide) (PEO) in aqueous
solution based on the APPLE&P polarizable ether and the SWM4-DP polarizable water models. Ether�water interactions were
parametrized to reproduce the binding energy of water with 1,2-dimethoxyethane (DME) determined from high-level quantum
chemistry calculations. Simulations of DME�water and PEO�water solutions at room temperature using the new polarizable
potentials yielded thermodynamic properties in good agreement with experimental results. The predicted miscibility of PEO and
water as a function of the temperature was found to be strongly correlated with the predicted free energy of solvation of DME. The
developed nonbonded force field parameters were found to be transferrable to poly(propylene oxide) (PPO), as confirmed by
capturing, at least qualitatively, the miscibility of PPO in water as a function of the molecular weight.

I. INTRODUCTION

Poly(ethylene oxide), or PEO, also referred to as poly-
(ethylene glycol) or PEG, is a water-soluble polymer used in a
wide variety of applications ranging from biomedical to viscosity
modifications.1�4 PEO is consolable with water for low molec-
ular weights (less than 2000 Da) but exhibits lower critical
solution temperature (LCST) behavior for higher molecular
weights.5�7 The conformations,8�11 hydration,12,13 hydrogen
bonding,14�17 and phase behavior18�20 of PEO�water solutions
have been the subject of extensive molecular dynamics (MD)
simulations and theoretical studies, which have provided valuable
insight into the behavior and properties of this important
polymer solution.

The phase behavior of numerous block copolymers of water-
soluble PEO and various hydrophobic polymers, including poly-
(propylene oxide) or PPO, in aqueous solutions has also been
investigated.1 Chemical structures of PEO and PPO as well as
their shortest oligomers are shown in Figure 1. Many of these
amphiphilic block copolymers utilize PEO as a soluble block
and PPO as an insoluble block in diblock, triblock, or other
architectures.1�3 The well-known PEO�PPO�PEO triblock
architectures as produced by BASF are referred to as Pluronics.
At low concentrations and temperatures, Pluronics typically exist
as fully solubilized, isolated chains or unimers. Transition from
the unimer to micelle state occurs with an increase in concentra-
tion or temperature when the critical micelle concentration
(CMC) or critical micelle temperature (CMT) is reached.21 As
a result, spherical micelles are formed with external PEO coronas,
and central PPO cores are often observed.22,23 Other structures
are achievable with particular length ratios of hydrophilic and
hydrophobic blocks.23,24

The self-assembly of PEO�PPO�PEO triblock polymers in
water into micelles with increasing temperature is thought to be
due to the increasing hydrophobicity of the central PPO block
while PEO remains soluble. In this context, the phase behavior of
PPOandPEO in aqueous solution is quite relevant. PPOwith�OH

termination groups and various molecular weights (Mw =
280�2179 Da) in water has been studied as a function of the
temperature.7,25�30 It was determined that the solubility of PPO
(Mw = 400 Da) has a strong temperature dependence, being
insoluble in water above ∼328 K. The position of the LCST for
other molecular weight PPOs shifts to lower temperatures as the
molecular weight of the polymer is increased.26 However, PEO,
while soluble with water in the temperature range of interest for
applications of Pluronics micellar solutions (273�373 K), does
exhibit LCST behavior at higher temperatures, as mentioned
above, indicating that water becomes a poorer solvent for PEO
with increasing temperature. Hence, it is likely that the changing
quality of water as a solvent for both PPO and PEO with
increasing temperature plays an important role in determining
the phase behavior of PEO�PPO�PEO aqueous solutions.

In previous works, we have utilized atomistic molecular
dynamics simulations to gain insight into the behavior of PEO
in aqueous solutions.8,12,15,17 While these studies have provided
valuable insight into PEO�water solutions, including the tem-
perature dependence of solution properties, they suffer from the
shortcomings of the TIP4P water potential,31 which was em-
ployed in these simulations. Specifically, it is well-known that the
TIP4P water potential, while reproducing the density and self-
diffusion coefficient of pure water at and near room temperature
with reasonable accuracy,32 does a poor job in reproducing these
and other properties at high temperatures.33 As discussed below,
the temperature dependence of thermodynamic and transport
properties of water can be much better reproduced utilizing
water models that include atomic dipole polarizability.

In order to utilize high-quality polarizable potentials for water
in simulations of PEO�water solutions, it is necessary to develop
polarizable potentials for the polymers and for the polymer�
water interactions. In this study, an existing, validated polarizable
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potential was used for water, ethers and poly(ethers), while force
field parameters for ether�water interactions were obtained on
the basis of high-level quantum chemistry data. Thermodynamic
and structural properties from simulations were compared with
available experimental data and with simulations using our
previous TIP4P-based nonpolarizable force field. We investigate
the transferability of developed nonbonded force field para-
meters for PEO�water interactions to PPO and related ethers.

II. FORCE FIELD DEVELOPMENT

In order to develop an accurate potential for atomistic MD
simulations of PEO aqueous solutions, we (a) selected an
appropriate polarizable water model, (b) parametrized electro-
static interactions for the ether on the basis of quantum chemistry
calculations of electrostatic potential around model PEO com-
pounds, and (c) parametrized water�ether van der Waals
interactions on the basis of a quantum chemistry study of
interactions of the model ether compound with water. In the
latter step, we generated two sets of nonbonded parameters as
discussed below.
A. Selection of Water Model. We have considered the

COS/B234 and COS/G2,35 TIP4P/FQ,36,37 POL5/TZ,38 and
SWM4-DP39 models as candidate polarizable water models.
We also show results for the nonpolarizable TIP4P31 model for
comparison. Model simplicity and accuracy in reproducing
thermodynamic, dynamic, and dielectric properties were the
main criteria for the selection. Specifically, the liquid density F,
enthalpy of vaporization ΔHvap, and self-diffusion coefficient Dw

were considered functions of the temperature. For all models
except SWM4-DP, the reported properties were obtained from
the available literature.31�41 Since the liquid state properties of
water as a function of the temperature have not been reported for
the SWM4-DP model, properties of interest for this model were
determined by performing a series of MD simulations imple-
menting this water model with modification of the polarization
mechanism, as described in the next section. The modified water
model is referred to as the SWM4-AD model, where AD stands
for isotropic atomic dipole polarizability. Simulations of pure
water were performed on an ensemble of 500 molecules utilizing
a version of the MD simulation package Lucretius that includes
isotropic atom dipole polarizability. Initially, equilibration for

1 ns was performed followed by sampling trajectories of 4 ns.
Isobaric�isothermal (NPT) ensemble simulations were per-
formed at 1 atm and 298�363 K. All bond lengths were
constrained during the simulation using the Shake algorithm.42

The Ewald summation method43 with R = 0.232 and k = 6
parameters was used to treat long-range electrostatic interac-
tions. A multiple time step reversible propagator algorithm44 was
implemented to solve the equations of motion with a time step of
0.5 fs for valence interactions (bonds, bends, and torsions), 2 fs
for nonbonded interactions within a cutoff radius of Rcutoff = 6.0 Å,
and 4 fs for nonbonded interactions within the range of 6.0 and
10.5 Å and the reciprocal part of the electrostatic interactions.

Figure 1. Chemical structures of 1,2-dimethoxyethane (a), 1,2-di-
methoxypropane (b), poly(ethylene oxide) (c), and poly(propylene
oxide) (d) compounds, where n is the number of repeat units.

Figure 2. Water densities F (a), water self-diffusion coefficientsDw (b),
and enthalpies of vaporizationΔHvap (c) are summarized as a function of
the temperature for the various models investigated. Experimental data
were taken from refs 62, 80, and 91.
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Figure 2a�c show water density, enthalpy of vaporization, and
the water self-diffusion coefficient as a function of the tempera-
ture for the various models investigated. Most of the water
potentials do a reasonable job in reproducing experimental data
at 298 K, as the potentials are typically adjusted to reproduce
density at room temperature. Among the tested models, the
best agreement with experiment for water density above room
temperature is observed for the SWM4-AD model. The TIP4P,
SWM4-AD, and COS/B2 models all reproduce experimental
data for the enthalpy of vaporization reasonably well above room
temperature. Therefore, these models give a reasonable estima-
tion of the strength of intermolecular water�water interactions
and its temperature dependence. All polarizable potentials were
found to reproduce the water self-diffusion coefficient reasonably
well while the nonpolarizable TIP4P exhibits too fast water
dynamics over the entire temperature range. On the basis of
these results and the fact that the SWM4-DP water model yields
a dielectric constant39,40 and surface tension45 in good agreement
with experimental results at room temperature, we have selected
the SWM4-AD water model.
B. Modification of the SWM4-DP Model. The SWM4-DP

polarizable water model consists of four interaction sites and
Drude polarizability.39 The latter involves a massless charge on a
spring attached to the oxygen of water. In the SWM4-ADmodel,
we have replaced Drude polarizability with an induced point
dipole model. The water geometry in the SWM4-AD model was
adopted unchanged from the SWM4-DP model, with an O�H
bond length of 0.9572 Å and an H�O�H angle of 104.52�. The
fourth (massless) site was attached to the oxygen of water by a
rigid bond at a distance of 0.238 Å along the H�O�H bisector.
An isotropic atomic polarizability of 1.043 Å3 was assigned to the
oxygen atom. Partial atomic charges were assigned to the
massless particle (�1.1074e) and hydrogen atoms (þ0.5537e)
in accord with the original SWM4-DP model. No partial charge
was allocated on the oxygen atom of water. Lennard-Jones
(12�6) repulsion and dispersion parameters were taken without
any adjustments (εO�O=0.20568 kcal/mol andσO�O=3.18030Å).
Excellent agreement was found using the SWM4-ADmodel with
published data for the SWM4-DP model for liquid density,
enthalpy of vaporization, and self-diffusion coefficient at 298 K.

C. Parameterization of PEO Partial Atomic Charges. Den-
sity functional calculations were performed on 1,2-dimethox-
yethane (DME) and diglyme molecules, illustrated in Figure 3,
for the calculation of electrostatic potentials that were used to fit
partial atomic charges. These oligomers have essentially the same
local conformations as PEO in aqueous solution and similar
dependence on solution composition;8,9,46 hence, these mol-
ecules are good model compounds for PEO. The Gaussian 03
software package47 was used for all quantum chemistry calcula-
tions. The B3LYP density functional48�51 in combination with
the aug-cc-pvDz basis set52 was utilized on the basis of our
previous studies.12 Geometry optimization was performed for
isolatedDMEmolecule in hydrophobic ttt and hydrophilic tgt and
ggt conformations and isolated diglyme molecule in the hydro-
phobic ttt conformation, as listed in Figure 3. Quantum chemistry
calculation of the electrostatic potential for both oligomers was
performed on a grid of 80 000 evenly distributed points for each
single conformation. Partial atomic charges were determined
using a charge fitting approach described elsewhere53�56 that
uses least-squares minimization of the objective function χ2 = ∑i

N

1/N(φi
QC � φi

FF)2 relative to the electrostatic potential φi
QC

obtained from quantum chemistry calculations. A square value of
the objective function χ2 = 1.7 was obtained. This value is much
higher than the values typically obtained using such an approach
(0.5�0.8). In order to improve the description of the electrostatic
potentials, an additional pair of massless charges (labeled Lp)
connected to ether oxygen atoms was introduced. Optimal
positions and angles associated with the additional charges as
well as the optimal value of the atom-based partial charges were
determined simultaneously using the charge fitting approach
mentioned above. The electrostatic potential φi

FF was calculated
as a function of the angle Lp�O�Lp and distance O�Lp from
the oxygen of ether. The best description of the electrostatic
potential χ2 = 0.7 was obtained for an Lp�O�Lp angle of 96�, an
Lp�O separation of 0.7 Å, and an extended charge magnitude of
qLp =�0.2200e. However, the minimum of the objective function
was found to be very shallow, showing little dependence of quality
of the fit in the range of(10� for the Lp�O�Lp angle and(0.1
for the Lp�O distance from the optimal values. Therefore, in
the final version of the force field, we used an Lp�O�Lp angle of
102� and an Lp�O distance of 0.65 Å that allowed us to obtain
an improved fit of DME�water binding energies (see below) and
electrostatic potential around DME. The resulting assignment of
partial charges for DME molecule is given in Table 1. Torsional
parameters for DME/PEO were refitted to reproduce conforma-
tional energies of DME obtained from ab initio calculations at the
MP2/aug-cc-pvDz//B3LYP/aug-cc-pvDz level. A comparison of
conformational energies obtained from ab initio calculations
and molecular mechanics calculations using PFF are given in

Figure 3. Hydrophilic and hydrophobic conformations of DME and
diglyme are given that were used in the fitting of partial charges. Atomic
labels: Cm, methoxy carbon; C, methylene carbon; and O, oxygen
of ether.

Table 1. Partial Atomic Charges for DME (PEO) and DMP
(PPO) (See Figure 3 for Atom Labels)

atom type DME (PEO) DMP (PPO)

O (C�O�C) (polymer) 0.4296 0.4068

O(Cm�O�C) 0.4348 0.4949

Cm �0.3507 �0.4042

Hm 0.1169 0.1290

C �0.1100 �0.2997

H 0.0576 0.0951

Lp �0.2200 �0.2200
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the Supporting Information for the most important conformers.
Conformational energies predicted by PFF are in very good
agreement with ab initio data and provide similar quality descrip-
tions as our previous nonpolarizable force filed and CHARMM57

polarizable force field.
D. Parameterization of PEO�Water Interactions. Para-

meters for all valence (bond, bend, and dihedral) interactions,
atomic polarizabilities, and dispersion/repulsion parameters
for PEO�PEO interactions were taken from the APPLE&P
force field55,58 that was found to provide a consistent description
of density F, heat of vaporizationΔHvap, and transport properties
for a wide variety of liquids. The polarizable water model is
described above in sections A and B, while the ether partial
charges are described in section C. In order to complete our
description of PEO�water systems within the atomistic polariz-
able force field framework, dispersion/repulsion parameters for
intermolecular interactions between the ether and water need to
be determined. For this purpose, extensive quantum chemistry
calculations of binding energies between DME and a single water
molecule were conducted. MP2/aug-cc-pvDz level calculations
with basis set superposition error (BSSE) were performed using
the counterpoise correction approach59 for a number of ether�
water geometries, as described below.
Water�Ether Quantum Chemistry Paths. The interactions of

a water molecule with the hydrophobic ttt and hydrophilic tgt
conformers of DME have been investigated along various water�
ether paths designed to provide information about the inter-
action of water with ether oxygen atoms and methylene and
methoxy groups. The paths are illustrated in Figure 4a and b.
Path 1, which involves hydrogen bonding between a water
hydrogen atom and an ether oxygen atom, was investigated for
the DME in ttt conformation as well as for dimethyl ether. In the

ttt conformer, the ether oxygen atoms of DME are on opposite
sides of the molecule, facilitating investigation of hydrogen
bonding between water and a single ether oxygen atom. Path 2,
which involves the interaction of water with the methyl group of
the methoxy group, was also investigated for the ttt conformer of
DME. Path 3 involves the interaction of water with the “hydro-
phobic” side of DME, i.e., themethylene groups as opposed to the
ether oxygen atoms. For all paths, initially, a locally optimized
geometry was obtained at the MP2/aug-cc-pvDz level. Subse-
quently, the energy of the ether�water complex was determined
at this level with fixed water and ether geometries, with the
distance between the water oxygen being systematically increased
or decreased along the water oxygen�ether oxygen vector
(path 1), the water oxygen�carbon vector (paths 2), and the
vector between the water oxygen and the midpoint of the
carbon�carbon bond (path 3). Binding energies are reported
as the difference between the BSSE (counterpoise method)
corrected water�ether complex energy and that of the geometry
optimized ether and water at infinite separation.
Determination of Water�Ether Dispersion/Repulsion Para-

meters. Dispersion/repulsion interactions between water and
ether atoms were described using the Buckingham (exp-6)
function for all pairs:

Uexp � 6ðrijÞ ¼ Aij expð�BijrijÞ �
Cij

r6ij
ð1Þ

where i = Ow or Hw and j = C, H, O, and Cm. Aij and Bij
are repulsion parameters, while Cij is the dispersion parameter.
Atom labels are shown in Figure 3. The term D(12/Bijrij)

12 is
applied withD = 5� 10�5 kcal/mol for all pair interactions and is
essentially zero at typical nonbonded atomic separations but
becomes the dominant term at rij < 1 Å, ensuring that U

exp-6

(r) is
repulsive at distances much smaller than the size of an atom.
However, this term is not applied when the A parameter is
negative (see below). Dispersion Cij parameters for i = Ow and
j = C, H, O, and Cm were determined using theWaldman�Hagler
(WH) combining rule60 and hence were not adjustable para-
meters. Dispersion parameters for i = Hw and j = C, H, and Cm

were set to zero with the exception of the i =Hw and j =O atomic
pair, where the dispersion parameter was treated as adjustable.
The adjustable water�ether nonbonded parameters were

determined by optimization of the objective function

χ2 ¼ ∑
pathðkÞ

∑
geometryðlÞ

wklðΔUFF
kl �ΔUQ C

kl Þ2 ð2Þ

where ΔUkl
FF is the binding energy for geometry l of path k

predicted by the force field, while ΔUkl
QC is the same quantity

from quantum chemistry calculations. All three DME�water
binding paths (paths 1�3) were fit simultaneously. The weight-
ing factor wkl is given as

wkl ¼ exp �ΔUQC
kl �ΔUEL

kl

kbT

" #
ð3Þ

where T = 298 K and ΔUkl
EL is the electrostatic (polarization

and Coulomb) contribution to the water�DME binding energy
for each water�ether pair geometry, as determined from
already established atomic polarizabilities and partial atomic
charges. The subtraction of the electrostatic contribution to
the binding energy from the total in determining the weight
factor assures that each water�DME geometry is weighted in the

Figure 4. Schematic representations of the testing configurations are
given for the calculation of DME�water binding energies in a and b,
respectively. DME is in hydrophobic ttt (a) and hydrophilic tgt (b)
conformations. Gray atoms represent carbons, white are hydrogens, and
red are oxygen atoms. Dashed arrows indicate the directions along which
the water molecule is shifted.
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determination of the nonbonded parameters according to the
dispersion/repulsion contribution to the binding energy of that
particular geometry. In determining the molecular mechanics
energy along each path, a molecular mechanics geometry opti-
mization was first performed, and the path was determined by
systematically changing the ether�water separation for the fixed
ether and water geometries, analogous to the procedure used for
determining the quantum chemistry paths.
The fitted force field parameters are shown in Table 2. There

are two sets of fitted parameters for the water hydrogen�ether
oxygen interaction. For the first, labeled PFF-1 (polarizable force
field 1), the C (dispersion) parameter for the O�Hw interaction,
was constrained to be zero, resulting in a negative value of A,
while in the second (PFF-2), both the A andC parameters for the
O�Hw interaction were treated as adjustable. Ether�water
binding energies for paths 1, 2, and 3 for PFF-1 and PFF-2 as
well as our previously parametrized nonpolarizable ether force
field12 (NPFF) employing the TIP4P31 water model are com-
pared with quantum chemistry values in Figure 5a�c. Figure 5
reveals that our PFF-1 and PFF-2 force fields provide an excellent
description of the water�ether interactions and are a noticeable
improvement over the NPFF. Specifically, the NPFF resulted
in an underestimation of binding energies for the “hydrophilic”
path 1 at separations larger than the equilibrium distance and
an overestimation of binding energies of water with the methoxy
carbon (path 2) and methylene carbons (path 3). These defi-
ciencies are corrected in the PFF-1 and PFF-2 force fields.

III. MOLECULAR DYNAMICS SIMULATIONS OF
ETHER-WATER SOLUTIONS

Molecular dynamics (MD) simulations of ether and poly-
(ether) aqueous solutions were performed in order to (1) validate
the polarizable force fields by comparison of thermodynamic and
transport properties with available experimental data, (2) empiri-
cally adjust PFF-1 and PFF-2 to improve agreement with experi-
mental results, and (3) conduct initial studies of the phase
behavior of PEO�water and PPO�water solutions as a function
of the temperature using the newly developed polarizable poten-
tials. Obtaining an accurate representation of PEO�water solu-
tions as a function of the temperature was our primary motivation
for the development of the polarizable force fields.

A. Simulation Methodology. MD simulations of DME, 1,2-
dimethoxypropane (DMP), 12 repeat unit PEO (PEO12, with
CH3 terminal groups, 530 Da), and six repeat unit PPO (PPO6,
with CH3 terminal groups, 395 Da) in aqueous solution have
been performed in the composition range (ether weight fraction)
wp = 0.01�0.93. Aqueous solutions were comprised of 1�72
solute molecules and 1200�100 water molecules depending
upon the composition. The polarizable version of the Lucretius61

simulation package was used to carry out MD simulations using
a cubic simulation cell with periodic boundary conditions. The
standard Shake algorithm42 was employed to constrain the bond
lengths and water geometry. Charge�charge long-range electro-
static interactions were computed employing Ewald43 summa-
tion. The reaction field scheme43 was implemented to handle
long-range induced dipole�induced dipole calculations. The
cutoff radius was 10.5 Å for nonbonded and electrostatic inter-
actions in real space. A reversible multiple time step propagator
algorithm44 was implemented to solve the equations of motion
with the parameters as specified in section A of the force field
development. Simulations for T < 373 K were conducted at
atmospheric pressure, while at elevated temperatures, simulations
were conducted at pressures close to water saturation conditions
at these temperatures to prevent potential system instability due
to water evaporation. The dielectric constant ε of the solvent,
which is used in reaction field calculations, was adjusted from
79 to 30 according to the experimental temperature dependence
of the water dielectric constant.62 All systems were initially
equilibrated in the isothermal�isobaric ensemble until satisfac-
tory steady state conditions (such as density of the solutions)
were reached. Sampling trajectories were performed over 10 ns.
B. Free Energy of DME Solvation. The free energy of DME

solvation in water, ΔGsolv, was determined for PFF-1 and PFF-2
using the interface transit method (IT), as described in detail in the
Appendix. Briefly, a film of water comprised of 500 molecules was
created in the center of an orthorhombic cell with dimensions of
24.6 Å� 24.6 Å� 84.6 Å in the x, y, and z directions, respectively.
The water film is periodic in the x and y directions and has a
thickness of approximately 29 Å in the z direction. The Ewald
summation method43 with R = 0.232 and klimit in x, y, z = 6, 6, 11
was used to treat long-range electrostatic interactions. Otherwise,
the simulationmethodology and parameters were identical to those
employed in the bulk solution simulations described above except

Table 2. Nonbonded Repulsion Parameters for Ether�Water Interactions

PFF-1 PFF-2 PFF-1,2a

ether�water interaction pair Aij, kcal/mol Bij, Å
�1 Aij, kcal/mol Bij, Å

�1 Cij, kcal/mol Å6

Cm�Ow 14500.76 3.28913 24893.76 3.32675 690.76

Cm�Hw 35764.40 4.85465 45764.40 4.83499 0.00

O�Ow 341418.22 3.94109 787505.34 4.17895 451.12

O�Hw
b �21.60

1.38137 1841.85 3.12997

355.75

�20.0 (PFF-3) 330.0 (PFF-4)

�16.5 (PFF-5) 310.0 (PFF-6)

C�Ow 29589.70 3.55272 79674.89 3.58426 665.24

C�Hw 34242.45 4.73729 43297.32 4.81314 0.00

H�Ow 11934.82 3.67285 5445.07 3.50718 138.67

H�Hw 2361.00 3.98266 2506.97 4.08434 0.00
aDispersion parameters Cij are the same for all force fields with the exception of O�Hw interactions. For PFF-1,3,5, Cij(O�Hw) = 0.0; for PFF-2,4,6, it
varies as indicated in the table. bOnly parameters for O�Hw interactions were adjusted to obtain PFF-3�6. To obtain PFF-3,5, the repulsion parameter
Aij was the only the adjustable parameter, while to obtain PFF-4,6, the dispersion parameter Cij was changed.
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that a single time step algorithm with a time step of 1 fs was
employed instead of the multiple time step algorithm. In order to
adequately thermalize the single gas-phasemolecule, the solute was
subjected to additional Brownian forces63 with a friction coefficient
of γ = 0.002 fs�1. The average force required to constrain the
center-of-mass of the DME molecule to a given Δz, ÆF(Δz)æ, was
determined from 4 ns trajectories and 57Δzwindows ranging from
0 (in the middle of the water film) to 30 Å (middle of the vacuum
phase). The free energy of transfer of the solute from the vacuum
phase to the liquid phase (center of the film) is given as

ΔGsolv ¼ �
Z 0

max
ÆFðΔzÞæ dðΔzÞ ð4Þ

Here, Δz = max corresponds to the center of the vacuum region.
The direct equating of the free energy of transfer with the Gibbs
free energy of solvation ΔGsolv is a consequence of the reference
states used in defining ΔGsolv.

64,65 We note that although the IT
method simulations are carried out in theNVEensemble, the film is
able to adjust dimensions upon insertion of the solute so as to
maintain negligible normal stress in the z direction. Consequently,
the free energy change determined from integration of the mean
force (eq 4) is the Gibbs free energy and not the Helmholtz free
energy. Validation of the IT method was carried out by testing the
method to determine ΔGsolv for the TIP4P water model. The IT
method yielded a value of ΔGsolv =�5.9( 0.6 kcal/mol, which is
in excellent agreement with Monte Carlo simulation results of
ΔGsolv =�6.1( 0.3 kcal/mol.66We also estimated the uncertainty
of the free energy calculations as described in previous
publications.67,68 The IT method yields ΔGsolv (DME in water) =
�5.7( 0.6 kcal/mol for PFF-1 andΔGsolv =�6.6( 0.6 kcal/mol
PFF-2, as summarized in Table 3.
C. Empirical Adjustment of the Polarizable Potentials. A

comparison of ΔGsolv for PFF-1 and PFF-2 with experimental
results (Table 3) reveals that these quantum-chemistry-fitted
potentials yield water�ether interactions that are too hydrophilic.
In order to improve agreementwith experimental results forΔGsolv,
the repulsion parameter AO�Hw

of PFF-1 was empirically adjusted
to yield force field PFF-3, and the dispersion parameter CO�Hw

of
PFF-2 was adjusted to yield force field PFF-4. The resulting
parameters are given in Table 2. All other nonbonded parameters
were kept unchanged. In order to determine the new values of
AO�Hw

and CO�Hw
, a thermodynamic perturbation method69 was

employed to obtain the free energy of solvation as a function of
these parameters using trajectories of a single DME molecule in
water using the PFF-1 and PFF-2 force fields as reference states.
The resulting ΔGsolv values for PFF-3 and PFF-4 are in good
agreement with experimental results, as shown in Table 3.
To match the experimental free energy of DME solvation,

the A parameter in PFF-1 has to be reduced by about 7%

Figure 5. DME�water binding energies as obtained from quantum che-
mistry calculations and force field predictions for various ether�water paths.

Table 3. Free Energy, Enthalpy, and Entropy of Solvation
of DME in Aqueous Solution from MD Simulations and
Experiment at 298 Ka

FF ΔGsolv, kcal/mol ΔHsolv, kcal/mol TΔS, kcal/mol

PFF-1 �5.7 �15.6 �9.9

PFF-2 �6.6 �16.8 �10.2

PFF-3 �4.9 �14.4 �9.5

PFF-4 �4.7 �14.6 �9.9

PFF-5 �3.7 �13.4 �9.7

PFF-6 �3.8 �13.5 �9.7

NPFFb �5.6 �17.1 �11.5

CHARMMc �3.8

�5.6c

experiment �4.8d �14.0e,�14.2f �9.4
a For simulations using PFF-1 through PFF-6, the uncertainty in 4Gsolv

is 0.6 kcal/mol and for 4Hsolv is 0.4 kcal/mol. bNonpolarizable force
field of refs 12 and 87. We note that values for the free energy and
enthalpy of solvation reported in ref 87 differ from those reported here
by kBT (0.6 kcal/mol), as the previously reported values did not employ
the same gas-phase and solution-phase reference states as were utilized
in determining the experimental values. c Polarizable potential from
refs 13 and 85. The values are taken from those works. dRef 88. eRef 89.
fRef 90.
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(from �21.6 to �20.0 kcal/mol). The force field with this
adjusted parameter was labeled as PFF-3. To achieve the same
for PFF-2, a similar reduction by ∼7% of the dispersion para-
meter CO�Hw

was necessary (see Table 2), yielding the PFF-4
force field. To examine how these empirical adjustments of
nonbonded parameters influence the description of quantum
chemistry data for DME�water binding energies, we have
compared the PFF-3 and PFF-4 descriptions of binding energies
along paths 1�3 described above. In Figure 6, we show this
comparison for the hydrophilic path 1, which shows that while
description of quantum chemistry data by PFF-3 and PFF-4 is
worse (compared to PFF-1 and PFF-2), it is still very good. For
hydrophobic paths 2 and 3, no degradation of the description
of quantum chemistry data was observed, which is expected
since empirical adjustment of the O�Hw interactions should not
have a significant influence on hydrophobic interactions such as
interactions of water with methylene and methoxy segments
of DME.
D. Enthalpy, Free Energy, and Entropy of Solvation of

DME. The enthalpy of solvation of DME in water, which
corresponds to the energy of the transfer of a single molecule
from the gas phase to the solution at constant pressure,64,65 was
determined at 298 K and 1 atm as

nΔHsolvðwDMEÞ ¼ ElH2O þ DMEðP,T,wDMEÞ
� ½ElH2OðP,TÞ � nEgDMEðP,TÞ�

ð5Þ

where the superscript l or g indicates the liquid or gas phase, E is
the internal energy, and the subscripts H2O, H2OþDME, and
DME indicate a system of 500 water molecules; a system of 500
water molecules plus n DME molecules required to yield the
weight fraction of DME,WDME; or a single DME molecule. We
assumed that in the gas phase DME at 298 K and 1 atm behaves
as an ideal gas. The internal energy of the gas phase of the
DME molecule was determined from Brownian dynamics63

simulations of 125 noninteracting DME molecules performed
at 298 K. The enthalpy of solvation for DME as a function of
solution composition using all four sets of nonbonded para-
meters (PFF-1 through PFF-4) is compared with experimental
results in Table 3. The dilute solution value of ΔHsolv was
obtained by linear extrapolation of eq 5 to infinite dilution.
The entropy of solvation, calculated as TΔSsolv = ΔHsolv �
ΔGsolv is given as well.

Examination of Table 3 reveals that MD simulations using
PFF-1 and PFF-2 have resulted in ΔHsolv =�15.6 kcal/mol and
ΔHsolv = �16.8 kcal/mol, respectively, which are noticeably
more than experimental values of about �14.0 kcal/mol. Inter-
estingly, both force fields provide a basically identical description
of the quantum chemistry data for paths 1�3, yet both the free
energy and the enthalpy of solvation obtained using PFF-2 are
about 1.0 kcal/mol more negative than for PFF-1. This difference
perhaps can be attributed to different partitionings of short- and
long-range nonbonded interactions between these force fields
due to variation in the functional form of the O�Hw potential.
Such redistribution of short- and long-range interactions, while
not influencing the description of selected paths in the gas phase,
clearly has a noticeable effect in the condensed phase, indicating
that selection of the functional form for nonbonded interactions
is important.
For the empirically adjusted (to match experimental free

energy of solvation) PFF-3 and PFF-4 force fields, the enthalpy
of solvation was found to be in a very good agreement with
experimental results as well. Interestingly, the entropy of solva-
tion was not affected much by empirical adjustments and, taking
into account the accuracy of our calculations, is in good agree-
ment with experimental values for all force fields (PFF-1 through
PFF-4). This indicates that (a) overestimation of the free energy
of DME solvation by PFF-1 and PFF-2 is primarily energetic in
nature and (b) the hydration structure of DME is likely captured
well by our polarizable force field and is not sensitive to variations
in the functional form of nonbonded interactions.
E. Conformational Populations of DME in Water. The local

conformational properties of PEO and its oligomers in water
have been a subject of extensive discussions regarding key
characteristics that define the unique behavior of PEO in aqueous
solution. Detailed analysis and discussion of these issues can
be found in our previous works. Here, we only focus on the
influence of the force field on local conformations and compare
predictions with available experimental data. For this purpose, we
analyzed DME triad populations as a function of the composition
in DME/water mixtures. In our previous simulations using
NPFF, we showed that tgt and tgg conformers are hydrophilic
(their population increases with increasing water content com-
pared to the gas phase), while all other conformers, including the
highly polar tgþg�, are hydrophobic.8 Those results were in good
agreement with previous spectroscopic studies,70�74 with the
exception of trends and populations predicted for the tgg and
tgþg� conformers, which were not well resolved in the initial
analysis of spectroscopic data. Subsequent to publication of our
simulation results, experimental spectra were reanalyzed taking
into account the potential importance of the tgg conformer, and
the trends observed in simulations were confirmed.75 Later, more
detailed measurements and an analysis of Raman spectra were
been conducted by Goutev et al.76 to obtain triad populations of
DME in water as a function of the concentration. In Figure 7a, we
compare total populations of hydrophilic (tgt þ tgg) and major
hydrophobic (tgþg� þ ttt þ ttg) conformers, as obtained from
our simulations using different force fields and Raman analysis.
Data for individual triad conformers are given in the Supporting
Information.
Figure 7a shows very good qualitative agreement between

simulation and experimental data for all concentrations. A
comparison of different force fields shows very weak dependence
of conformational populations on the force field, indicating
insensitivity of conformations to force field parameters varied

Figure 6. DME�water binding energies for path 1 as predicted by
various force fields and quantum chemistry calculations.
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in this work despite the fact that those variations noticeably
influence the free energy of solvation of DME. These observa-
tions are in agreement with our previous studies where the
influence of DME conformation on solvation thermodynamics
was shown to be relatively small.10

F. Excess Volume of DME�Water Solutions. Excess volume
is often considered to be a sensitive measure of the effects of a
solvation (mixing) process for two or more compounds. It can
be negative or positive depending upon the strength of the
solute/solvent intermolecular interactions, the difference in
solute/solvent molecular sizes, and the solute/solvent solvation
structures.77 Positive excess volume usually indicates weak,
unfavorable solute/solvent intermolecular interactions, while
negative excess volume is an indicator of strong favorable
interactions. Here, the DME�water intermolecular interactions
are studied by calculating the excess volume as a function of the
DME concentration. The excess molar volume ΔVE of ether�
water solutions was determined as indicated by

ΔVE ¼ Vmixture � ðxsolventVsolvent þ xsoluteVsoluteÞ ð6Þ

where Vmixture = (Msolventxsolvent þ Msolutexsolute)/Fmixture is the
molar volume of the mixture, Vi = (Mixi)/Fi is the molarity of the
pure components (solvent and solute), Mi is the molecular
weights of the pure components, xi is the mole fraction of the
solvent or solute in the mixture, and F is the density. The excess
molar volume for DME in 318 K aqueous solutions obtained
using the four developed sets of nonbonded parameters and
NPFF are compared with experimental results 77 in Figure 7b.
Examination of Figure 7b shows that simulations using PFF-1

and PFF-2 result in excess volumes in qualitative agreement with
experimental results. However, simulations with PFF-1 resulted
in underestimation of the excess volume, while those employing
PFF-2 resulted in noticeable overestimation of the excess
volume. Both force fields predict minimum weight fractions of
DME between 0.6 and 0.8. A similar quality agreement for excess
volume is obtained at 298 K (not shown). While for PFF-2 the
more negative (than experiment) values of the excess volume are
consistent with overestimation of the free energy and enthalpy of
solvation, the underestimation of the excess volume by PFF-1
seems contrary to the trends observed in solvation thermody-
namic properties. Despite a clear overestimation (compared to
experimental results) of hydration enthalpy and free energy of
solvation by PFF-1, in simulations with this force field, DME and
water molecules are not able to pack efficiently enough to achieve
the excess volumes observed in experimental results.
Since empirical adjustments made to PFF-1 and PFF-2 to yield

PFF-3 and PFF-4 reduced the strength of DME�water interac-
tions (as evidenced by the less favorable free energy and enthalpy
of solvation as well as binding energies along path 1), it is not
surprising that a significant shift to less negative values of excess
volume was obtained for PFF-3 and PFF-4 force fields. While this
resulted in excellent agreement between PFF-4 and experimental
results, simulations using PFF-3 resulted in excess volumes in
even worse agreement with experimental results than PFF-1.
These data show two interesting points: (a) despite the fact that
PFF-3 and PFF-4 force fields predict a similar free energy and
enthalpy of solvation, the predicted excess volumes are very
different, and (b) excess volume is strongly sensitive to details of
O�Hw potential and, hence, the partitioning of short- and long-
range nonbonded interactions. Therefore, when empirical ad-
justments to the force fields are made to match the free energy

Figure 7. Comparison of conformer populations of DME in water (a), excess
volumeΔVE(b),water self-diffusioncoefficientDw(c), andexcessviscosityΔη

E

(d) as obtained from MD simulations and experiments at 318 K for DME�
water solutions. Experimental data were taken from refs 76�78, 80, and 81.
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(or enthalpy of solvation) of the solute, it does not necessarily
guarantee accurate prediction of the excess volume.
G. Water Self-Diffusion Coefficient and Excess Viscosity in

DME�Water Solutions. The self-diffusion of water is another
solution property that is sensitive to the quality of the description
of solute�water interactions. The mobility of water molecules
near the solute can be affected by hydrogen bonding or by
hydrophobic hydration. It is also well-known that water dy-
namics at the interface are much different from those of bulk
water, including protein�water, polymer�water, and other
interfaces.78 Here, the influence of solute concentration on water
dynamics is studied by obtaining the self-diffusion coefficient of
water for various concentrations of DME.
The concentration dependence of the self-diffusion coefficient

of water in DME�water solutions was calculated fromMD simula-
tions using PFF-1 through -4 force fields. The self-diffusion
coefficient of water in DME�water solutions was determined
using the Einstein relation:43

Dw ¼ lim
tf ¥

ÆðrðtÞ � rð0ÞÞ2æ
6t

ð7Þ

where r(t) is the center of mass position of a molecule at time t,
Æ...æ indicates an ensemble average, and Æ(r(t) � r(0))2æ corre-
sponds to the mean square displacement of amolecule’s center of
mass. Water self-diffusion coefficients were further corrected to
account for the finite size effects in molecular dynamics simula-
tions as suggested by Yeh andHummer.79 The viscosity η of pure
SWM4-AD water was calculated at 318 K using eq 8, which is
necessary for calculations of correction coefficients. The value
of 0.0054P was obtained, which is in a good agreement with
the experimental value of 0.0060P.62 Corrected self-diffusion
coefficients of water were 2�3% higher than initially calculated
using eq 7.
The water self-diffusion coefficients obtained from MD simu-

lations as a function of the concentration are compared with
experimental results in Figure 7c. We are aware only one experi-
mental work, by Trouw et al., using the QENS (quasi-elastic
neutron scattering) technique, which reports water self-diffusion
coefficients for the entire range of concentrations in DME�
water solutions.78 However, the diffusion coefficient for the pure
water reported in this work is too high (Dw = 4.6� 10�9 m2 s�1)
compared to other experimental data obtained using the isotopic
method (Dw = 3.6 � 10�9 m2 s�1)80 and pulsed magnetic field
gradient NMR method (Dw = 3.6 � 10�9 m2 s�1),81 which are
also shown in Figure 7c. This mismatch might be due to the
inadequacy of some assumptions of the jump diffusion model
that was used to fit QENS data as discussed in ref 78. Therefore,
the self-diffusion coefficient of water as a function of DME
concentration reported in ref 78 is likely overestimated, particu-
larly in dilute solutions, where it was shown that the jump
diffusion model for translational motion is inconsistent with
MD simulations.
Figure 7c shows that the diffusion coefficient of pure SWM4-

DP water (WDME = 0) is in good agreement with experimental
results determined by isotopic and NMRmethods. It is also clear
that the water self-diffusion coefficient is not sensitive to varia-
tions in nonbonded parameters between polarizable force fields
PFF-1 through -4 in the entire concentration range. Concentra-
tion dependences of the water self-diffusion coefficient obtained
using polarizable force fields PFF-1 through -4 are in qualitative
agreement with QENS data, showing a minimum weight fraction

of DME at around 0.55. At higher concentrations (>0.5 DME
weight fraction), simulation data are also in good quantitative
agreement with QENS data. Taking into account the mismatch
of experimental data in pure water, we believe that the concen-
tration dependence of water self-diffusion using MD simulations
with the polarizable force fields is quite reasonable and is
certainly more accurate than previously obtained data for the
nonpolarizable force field (NPFF), which are also shown in
Figure 7c and noticeably overestimate water self-diffusion in the
entire range of concentrations. The latter is consistent with the
general trend of polarizable water models having lower diffusion
coefficients compared to nonpolarizable force fields due to
explicit polarization effects.32

Excess viscosity is another transport property useful for the
validation of force field accuracy. The viscosity of DME�water
solutions, pure water, and pure DME were determined using the
Einstein43 relation accounting for diagonal and nondiagonal
elements as previously described.58,82

η ¼ lim
tf ¥

V
20kBTt

Æ∑ðLRβðtÞ � LRβð0ÞÞ2æ ð8Þ

where LRβ(t) =
R
0
r PRβ(t0) d(t0), PRβ is the symmeterized stress

tensor, Rβ are the components of the stress tensor, kB is the
Boltzmann constant, T is the temperature, V is the volume of the
simulation cell, and Æ...æ indicates an ensemble average. Here, PRβ
is the stress sensor defined a PRβ = (σRβþ σβR)/2� (δRβ)/3�
tr(σ), where σRβ is a stress tensor, δRβ = 1 for R = β, and δRβ = 0
for R 6¼ β. The excess viscosity is given by the following
relationship:

ΔηE ¼ ηmixture � ðxsolventηsolvent þ xsoluteηsoluteÞ ð9Þ
where ΔηE is the excess viscosity, ηmixture is the viscosity of the
binary solution, ηi is the viscosity of the pure component (solvent
or solute), and xi is the molar fraction of the solvent or solute in
the mixture. The excess viscosities using four sets of parameters
are compared with experimental results as a function of the
solution composition at 318 K in Figure 7d.
Figure 7d shows that experimental data for excess viscosity

have a maximum at a weight fraction of DME of about 0.5.
Simulations using PFF-1 and PFF-2 qualitatively show the same
trend as experiments for excess viscosity; however, the position
of the maximum appears to be shifted to a weight fraction of
about 0.4, and the value at the maximum is about a factor of
2 larger than the experimental value. At dilute concentrations
(WDME = 0.17) and high concentrations (WDME > 0.7), simula-
tion results are in a very good agreement with experimental data.
Simulations using empirically adjusted PFF-3 and PFF-4 force
fields provide significantly better descriptions of the maximum
value for excess viscosity, although the position of the peak is still
slightly shifted to lower concentrations compared to the experi-
mental location of the maximum. Interestingly, unlike the self-
diffusion coefficient, which showed very little dependence on
the version of polarizable force field, excess viscosity is much
more sensitive, both to the choice of the force field (PFF-1 vs
PFF-2) and to empirical adjustments of these force fields (PFF-3
and PFF-4). Finally, MD simulations using PFF-3 and PFF-4
provide a better description of excess viscosity compared
to NPFF.
H. Extension of the Force Fields to Poly(Propylene Oxide)�

Water Solutions. As with PEO, all bonded parameters for DMP
and PPO were taken from APPLE&P.55,58 All nonbonded
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parameters for ether�water interactions were transferred as
obtained for DME/PEO (see Table 2) without any additional
empirical adjustments. The nonbonded parameters for the
methyl�water interactions of DMP/PPO were taken as para-
meters for methoxy�water interactions of DME/PEO. The
partial atomic charges for DMP/PPO were obtained in a similar
way to that discussed in the parametrization of partial charges
section, employing the most populous hydrophilic and hydro-
phobic conformations of DMP and 3,6-dimethyl diglyme
(DMD) that could be found in a previous publication.83 These
charges are also given in Table 1.

I. Preliminary Investigation of the Phase Behavior of PEO
and PPO in Aqueous Solutions.One of the goals of this work is
to gain a better understanding of the correlation between the
ΔGsolv of DME in water predicted by a force field and the
predicted phase behavior of PEO and PPO in aqueous solution.
For this purpose, we introduce two additional force fields, PFF-5
and PFF-6, which are variations of PFF-1,3 and PFF-2,4,
respectively, with parameters given in Table 2. These force fields
are more “hydrophobic” than PFF-3 and PFF-4 and have
correspondingly smaller (by about 1.0 kcal/mol) ΔGsolv values
of DME in water, as shown in Table 3.
The phase behavior of PEO�water and PPO�water was

investigated as follows. Systems of 0.35 weight fractions of
PEO12, DMP, and PPO6 were simulated over the temperature
range of 298 to 550 K (PEO12). We used ether oxygen�ether
oxygen (OE�OE) correlations as an order parameter to quantify
the homogeneity/heterogeneity of systems. Specifically, the
average OE�OE coordination number Cn was determined by
counting the number of intra- and intermolecular OE’s within 6 Å
of a given OE. This coordination number is plotted as a function
of the temperature for PEO12, DMP, and PPO6 solutions in
Figure 8a�c, respectively.
PEO�Water Solutions. Figure 8a shows that initially OE�OE

correlation increases for PEO12�water solutions with increasing
temperature for all of the force fields investigated. It is reasonable
to associate increased ether�ether correlation with decreasing
solvent quality, which is expected for PEO�water solutions since
they exhibit LCST behavior at sufficiently highmolecular weights,
as discussed in the Introduction. At even higher temperatures,
Figure 8 reveals that ether�ether correlation decreases, consis-
tent with the USCT behavior exhibited by PEO�water solutions.
Furthermore, it can be seen that the most hydrophilic force fields
(PFF-1 and PFF-2), with the largest ΔGsolv of DME in water,
show the least ether�ether coordination, while the most hydro-
phobic force fields with the smallest ΔGsolv of DME in water
(PFF-5 and PFF-6) exhibit the greatest extent of ether�ether
correlation.
The relationship between the extent of OE�OE correlation

and phase behavior is illustrated in Figure 9. Here, the OE�OE

coordination number is plotted as a function of the “A”

Figure 8. Ether oxygen coordination numbers and approximate phase
boundaries (short double-dashed line) for PEO (a), (dotted line) for
DMP (b), and (short dashed line) for PPO (c) aqueous solutions as a
function of the temperature, obtained from MD simulations for various
force fields investigated.

Figure 9. Ether oxygen coordination number as a function of the ether
oxygen�water hydrogen intermolecular interaction parameter A at
400 K for PEO12�water solutions. Open circles indicate values
obtained from MD simulations, and the solid line indicates a sigmoidal
fit. The short double-dashed line indicates the approximate phase
transition (inflection point).
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parameter in the OE�Hw nonbonded energy function (eq 1) at
400 K. Here, A = �21.6 kcal/mol, �20.0 kcal/mol, and �16.5
kcal/mol corresponds to PFF-1, -3, and -5, respectively (see
Table 2). It can be seen that ether�ether coordination increases
with decreasing OE�Hw nonbonded attraction. Also shown in
Figure 10a�c are snapshots from trajectories with A = �30.0
kcal/mol,�17.5 kcal/mol, and�5.0 kcal/mol. Clearly A =�5.0
kcal/mol is phase separate, while A = �17.5 kcal/mol appears
to be in transition and A = �30.0 kcal/mol corresponds to a
miscible system. On the basis of this, we associate a value of
Cn(OE�OE)≈ 6.7 (which corresponds to the inflection point in
the Cn(A) curve) with a phase separation in the 0.35 weight
fraction PEO12�water solutions at this temperature. This value
is temperature dependent due to thermal expansion of the
system. To establish this temperature dependence, a similar
Cn(A) curve was obtained for 318 K, and linear extrapolation
was assumed using inflection points at two temperatures to
obtain the approximate phase boundary shown in Figure 8a. On
the basis of theoretical predictions, PEO12 even with methyl
termination is too low in molecular weight to exhibit phase
separation, i.e., to exhibit LCST behavior.20 Hence, force fields
PFF-1, PFF-2, PFF-3, and PFF-4 exhibit expected behavior for
the PEO12�water solutions, while PFF-5 and PFF-6 appear to
be too hydrophobic in the description of ether�water interac-
tions, as expected.

DMP�Water and PPO�Water Solutions. It has been shown
experimentally that DMP is consoluble in water at least to
temperatures up to 368 K.84 We also have found experimental
results for PPO�water mixtures as discussed in the Introduction.
Those experimental results provide us with a position of the
LCST for hydroxyl terminated PPO6 which is more hydrophilic
than the methoxy terminated PPO6 simulated here. No experi-
mental data on solvation of methoxy terminated PPO in water
were found in the literature. Therefore, the position of the LCST
for methoxy terminated PPO is uncertain but, on the basis of the
behavior of PEO�water solutions, is likely to be significantly
lower than that for hydroxyl terminated PPO. Therefore, we
anticipate that 298 K is already above the LCST for PPO6�water
solutions. Figure 11 shows Cn(OE�OE) as a function of the “A”
parameter in the OE�Hw nonbonded potential for the 0.35
weight fraction DMP�water and PPO6�water solutions, re-
spectively. As with PEO12�water solutions, more ether�ether
clustering is observed with decreasing of the ether�water inter-
action strength. Similarly, the values of Cn corresponding to
phase transition (inflection points) for PPO6 and DMP were
obtained at two temperatures and were used to obtain approx-
imate phase boundaries shown in Figure 8b and c. Figure 8b
indicates that the DMP�water solution does not show signs of
phase separation for PFF-1,2 (not shown) and PFF-4. Simula-
tions using PFF-3 and -6 are very close or slightly above the phase
boundary, while Cn obtained from simulations using PFF-5 is
clearly above the phase boundary, indicating a potential phase
transition for this force field. For the PPO6�water solution,
where phase separation is anticipated, PFF-2 appears to provide a
too hydrophilic description of ether�water interactions, while all
other force fields predict phase separation at all temperatures.
These results indicate that simulations using PFF-1 and -4 are the
most consistent with what one can expect on the basis of existing
experimental data. They predict the solubility of DMP in water
yet at the same time result in phase separation for PPO6.

IV. PFF-3 VS PFF-4

Table 3 reveals that PFF-3 and PFF-4 both provide a good
description of ΔGsolv of DME in water (as they were empirically

Figure 10. Snapshots for PEO12�water solutions are given as obtained
from MD simulations scaling the repulsion interaction parameter A.
Hydrogen atoms and solvent are omitted for clarity. Homogeneous
solution is obtained for A =�30 kcal/mol (a) and A =�17.50 kcal/mol
(b). The phase separated system is illustrated as obtained for A = �5
kcal/mol (c).

Figure 11. Ether oxygen coordination number as a function of the ether
oxygen�water hydrogen intermolecular interaction parameter A at 400 K
for DMP and PPO6. Black circles correspond to PPO6 values, and gray
circles correspond to DMP values as obtained from MD simulations.
Solid lines illustrate a sigmoidal fit. A short dashed line indicates the
approximate phase transition for PPO6, and a dotted line indicates the
approximate phase transition for DMP.
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adjusted to do so). Furthermore, both force fields accurately
describe the ΔH of solvation for DME in water. In accord with
the free energy of DME solvation, PFF-3 and PFF-4 reproduce
the water self-diffusion and excess viscosity of DME�water
solutions at 318 K well. However, PFF-4 provides a noticeably
better description of the excess volume of mixing (Figure 7b) and
hence appears to be the superior force field. This is despite the
fact that PFF-3 actually provides a better description of DME�
water interactions along path 1, as shown in Figure 6. From these
observations, we conclude that in the parametrization of poly-
mer�water potentials
(1) parametrizing the potential to match gas phase small

molecule-water interactions as obtained from high-level
QC calculations is a good starting point for a potential,
but empirical adjustments are likely to be required

(2) empirically adjusting the potential to reproduce the free
energy of solvation of small molecules in water provides
an improved description of other small molecule�water
solution properties as well as polymer�water solution
properties

(3) unfortunately, there is no unique way to carry out such an
empirical adjustment, and variations that provide equally
good descriptions of the free energy of solvation of the
small molecule(s) in water can provide significantly
different descriptions of other important properties

(4) point three reveals the danger of empirical adjustment of
potentials to match a single solution property. The ability
of the empirically adjusted potential to describe an array
of solution properties should be investigated.

V. CONCLUSIONS

The ability of MD simulations to accurately reproduce the
properties of PEO�water and PPO�water solutions as a func-
tion of the temperature requires a high-quality water potential
and an accurate description of the interaction of ether�ether and
ether�water interactions. A strong indicator of the quality of the
potential is the ability of the potential to accurately describe the
free energy and energy of solvation of DME in water. Our new
empirically adjusted polarizable potential PFF-4 provides a
good description of DME�water interactions in the gas phase
as provided by high-level QC calculations while at the same
time accurately reproducing the thermodynamic properties of
DME�water solutions. The PFF-4 potential was found to
provide a description of PEO�water, DMP�water, and PPO�
water solutions consistent with experimental observations based
upon preliminary simulation studies. We are currently conduct-
ing studies of higher molecular weight PEO�water solutions
where LCST behavior is expected to further investigate the
ability of our polarizable ether�water potential to describe
PEO�water phase behavior.

The observed correlation between DME�water thermody-
namic properties and the phase behavior of poly(ether)�water
solutions with ΔGsolv for DME�water solutions provides a
readily accessible method for initially evaluating the quality of
an ether�water potential. For example, our previously published
nonpolarizable ether�water potential12 yields ΔGsolv= �5.6
kcal/mol, significantly greater than the experimental value, and
hence we anticipate that this potential predicts too hydrophilic
interactions between PEO andwater and PPO andwater. Similarly,
the polarizable CHARMM potential13 yields ΔGsolv= �3.8 kcal/
mol (similar to our PFF-5 and PFF-6 potentials), which is

apparently too hydrophobic in the description of ether�water
interactions. A more recently published polarizable CHARMM
potential85 yields ΔGsolv=�5.6 kcal/mol, and we anticipate that
this potential will yield PEO�water and PPO�water inter-
actions that are too favorable.

’APPENDIX

The interface transit method (IT) is based on the constrained
force approach86 to estimate the free energy of solvation ΔGsolv.
In this method, a simulation cell with a film of solvent and a
vacuum is set up. In order to sharpen the solvent/vacuum
interface, two artificial walls parallel to the solvent/vacuum
interface are applied (x�y plane) on the left ZL and on the right
ZR sides of the film. The biasing force from the walls Fi

wall(zi)
acting on each atom is defined as

Fwalli ðziÞ ¼
þkðzi � zlÞ2 zi < zl
�kðzi � zrÞ2 zi > zr

0 zl e zi e zr

8>><
>>:

9>>=
>>; ðA1Þ

where zi is the position of an atom i, Å; k = 5 kcal/mol 3Å
2

is a
force constant, and zl and zr are the positions for the left or right
walls relative to the center of mass of the water film, Å. To ensure
that the net external force (from the walls) on the film is zero at
each time step, the total force from both walls was determined,
and then a counter force was evenly distributed between all
atoms in the film. Therefore, the effective force experienced by
each atom in the film is

Fef fi ðziÞ ¼ Fwalli ðziÞ � ∑
N

i¼ 1

Fwalli ðziÞ
N

ðA2Þ

whereN is the total number of atoms in the water film. As can be
seen in Figure A1, application of this force sharpens the water�
vacuum interface without significantly perturbing the density at
the center of the film.

A single solute molecule is introduced into the system at
various positions ranging from the center of the solvent film
(representing a bulk-like environment) to the vacuum phase
away from the film (corresponding to the ideal gas phase). The
center of mass of the solute is kept at a fixed separation distance
Δz from the center of mass of the film, and the force required to

Figure A1. Water bulk distribution densities shown without constrains
(no artificial walls) and with additional constraints (artificial walls
applied) at the water/vacuum interface.
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maintain this constraint is determined every time step and then
is averaged over the entire simulation. Simulations of multiple
systems with regular separation step Δzi between the solute and
center of mass of the film are conducted. In order to adequately
thermalize the solute molecule in the vacuum, the solute was
subjected to additional Brownian forces.
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ABSTRACT: Understanding the relation between structural and thermodynamic quantities obtained with simplified—e.g., coarse-
grained (CG) or implicit-solvent—models is an ongoing challenge in the field ofmultiscale simulation. Assessing the transferability of
suchmodels to state points that differ from the onewhere themodel was parametrized is important if one wants to apply thesemodels
to complex systems, which, for example, exhibit spatially varying compositions. Here, we investigate the transferability of CG (in this
case implicit-solvent) ion models with effective pair potentials derived at very low concentrations to different ion concentrations in
aqueous solution. We evaluate both thermodynamic and structural properties of systems of NaCl in aqueous solution both in
atomistic explicit-solvent andCG simulations. For the explicit solvent simulations, osmotic coefficients have been calculated at a wide
range of salt concentrations and agree very well with experimental data. It had been shown previously that a concentration-dependent
dielectric permittivity can be used to make effective implicit-solvent pair potentials transferable since it accounts for the effect of ion
concentration on solvent properties, resulting in very good osmotic properties of these models for a certain range of salt
concentrations. We investigate the explicit and implicit solvent models also in terms of structural properties, where we can show
how with a concentration-dependent dielectric constant one obtains very good structural agreement at low and intermediate salt
concentrations, while for larger salt concentrations, multibody ion�ion correlations put a limit to straightforward transferability. We
show how—guided by this structural analysis—the transferability of the implicit-solvent model can be improved for high ion
concentrations. Doing so, we obtain transferable implicit-solvent effective pair potentials which are both structurally and
thermodynamically consistent with an explicit solvent reference model.

1. INTRODUCTION

In simulations of complex molecular systems, reduced-resolu-
tion models have come to play a more and more important role
due to the fact that highly detailed simulation methods (i.e.,
quantum or atomistic level simulations) can hardly handle the
broad range of time and length scales involved. In most cases,
coarse grained (CG) models are designed to merge groups of
atoms into “superatoms”, i.e., CG beads, and the effective CG
interaction potentials are derived by averaging over the micro-
scopic details of models at higher resolution. In this way, CG
methods reduce the number of degrees of freedom of the system
and thus can speed up the simulations. In recent years, various
approaches have been proposed to develop CG effective
potentials,1�6 targeting thermodynamic properties7�11 or proper-
ties obtained from atomistic simulations of a reference system, the
latter being either structural properties12�16 or mean forces.17�19

Unfortunately, CG models are dependent on the state point and
system composition, and on most occasions, the transferability of
these CG models to different state points (temperature, pressure,
system composition, chemical environment, etc.) is poorly under-
stood. Transferability of CG models is vitally important to the
simulation of complex systems, where various complicated multi-
body interactions are involved due to spatially biased structures
and fluctuations. Yet, the construction of transferable CG models
which accurately reproduce both structural and thermodynamic
properties is an extremely challenging task, and the relation

between structural and thermodynamic properties of a CG model
is central to many studies.20�22 Most often, effective pairwise
potentials are used to describe the interactions in CG models.
Since those effective pair potentials account for multibody effects,
for example, three body interactions, they are only to a limited
extent additive, and this sets limits to the transferability of the
potentials. Understanding the physical nature of nonadditivity in
the system of interest can help to make a CG model transferable.
Many CG models presented in the literature were developed by
constructing effective potentials in such a way that predominantly
either structure or thermodynamic properties are reproduced, and
then attempts were made to make the potentials transferable to
similar systems (e.g., different concentration,23 chain length,24

component fraction,25 etc.). In principle, transferability of effective
pair potentials can be achieved in several ways: (i) One applies
a model derived at/optimized for a given state point unaltered to a
range of state points “nearby”; in that case, one has to carefully
investigate the range in which this is permissible.15 (ii) One creates
a new set of potentials for each state point one wants to investigate
(e.g., density or temperature-dependent potentials).20,21,25,26

(iii) One specifically designs a single CGmodel with the aim to be
transferable,19,27 or (iv) one uses a model derived at one state
point and (analytically) modifies it to be applicable to different
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conditions. (A simple example of the last case is the rescaling of
potentials which one wants to apply to a different temperature.)

Recently, Villa et al. proposed a CG model for benzene/
water.22 The CG benzene�benzene potential had been para-
metrized on the basis of the benzene�benzene potential of mean
force of two benzene molecules in aqueous solution, i.e., at
“infinite” dilution. By applying Kirkwood�Buff theory, they
illustrate that this CG model can reproduce the changes in the
benzene chemical potential and the activity coefficients of the
mixtures over a range of mixture compositions (up to concentra-
tions where benzene and water demix in the atomistic reference
simulation). An explanation is that hydrophobic interactions
between benzene solutes are short-ranged, and the multibody
correlations involved in hydrophobic associations can be de-
scribed by pairwise additive effective potentials (category i of the
above list).

A different situation is found in the case of ion�ion interac-
tions in aqueous solution. Due to long-range electrostatic inter-
actions, the ions affect the behavior of water increasingly with
increasing ion concentration. More specifically, the presence of
many ions reduces the orientational fluctuations of the water
molecules and thus the dielectric permittivity of the solvent.
Therefore, effective ion�ion potentials parametrized at infinite
dilution are not directly transferable to higher salt concentra-
tions. Hess et al. developed a reduced-resolution (in this case
implicit-solvent) potential for aqueous electrolyte solutions
where an ion-concentration-dependent Coulomb term was
added to the (ion-specific) pair interaction. Thus, by using a
concentration-dependent dielectric permittivity of water, part of
the multibody effects in the system were accounted for in the
ion�ion pairwise interaction in the implicit solvent model.28�30

Their approach reproduced the NaCl solution osmotic properties
and the ion coordination up to a concentration of 2.8 M (mol/L).

While in the case of the CG model of bezene�water
mixtures22 the short-range hydrophobic interactions parame-
trized at infinite dilution were directly transferable to higher
benzene concentrations, in the case of aqueous ion solutions,
the ion�ion interactions determined at inifinite dilution had to
be split into a short ranged ion-specific and a long-range
electrostatic part. The interactions were then made transferable
by keeping the short-ranged part constant and analytically
modifying the long-ranged electrostatic part (category iv of
the above list).

On the basis of the work of Hess et al.,28,29 we revisit in this
study the implicit solvent ion model with a concentration-depen-
dent dielectric permittivity and investigate it in the context of
transferability and structural and thermodynamic consistency of
reduced-resolution models which are parametrized on the basis of
an atomistic simulation model. To this end, we study osmotic
coefficients and the structure of aqueous NaCl solutions over a
wide range of concentrations. Osmotic properties of aqueous ion
solutions have been investigated by several research groups on the
basis of effective ion potentials and pair correlation functions.28�31

Luo and Roux32 presented a direct method to calculate the
osmotic pressure of ion solutions by performing explicit-solvent
atomistic simulations making use of a semipermeable wall. We
employ this method by Luo and Roux to obtain osmotic coeffi-
cients of atomistic reference simulations of NaCl solutions. Thus,
we can easily compare implicit and explicit solvent simulation
results and evaluate our implicit solventmodel. In addition, we also
compare both atomistic and implicit solvent models with experi-
mental measurements over a wide range of salt concentrations.

2. METHODS

2.1. Osmotic Pressure Calculation. Osmotic pressures of
sodium chloride solutions were calculated at seven different
concentrations, i.e., 0.5 m, 0.7 m, 1 m, 2 m, 3 m, 4 m, and 5 m
(molality, mol/kg). Note that at the highest concentration of 5 m,
this corresponds to only about 11 water molecules per ion pair.
The atomic systems were set up in a similar way to Luo and
Roux’s paper.32 In an orthorhombic simulation box, two semi-
permeable walls were imposed along the long axis z direction to
restrict the ions within the central region of the box, while water
molecules can go freely through the walls. The virtual walls were
set up by modifying the wall functions built in GROMACS.
Particularly, a 10�4 potential was shifted with a cutoff value in
such a way that only repulsive forces can be felt by the ions as they
start to diffuse out of the central region. The setup of the system
with the NaCl solution and a pure water region is depicted in
Figure 1. The entire system was subjected toNpT dynamics. The
simulation box was set to be semi-isotropic, with the side lengths
x and y fixed, and only the side length z was allowed to change.
However, the distance between the two walls was fixed to ensure
the volume of restricted ions to be constant. Therefore, the
osmotic pressure of the salt solutions can be obtained by
calculating the average forces exerted by the walls on the ions
divided by the surface areas of the two walls.32 All of the atomistic
systems were initially constructed using the program packmol,33

by randomly placing a certain number of ions in the central
region, while water molecules were distributed in the whole
region of the orthorhombic box. In our osmotic pressure
calculations, 11 112 water molecules were placed in the simula-
tion box at each concentration. The number of ion pairs was
chosen according to the concentration; i.e., 50, 70, 100, 200, 300,
400, and 500 ion pairs were put into the central region (see
Figure 2) for concentrations of 0.5 m, 0.7 m, 1 m, 2 m, 3 m, 4 m,
and 5m, respectively. Then, a short minimization was performed,
followed by an NpT simulation as long as 30 ns. The last 10 ns
was block averaged and used to calculate the osmotic pressure.
Figure 2 shows a snapshot of equilibrated structure using explicit
solvent simulations to calculate the osmotic pressure of NaCl
solutions at 4 m.
For each concentration, an independent NpT simulation of

NaCl solution was performed for 20 ns before the calculation of
osmotic pressure. This simulation includes a cubic periodic box
filled with 5556 water molecules and an appropriate number of
ion pairs according to the concentrations. One objective of this
simulation is to calculate the volume of the central region

Figure 1. Setup of simulation systems to calculate the osmotic pressure
of NaCl solutions using an explicit solvent model.
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restricting the ions in the following osmotic pressure calculations.
Another is to derive the concentration-dependent dielectric
permittivity εE(c), which will be mentioned in section 2.3.
2.2. Potentials ofMean Force and Effective Pair Potentials.

Effective (implicit solvent/coarse grained) ion�ion pair poten-
tials were derived as described in a previous study.28,29 Potentials
of mean force (PMF) for all ion pairs (Naþ�Cl�, Naþ�Naþ,
and Cl��Cl�) were computed using distance constraints, where
the linear constraint solver (LINCS) algorithm34 was used to
keep two ions at a fixed distance. The free energy difference is
then obtained by integrating the average constraint force fc:

Vðr2Þ � Vðr1Þ ¼
Z r2

r1

Æfcær dr ð1Þ

In our simulations, we are limited to finite distances and
therefore integrate backward starting from a distance rm = 1.2 nm.
Since the effective potential is very close to a Coulomb interac-
tion between 1.0 and 1.2 nm,28,29 the total effective potential can
be expressed as

VpðrÞ ¼

Z r

rm

Æfcæs þ
2kBT
s

� �
dsþ q1q2

4πε0εrrm
r < rm

q1q2
4πε0εrr

r g rm

8>>><
>>>: ð2Þ

where (2kBT)/s is an entropic term, kB is the Boltzmann

constant, and T is the temperature. ε0 and εr are the dielectric
permittivity of the vacuum and of the SPC/E water model,
respectively. If one subtracts the (long-range) Coulombic inter-
actions between different ions from Vp(r) in eq 2 one obtains the
short-range (non-Coulombic) contribution to the interaction
between these ions:

VshortðrÞ ¼ VpðrÞ � VcoulðrÞ ¼ VpðrÞ � q1q2
4πε0εrr

ð3Þ

This short-range contribution Vshort(r) is used as tabulated ion-
specific pair interaction in combination with Coulomb interac-
tions (which are typically computed using Particle Mesh Ewald
summation or similar) in implicit solvent/coarse grained ion
simulations.
A series of independent constrained simulations for the

Naþ�Cl�, Naþ�Naþ, and Cl��Cl� ion pairs were carried
out at distances up to 1.2 nm. For like-ion pairs, intervals of
0.02 nm between constraint distances were used. For the
Naþ�Cl� pair, intervals of 0.005 nm were used between 0.2
and 0.4 nm to get sufficient sampling around the first minimum
of the potential, and intervals of 0.02 nmwere used above 0.4 nm.
All systems contained two ions and 1000 water molecules in a
dodecahedron box. Figure 3 shows the effective potentials of
Naþ�Cl� (left panel) as well as Naþ�Naþ and Cl��Cl� (right
panel) at infinite dilution and, for comparison, the Coulomb

Figure 2. A snapshot of equilibrated structure using explicit solvent simulations to calculate the osmotic pressure of NaCl solutions at 4 m.

Figure 3. Effective potentials of (a) Naþ�Cl� as well as (b) Naþ�Naþ and Cl��Cl� at infinite dilution derived from explicit solvent simulations. The
red dashed line shows the Coulomb potential for εr = 71.9 corresponding to SPC/E water. The (cumulative) errors in the PMF that originate from the
errors of constraint force are also displayed.



1919 dx.doi.org/10.1021/ct2001396 |J. Chem. Theory Comput. 2011, 7, 1916–1927

Journal of Chemical Theory and Computation ARTICLE

interaction for a dielectric constant of εr = 71.9 (SPC/E water
model).
2.3. Concentration-Dependent Dielectric Constants. The

potentials of mean force determined as described in the above
paragraph—which by construction include the effect of the
solvent on the ion�ion interactions—can be used as effective
pair potentials for ions in implicit solvent simulations. However,
at finite concentrations of aqueous NaCl solutions, water mol-
ecules will feel the fields of several ion pairs at the same time, and
their orientational fluctuations will be suppressed. It has been
found that this effect becomes important for NaCl solutions with
a concentration above 0.5 M,28,30 and it would lead to a break-
down of additivity of effective ion potential based on the
potentials of mean force (an additional effect of multi-ion
correlations will be discussed later in the paper). The effect
of the ion concentration on the water molecules can be
accounted for with an ion-concentration-dependent dielectric
permittivity εE(c).

28,29 We determined εE(c) (of the water
molecules) at concentrations of 0.5 m, 0.7 m, 1 m, 2 m, 3 m,
4 m, and 5 m via explicit solvent simulations from the fluctua-
tions of the total dipole moment of the solvent molecules.35

Simulations at 1 m, 2 m, 3 m, 4 m, and 5 m were performed for
20 ns. For the concentrations of 0.5 m and 0.7 m, simulations
were performed for 40 ns. εE as a function of salt concentration is
displayed in Figure 4. It is not surprising that εE decreases with
the increasing salt concentration because the orientational
fluctuations of water become smaller at higher salt concentra-
tions. Our results agree well with previous simulations by Hess
et al.29 and Kalcher and Dzubiella.30 For all concentrations, the
atomistic simulations slightly overestimate the effect of adding
salt to the solutions; i.e., compared to experimental results, the
dielectric constant is slightly too low, with a maximum deviation
of 13%.
The concentration-dependent dielectric permittivity can be

used to correct the effective ion�ion interaction potentials over
the whole range for the dependence on the salt molality c:28

Vtotalðr, cÞ ¼ VshortðrÞ þ Vcoulðr, cÞ

¼ VshortðrÞ þ q1q2
4πε0εEðcÞr ð4Þ

The dielectric permittivity dependent effective potentials in
eq 4 were applied to the implicit solvent simulations, with the
εE(c) calculated from explicit solvent simulations.

3. COMPUTATIONAL DETAILS

3.1. Explicit Solvent Simulations. All explicit solvent simula-
tions were carried out using molecular dynamics simulation
package GROMACS 4.0.7.36 Simulations were performed under
constant temperature T (298 K) and pressure P (1 bar) condi-
tions using a Berendsen thermostat and a Berendsen barostat37

with a coupling time of 0.1 ps. Particle Mesh Ewald (PME)38 was
applied to treat the electrostatic interactions with a grid spacing
of 0.12 nm, a PME order of 4, and a real space cutoff of 0.9 nm.
On the other hand, the cutoff distance of Lennard-Jones inter-
actions was set as 0.9 nm. In addition, long-range dispersion
correction was applied for energy and pressure. The integration
time step was set as 4 fs, and the neighbor list was updated every
five steps.
The SPC/E model was used for water molecules in all explicit

solvent simulations, with bond lengths and angles constrained
using the SETTLE algorithm.39 On the other hand, the para-
meters of Lennard-Jones potentials for Naþ and Cl� were taken
from the Kirkwood�Buff force field (KBFF) presented in the
paper of Weerasinghe and Smith.40 The geometric combination
rule was used for van der Waals interactions between different
types of atoms in the system. However, a scaling factor of 0.75
was added to the interactions between the cations and oxygen
atoms in water molecules, as presented in the paper of Weer-
asinghe and Smith.
3.2. Implicit Solvent Simulations. In all implicit solvent

simulations, stochastic dynamics with a friction coefficient of
1.0 ps�1 was used, and these simulations were performed in the
NVT ensemble with the average volume of corresponding
explicit solvent simulations. The initial structures of the implicit
simulation at various concentrations were derived from the final
structure of the corresponding explicit solvent simulations. By
using the effective potentials between ions in the implicit solvent
simulation, the solvent degrees of freedom are averaged, and the
osmotic coefficient of NaCl solution at various concentrations
could be calculated:

φ ¼ P
Pideal

¼ K � Ξ

K
ð5Þ

where K is the kinetic energy and Ξ is the virial of the ions.29

3. RESULTS AND DISCUSSION

In the present work, we evaluate the transferability of the
implicit solvent ion (NaCl) model from parametrization at
infinite dilution to a wide range of concentrations, from 0.5 m
to 5 m. To this end, we study the correspondence with atomistic
reference simulations in terms of both structural as well as
thermodynamic properties, in this case, the osmotic coefficient,
a thermodynamic quantity which is sensitively related to the
structure of the solution. It is a measure of the strength of the
effective interactions between ions in solution and depends
sensitively on the ion�ion coordination. At first, we compare
osmotic coefficients of NaCl solutions obtained from explicit-
solvent atomistic simulations (converting osmotic pressures to
osmotic coefficients viaΦ = P/Pideal; see eq 5) and from implicit
solvent simulations with experimental data,41 as shown in
Figure 5. One can see that the force field parameters we used
in explicit solvent simulations are able to reproduce the experi-
mental osmotic coefficient accurately over a wide range of salt
concentrations, especially below 4 m. This is consistent with the

Figure 4. The equilibrium concentration dependent dielectric permit-
tivity εE as a function of NaCl concentrations, calculated from explicit
solvent simulation of SPC/E water model.



1920 dx.doi.org/10.1021/ct2001396 |J. Chem. Theory Comput. 2011, 7, 1916–1927

Journal of Chemical Theory and Computation ARTICLE

previous study28,42 that this force field could reproduce the
experimental results41,43 for osmotic coefficients and activity
coefficients. The concentration-dependent implicit solvent mod-
el reproduces the general behavior of the osmotic coefficient
compared with the atomistic simulations, although we should
note that with increasing ion concentration the deviation be-
comes larger—and between ∼0.75 m and ∼3 m one finds a
qualitative disagreement. Here, the implicit-solvent osmotic
coefficient is greater than 1, whereas it is less than 1 in the
atomistic simulations; i.e., the osmotic pressure of the implicit
solvent system is greater than that of an ideal solution, while the
atomistic/experimental osmotic pressures are smaller than that
of an ideal solution. We will discuss the correspondence between
implicit solvent and explicit solvent osmotic pressures again later
in this paper, where we will show that these implicit solvent
osmotic coefficients are extremely sensitive to tiny changes in the
ion�ion interaction potential. The results of the implicit solvent
ion model agree well with the work of Kalcher and Dzubiella,30

where osmotic coefficients of atomistic simulations were com-
puted with ion potentials of mean force and concentration
dependent dielectric constant via a virial route. To illustrate the
effect of the concentration dependent εE(c) on the implicit solvent
model, the osmotic coefficients of uncorrected (with permittivity
of pure SPC/E water) implicit solvent simulations are also
displayed in Figure 5 (dashed pink line). For these simulations
with the dielectric constant of SPC/E water, we will from now on
use the label “implicit ε(0)” while we will label the model with
concentration-dependent dielectric constant “implicit ε(c)”. At all
concentrations, the “implicit ε(0)” model predicts substantially
larger osmotic coefficients than the “implicit ε(c)”model, with the
difference growing with increasing ion concentration.

One might argue that the increasing deviation between the
“implicit ε(c)” model and the atomistic simulations mainly
results from multi-ion effects which should become more pro-
minent with increasing ion concentration and which are not
captured by a concentration dependent εE(c). To investigate this
more closely, we estimated the magnitude of various sources for

errors in the osmotic coefficients in the implicit solvent simula-
tions. We first estimate the error in the kinetic energy and the
virial which enter eq 5—including the influence of the thermo-
stat settings on the kinetic energy. The accuracy of the osmotic
coefficient computation is 0.002 for 0.7 m and 0.001 for the
remaining concentrations. The accuracy is much higher than the
osmotic coefficient differences between atomistic and CG levels
of resolution. A more important source of error is the accuracy of
the PMF calculation. The PMF for all ion pairs (Naþ�Cl�,
Naþ�Naþ, and Cl��Cl�) were obtained by integrating the
average constraint force at a large number of ion distances. The
error in the average constraint force accumulates to an error in
the resulting PMF indicated in Figure 3. As the osmotic
coefficient is very sensitive to the ion parameters or the effective
potentials, the cumulative errors in the PMF may have remark-
able influence on the osmotic coefficient of the implicit solvent
model. To estimate the magnitude of this, we computed two
limiting cases, a PMF� (PMFminus the error at each point) and
a PMFþ (PMF plus the error at each point) for each of the three
ions pairs (Naþ�Cl�, Naþ�Naþ, and Cl��Cl�) and deter-
mined the respective short-range (tabulated) potentials (Vshort,
eq 3). With these “error estimated” effective potentials, we
performed implicit solvent simulations (again with concentra-
tion-dependent dielectric constant) and determined the osmotic
coefficients. The results are shown in Figure 5 (indicated as
“implicit ε(c) (errorþ)” and “implicit ε(c) (error�)”). We are
aware that this procedure is not a stringent estimation of the error
of the osmotic coefficients; nevertheless, it nicely illustrates that
even a small error (the PMF calculations had been carried out
very accurately) in the pair potentials of mean force between the
two ions may have a very big effect on the osmotic behavior of the
implicit solvent model. The “implicit ε(c) (errorþ)” and “im-
plicit ε(c) (error�)” models are slight variations (within the
error bars of the underlying potentials of mean force) of the
“implicit ε(c)” model which are slightly less or more attractive
over the entire range of the short-range potential Vshort. It is
interesting that the osmotic coefficients obtained from the
“implicit ε(c) (error�)” simulations are very close to the
atomistic and experimental results at all concentrations up to
4 m, while the osmotic coefficients of the “implicit ε(c)
(errorþ)” simulations are very close to those obtained with the
uncorrected “implicit ε(0)” model. This finding shows that the
osmotic coefficient is a highly sensitive thermodynamic property,
and in implicit-solvent ion models it strongly depends on the
ion�ion effective potentials. It also shows that it is difficult to
assess the quality of a CG ion model on the basis of osmotic
behavior alone, since for example the “implicit ε(c) (errorþ)”
and the uncorrected “implicit ε(0)” models exhibit almost the
same osmotic behavior but for completely different reasons and
with very different consequences on structural properties, as we
will show below. Here, we would like to point out that even
though the osmotic coefficient alone might not be a good
measure to assess the agreement with the underlying atomistic
model, it is nevertheless a crucial property in force field para-
metrization. The osmotic behavior strongly depends on the ion
types, and ion specific force fields (both with explicit and implicit
solvent) should reproduce these differences between the ions.

The osmotic coefficient is closely linked to the structure of the
ion solution (see, e.g. ref 30); thus we compared the structural
properties obtained in the explicit and implicit solvent (“implicit
ε(c)” and “implicit ε(0)”) simulations. Figure 6 shows the radial
distribution functions (RDFs) between Naþ and Cl� in these

Figure 5. Osmotic coefficients of NaCl solutions from the explicit
solvent model (black full triangles), from the implicit solvent model with
a concentration-dependent dielectric constant (red full squares, label
“implicit ε(c)”), the implicit solvent with a pure water dielectric constant
(pink full triangles, dashed line, label “implicit ε(0)”), as well as
experimental data (empty black triangles).41 The osmotic coefficients
computed with effective potentials using error estimation (as discussed
in the text; green and blue symbols, denoted as “implicit ε(c) (errorþ)”
and “implicit ε(c) (error�)”, respectively) are also displayed.
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simulations at concentrations of 0.5 m, 1 m, 3 m, and 5 m. At
relatively low concentrations of 0.5 m and 1 m, the first peaks
(contact ion pairs) of the “implicit ε(c)” Naþ�Cl� RDFs agree
very well with explicit solvent simulations, while the second
peaks (solvent shared ion pairs) are slightly lower compared to
explicit solvent simulations. The effect of the concentration
dependent permittivity can be best seen by comparing to the
implicit solvent simulations with the permittivity of pure SPC/E
water (“implicit ε(0)” model), shown by the dashed magenta
lines in Figure 6, which severely underestimate the first peaks of
the Naþ�Cl� RDFs.

In Table 1, we show the Naþ�Cl� coordination numbers in
the contact minimum (0�0.35 nm) and the solvent shared
minimum (0.35�0.59 nm) for explicit, corrected, and uncor-
rected implicit solvent simulations, which give a quantitative
description of the structure information of NaCl solution at

different concentrations. These numbers quantify the qualitative
observation made above, that the structural agreement between
the explicit solvent and implicit solventmodels is good after using
a concentration-dependent dielectric constant. The uncorrected
“implicit ε(0)” model, where the larger dielectric permittivity
weakens the interaction between Naþ and Cl� ions, severely
underestimates the coordination numbers of the first peak at all
concentrations, and this effect becomes stronger with an increase
in concentration. For the second peak in the RDF, these effects
are much weaker. Overall, these results confirm that the use of a
concentration-dependent dielectric constant εE(c) makes the
implicit solvent model which had been parametrized at infinite
dilution transferable to a wide range of concentrations.

Figure 6 (for 1 m concentration) and Figure S1 in the
Supporting Information show the Naþ�Cl� RDFs obtained
with the “implicit ε(c) (errorþ)” and “implicit ε(c) (error�)”

Table 1. The Naþ�Cl� Coordination Numbers in the Contact Minimum (0�0.35 nm) and the Solvent Shared Minimum
(0.35�0.59 nm) for Explicit Solvent Simulations and Simulations with the “implicit ε(c)” and “implicit ε(0)” Models

0.00�0.35 nm 0.35�0.59 nm

explicit

implicit

ε(c)

relative

difference (%)

implicit

ε(0)

relative

difference (%) explicit

implicit

ε(c)

relative

difference (%)

implicit

ε(0)

relative

difference (%)

0.5 m 0.053 0.056 5.7 0.045 15.1 0.359 0.349 2.8 0.329 8.4

0.7 m 0.079 0.079 0.0 0.060 24.1 0.489 0.461 5.7 0.435 11.0

1 m 0.106 0.111 4.7 0.080 24.5 0.648 0.622 4.0 0.584 9.9

2 m 0.212 0.233 9.9 0.148 30.2 1.149 1.094 4.8 1.051 8.5

3 m 0.337 0.382 13.4 0.217 35.6 1.580 1.499 5.1 1.488 5.8

4 m 0.492 0.528 7.3 0.291 40.9 1.950 1.823 6.5 1.897 2.7

5 m 0.656 0.669 2.0 0.367 44.1 2.262 2.111 6.7 2.280 0.8

Figure 6. The radial distribution functions (RDFs) of Naþ�Cl� in explicit, implicit and uncorrected implicit solvent simulations at different
concentrations. The RDF of Naþ�Cl� from computation with effective potentials using the error estimate of the potentials of mean force (denoted as
“implicit ε(c) (error�)” and “implicit ε(c) (errorþ)”; see text) for 1 m is also displayed.
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models. Note that despite the fact that the osmotic coefficients
from these models are drastically different (see Figure 5), the
structure appears to be hardly affected while the uncorrected
“implicit ε(0)” (which leads to similar osmotic coefficients as
“implicit ε(c) (errorþ)”) gives a rather different structure, espe-
cially in the first coordination shell. These observations show that
even though the osmotic coefficient is intimately linked to the
electrolyte structure (see Kalcher and Dzubiella30) and can be
reproduced by a structure-based (i.e., pair-PMF based) implicit
solvent model, it is very sensitive to errors in the PMF. In our
particular example, we have mimicked a systematic error by
generating—within the error bars of the PMF calculation—
slightly more attractive (model “implicit ε(c) (error�)”) or
slightly more repulsive (model “implicit ε(c) (errorþ)”) interac-
tion potentials. The simulations with these modified interaction
potentials show that reproducing electrolyte structure and a
related thermodynamic property such as the osmotic coefficient
may depend differently on different aspects of the interaction
potential, namely, the short-ranged attraction in the different
minima of Vshort versus the overall attraction which is dominated

by the tail of the potentials (mainly electrostatic interaction). This
is confirmed if one looks at the Kirkwood�Buff integral, i.e., the
integrated ion�ion radial distribution function (with all ions
treated as indistinguishable)—a property that establishes the link
between osmotic behavior, association, and structure (data shown
and in more detail discussed in the Supporting Information). For
this property, we see a correspondence between the different
implicit solvent electrolyte models and the atomistic simulations,
which is very similar to the osmotic coefficient.

The above results also show that it is possible to obtain equally
good structural agreement, in this case, a good representation of
the electrolyte structure, with different potentials—even though
they lead to different thermodynamic behaviors. This is an
important observation in the context of transferability of reduced
resolution models since the aim of a well transferable model is
often not in perfect agreement with a reference at a single state
point but rather in reasonable agreement (both structurally and
thermodynamically) for a range of state points. The results in the
“implicit ε(c) (error ()” models show that this can in principle
be achieved without entirely sacrificing structural agreement.

Figure 7. The radial distribution functions of Naþ�Naþ and Cl��Cl� in explicit, implicit, and uncorrected implicit solvent simulations at 0.5 m, 1 m,
and 5 m concentrations of NaCl solutions (labels and line colors as in previous figures).
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As discussed above, the deviations of the osmotic coefficient
obtained by the implicit solvent model from the explicit solvent
reference keeps increasingwith the increasing concentration (even
for the “implicit ε(c) (error�)” set of potentials which reproduces
the atomistic osmotic coefficients at low concentrations very well).
They are most likely due to higher order ion�ion correlations
which are not captured by a concentration-dependent εE(c),
which only accounts for the changes in the solvent behavior with
increasing ion concentration. To better understand this, we
investigated the structure of like-charged ion pairs, i.e., Naþ�Naþ

and Cl��Cl� RDFs, in explicit and all implicit solvent models,
which are displayed in Figure 7 and Figure S2 (in the Supporting
Information) for selected concentrations. It is not surprising that at
the relatively low concentrations of 0.5 m and 1 m, both
Naþ�Naþ and Cl��Cl� RDFs show good agreement between
explicit and implicit solvent simulations. At higher concentrations
(see, for example, the 5 m case), the implicit solvent model
(“implicit ε(c)”) underestimates the first peak and overestimates
the second peak of theNaþ�NaþRDF, and theCl��Cl�RDF is
overstructured compared to the explicit solvent reference. In the
explicit solvent reference, the Cl��Cl� RDF exhibits a shoulder
before the first peak at 5 m, which indicated that at these high
concentrations, special configurations (most probably involving
more than two ions) start to play an important role. Since these
configurations had not been accounted for in the parametrization
of the implicit solvent model, they can hardly be reproduced and
set a limit to what we can expect in terms of transferability of the
model to higher concentrations. Figure 7 also displays the like-ion
RDFs for implicit solvent simulations with the permittivity of pure
water, which shows that the transition from εE(0) to εE(c) has a
different effect on the Naþ�Naþ and Cl��Cl� structures (also

compared to the Naþ�Cl� structure). The Cl��Cl� structure is
hardly affected by the change in dielectric constant, while the first
peak of the Naþ�Naþ structure is strongly affected (we provide
tables with the corresponding coordination numbers in the
Supporting Information). Since we know already that the di-
electric constant has a strong effect on Naþ�Cl� (contact) pairs,
these results indicate that for higher concentrations theNaþ�Naþ

structure is influenced by higher order ion correlations involving
more than two ions, possibly including Cl� ions.

The RDF of like ions reflects the fact that reducing the
dielectric permittivity accounts for the change in solvent proper-
ties; i.e., the long-range attractive interactions need to be adapted
accounting for the reduced dielectric screening by the water. At
low ion concentrations, this is sufficient, and the effective
ion�ion potentials are perfectly additive and transferable. The
biggest effect of the reduced screening will be on the close
(oppositely charged) contact ion pairs, i.e., the first peak in the
Naþ�Cl� RDFs (as observed in Figure 6). One could however
argue that for like-charged ion pairs one would rather expect a
reduced repulsion at higher concentrations because of multi-ion
correlations (mediated interactions through nearby counterions,
for example). When these multibody effects between the ions
start to play a role, direct pairwise additivity of the effective
potentials breaks down. The reduced ion�ion repulsion at short
distances would be an effect that counteracts the reduced di-
electric screening when using ε(c), which explains why the
“implicit ε(0)” shows a different behavior for the first peak of
the Naþ�Naþ RDF compared to the “implicit ε(c)” (see
Figure 7). Therefore, the explicit hydration effects of ions within
short range at high concentrations cannot be simply described by
only applying a concentration-dependent dielectric constant

Figure 8. Radial distribution functions of Naþ�Naþ and Cl��Cl� in explicit, “implicit ε(c)”, and PMF-scaled implicit solvent simulations at 3 m and
5 m concentrations of NaCl solutions. Scaling factors γ of 0.9, 0.8, and 0.7 were used.
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εE(c), and we probably need a second parameter to take effects
on Naþ�Naþ and Cl��Cl� interactions into account.

In the following, we will describe two possible approaches
(which wewill label “PMF-scaled” and “RDF-refined”) to improve
the transferability of the implicit solvent electrolyte model to very

high concentrations. In the first approach, denoted as “PMF-
scaled”, wemade an attempt to adapt the (short-range) interaction
between Naþ�Naþ and Cl��Cl� pairs since—as discussed
above—the repulsion between like ions at short distances in
solutions at high concentration is possibly reduced (compared to
lower concentrations). This we did by scaling (down) the PMF
that is the basis of the effective pair potential by a factor γ (we will
discuss other possibilities to reduce the like-ion repulsion below).
Figure 8 displays the RDF of Naþ�Naþ and Cl��Cl� pairs in
explicit, normal “implicit ε(c)”, and PMF-scaled implicit solvent
simulations at concentrations of 3 m and 5 m. Scaling factors
γ for both Naþ�Naþ and Cl��Cl� PMFs in the range of 0.9 to
0.7 were used. This new model with reduced short-range
repulsion between like-charged ion pairs shows only a slightly
better agreement of the Naþ�Naþ and Cl��Cl�RDFs with the
explicit solvent simulations (see Figure 8).

The Naþ�Cl� RDFs are not affected at all by the change
(data not shown). More importantly, these modifications have a

Table 2. Osmotic Coefficients of NaCl Solutions at 3 m and
5 m Concentrations Calculated from Explicit Solvent and
Different Implicit Solvent Simulations (“implicit ε(c)”,
“PMF-scaled” (γ = 0.8), and “RDF-refined” as Described in
the Text)

explicit implicit PMF-scaled RDF-refined

0.5 m 0.890 0.964 0.939

1 m 0.935 1.035 0.988

3 m 1.069 1.339 1.060 1.204

5 m 1.101 1.654 1.190 1.427

Figure 9. Radial distribution functions of Naþ�Cl�, Naþ�Naþ, and Cl��Cl� in explicit, “implicit ε(c)”, and “RDF-refined” implicit solvent
simulations at 1 m, 3 m, and 5 m concentrations of NaCl.
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large effect on the osmotic behavior of the system, reducing the
osmotic coefficient and bringing it much closer to the values of
the atomistic simulations, as can be seen in Table 2. In fact, the
osmotic coefficient can be used to determine the optimal choice
for the exact value of the scaling parameter γ. In our case, γ = 0.8
gives the best fit of atomistic osmotic coefficient at 3 m and 5 m.
By rescaling the entire PMF before splitting the interaction into a
short-range and a long-range electrostatic part (eq 3), we have
reduced the overall repulsion in the range of the short distances
(while the long-range Coulomb interactions beyond the cutoff
remain as before). This appears to be a quite ad hoc approach to
account for multi-ion correlation, and we are aware that we
showed already that the osmotic coefficient alone is a weak
criterion for a good model. Nevertheless, we show that we can
employ this ad hoc but physically justifiable additional parameter
to improve the osmotic behavior at high ion concentrations
without corrupting the structural properties of the model.
Alternative to the above approach, we tried two other scaling
methods, thus providing three possible ways of modifying the
ion�ion repulsion of like ion pairs: (i) We have reduced only the
short-range interaction Vshort (scaled the tabulated potential).
(ii) We have reduced only the Coulombic contribution
(repulsion) to the interaction between like ions. (iii) We have
reduced the short-range total interaction. The latter is done by
scaling the PMF as described above. It appears that the PMF
scaling gives the best results among these attempts, both struc-
ture-wise and in terms of osmotic coefficient. With this additional
(rather arbitrary but physically justifiable) scaling factor, the
implicit solvent ion potentials could be made transferable over
the entire range of concentrations, giving a good correspondence
between atomistic reference and implicit solvent simulations both
in terms of structure and osmotic coefficient.

One might argue that with these scaling parameters one ends
up reparameterizing the implicit solvent model for higher con-
centrations. However, as opposed to generating a series of
independent models for each state point, this approach uses in
principle the same potentials as before, which consist of a short-
range/ion-specific part and (concentration dependent) long-
range Coulomb interactions, and just modifies the strength of
these interactions accordingly to account for multibody effects.

In a second approach to make the “implicit ε(c)” model
transferable to very high concentrations, we focus on the
structure of the like-charged ion pairs since these RDFs appear
to be most affected by the limited transferability of the model
(see Figure 7), even for models with correct osmotic behavior
(see Figure 8). Following the “structure-based” coarse graining
methodology,12,44 we refine the ion�ion interactions by taking
the electrolyte structure from atomistic simulations as a refer-
ence. Iterative methods such as iterative Boltzmann inversion
(IBI) or inverse Monte Carlo (IMC) are methods that refine CG
potentials such that radial distribution functions of the reference
system are reproduced.12,44 Here, we do not iteratively refine the
Naþ�Cl�, Naþ�Naþ, and Cl��Cl� potentials until the re-
spective radial distribution functions are exactly reproduced.
Instead, we employ a single refinement step where we adjust
the concentration-dependent implicit solvent model at 3 m to
better reproduce the corresponding RDFs. That means we add a
correction term to Vshort that accounts for the difference in the
RDF obtained with the implicit solvent model (g“implicit ε(c)”(r))
compared to the reference RDF (gref(r)). This correction term is
kT ln(g“implicit ε(c)”(r)/gref(r)). This new set of potentials, from
now on labeled as “RDF-refined”, which is based on the pair

PMFs at infinite dilution and refined at 3m concentration, is now
applied to simulations at a wide range of NaCl concentrations
from 0.5 m to 5 m. Figure 9 shows the radial distribution
functions of Naþ�Cl�, Naþ�Naþ, and Cl��Cl� in explicit,
“implicit ε(c)”, and “RDF-refined” implicit solvent simulations at
1 m, 3 m, and 5 m. It shows that at 3 m, all of the ion�ion RDFs
in the “RDF-refined” model reproduce the corresponding RDF
at the atomistic explicit solvent level very well. At 5 m, the “RDF-
refined” model still underestimates the first peak of the
Naþ�Naþ RDF and overestimates the first peak of the
Cl��Cl� RDF, but the electrolyte structure has improved a
lot. However, at 1 m, the first peak of the Naþ�Naþ RDF is now
overestimated. The first peak of the Cl��Cl� RDF is also
underestimated, and the agreement with the explicit solvent
reference has become worse compared to that with the “implicit
ε(c)” model. This means that by enforcing structural agreement
at a specific high ion concentration, we have “lost” transferability
to low concentrations. Table 2 also shows the osmotic coeffi-
cients obtained with the “RDF-refined” model at 0.5, 1, 3, and
5 m. With great improvement of the electrolyte structure at 3 m,
the osmotic coefficient also improves considerably at 3 m. In
general, the osmotic coefficients of the “RDF-refined”model are
lower than the one of the “implicit ε(c)” model, thus in better
agreement with atomistic reference data. However, we see in
Figure 9 that this does not imply better structural agreement at all
concentrations. These results show that in our electrolyte
systems the effective potentials optimized with one iteration at
one specific concentration/state point are not very well transfer-
able to other concentrations/state points. Thus, if one aims at a
well-structured electrolyte solution at a very high concentration
obtained with an implicit solvent model, one has to apply the
correction (possibly with more than one iteration step) at each
concentration individually. Even though this contradicts the
initial intention to have one model that is transferable to the
entire range of concentrations this approach nevertheless has
one advantage compared to “traditional” iterative Boltzmann
inversion: instead of starting the iterative process individually at
each concentration, here all potentials are based on the same set
of pair PMFs obtained at infinite dilution and thus systematically
related. The iterations apply just a minor correction to these
effective potentials. This could be an advantage in complex
systems with many different interactions where in principle
structure-based methods should converge to a unique solution.45

In practice, however, convergence problems are quite common,
and the initial guess and the exact method used can influence the
set of potentials obtained finally.5,20,46

4. CONCLUSIONS

Transferability to different state points remains an ongoing
challenge in the development of reduced-resolution (coarse
grained or implicit solvent) simulation models. While effective
potentials for hydrophobic entities in aqueous solution parame-
trized at “infinite” dilution are transferable over a wide range of
mixture compositions,22 interactions between chargedmolecules
cannot be immediately transferred to higher concentrations since
the ion concentration affects the solvent, leading to different
dielectric properties. In the present paper, we have inves-
tigated how effective implicit solvent potentials for ions in
aqueous solution can be made transferable to a wide range of
ion concentrations in a way that both the osmotic behavior and
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the electrolyte structure of atomistic, explicit solvent reference
simulations are reproduced.

We have studied concentration-dependent effective ion
potentials parametrized on the basis of ion�ion pair potentials
of mean force at infinite dilution in explicit solvent simulations
which are split into a short range (ion-specific, not concentration-
dependent) and a long range (electrostatic, with a concentration-
dependent dielectric permittivity).28,29 As shown previously by
Hess et al., these potentials are transferable over a certain range of
concentrations and reproduce experimental osmotic coefficients
well. In the present paper, we studied more closely the con-
tributions of long-range and short-range parts of the effective
interactions to osmotic behavior and electrolyte structure to gain
a better understanding between thermodynamic and structural
properties obtained with these effective potentials and their
transferability within an even wider range of concentrations, up
to 5 m.

We observe that the use of a concentration-dependent di-
electric constant drastically improves the correspondence of the
pair structure in the implicit solvent model with the explicit
solvent reference compared to using the higher dielectric per-
mittivity of pure water (at the same time also bringing the
osmotic coefficients closer). By making small “artificial” varia-
tions to the effective potentials (within the error bars of the initial
potential of mean force calculation), we could also show that,
even though the osmotic coefficient is intimately linked to the
electrolyte structure and can be reproduced by a structure-based
(i.e., pair-PMF based) implicit solvent model, it is very sensitive
to variations in the PMF, making it difficult to judge the quality of
a reduced resolution model solely on the basis of this thermo-
dynamic property. It is even possible to generate three (or more)
implicit solvent models out of which two show essentially the
same osmotic behavior for very different reasons (and with
different electrolyte structures), while two others more or less
exhibit the same structure (in good agreement with the explicit
solvent reference) but a large variation in osmotic coefficients.
This shows that reproducing electrolyte structure and a related
thermodynamic property such as the osmotic coefficient may
depend differently on different aspects of the interaction poten-
tial, namely, the short-ranged attraction in the different minima
of Vshort versus the overall attraction, which is dominated by the
tail of the potentials (mainly electrostatic interaction). This is an
important observation in the context of transferability of reduced
resolution models since the aim of a well transferable model is
often not in perfect agreement with a reference at a single state
point but in rather reasonable agreement (both structurally and
thermodynamically) for a range of state points. Our results show
that this can in principle be achieved without entirely sacrificing
structural agreement.

At very high concentrations, multi-ion correlations start to
play a role in addition to the changed solvent behavior. These
effects are by construction not accounted for by the infinite
dilution pair potential (based on two ions) and the concentra-
tion-dependent dielectric permittivity (which only covers the
concentration effect on solvent properties). After analyzing the
explicit-solvent electrolyte structure at high ion concentrations,
we employed two methods to make the effective ion potentials
even further transferable: in a first approach, we reduced the
repulsion between like-charged ion pairs at high concentrations
(“PMF scaling”). The need to do this can be explained from the
fact that the first peak of like-charged ion pair correlation
functions in explicit solvent simulations is higher than one

would expect due to electrostatic repulsion in water with
reduced dielectric screening. Thus, electrostatic repulsion is
counterbalanced by other effects in the system (for example,
bridging by additional counterions or specific water molecules),
which need to be at least approximately accounted for. The
model with reduced dielectric repulsion can be parametrized to
reproduce atomistic osmotic coefficients and gives a reasonable
representation of electrolyte structure also at very high ion
concentrations. Contrasting this rather “thermodynamic prop-
erty-based” route, we also followed a “structure-based” ap-
proach where we apply a single refinement step of the implicit
solvent ion potentials targeting the electrolyte structure at one
concentration (e.g., 3 m). Such a procedure results in a set of
interaction functions for all ion pairs which give a very good
representation of the electrolyte structure at this particular
concentration and also yield a better agreement in the osmotic
coefficient. However, these structurally refined potentials are
not highly transferable (only to very small variations in the
concentration). That means one would have to apply the
refining procedure individually at different concentrations
and would obtain a family of interaction potentials which are
related since they rely on the same initial infinite dilution
pair PMFs.

The present paper illustrates the difficulty to parametrize a
transferable reduced resolution model for aqueous electrolyte
solutions, especially if one aims at both good structural and good
thermodynamic agreement with an explicit solvent reference
system up to very high salt concentrations. It, however, also shows
that it is possible to obtain a well transferable model by not
adhering to a strictly “thermodynamics-based” or “structure-based”
route but instead employing elements of both approaches—
basing the interactions on the pair structure at infinite dilution
and making it transferable to higher concentrations with thermo-
dynamically justified scaling constants.
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ABSTRACT: A coarse-grained potential that could accurately describe the overall conformational landscape of proteins would be
extremely valuable not only for structure prediction but also for studying protein dynamics, large conformational motions, and
intrinsically disordered systems. Here, we assessed the quality of the OPEP coarse-grained potential by comparing the reconstructed
free-energy surfaces (FESs) of two prototypical β-hairpin and R-helix peptides to all-atom calculations in explicit solvent. We found
remarkable agreement between the OPEP FES and those obtained using atomistic models, despite a general overstabilization of
R- and β-structures by the coarse-grained potential. The use of advanced sampling techniques based on metadynamics and parallel
tempering guaranteed a thorough exploration of the conformational space accessible to the two peptides studied.

1. INTRODUCTION

Computer simulations have been proven over the years to be a
powerful instrument for getting valuable insight into many
biological, physical, and chemical processes. However, many
interesting phenomena in these fields of science occur in a time
scale—and involve systems with a dimension—that is still not
easily treatable in a simulation at atomistic resolution. To bridge
the gap between simulation and reality, many different advanced
computational techniques have been proposed.1 Among these is
the development of coarse-grained (CG) force fields. This
approach consists in representing a configuration of the system
in terms of beads at lower resolution and developing an effective
interaction between the CG sites that preserves as much as
possible the underlying physics. The reduced number of degrees
of freedom and a smoother, more-efficient potential allow for
systems of bigger size to be simulated for a much longer time scale.

A variety of recipes for coarse-graining a system and building
an effective potential have been proposed with the aim of
studying protein structure and dynamics, lipid bilayers, nucleic
acids, surfactants or polyelectrolytes. Providing an exhaustive
review of themany existing CG force fields is beyond the scope of
this paper (see refs 2 and 3 for a comprehensive treatment of this
topic). In some cases, CG potentials have been parametrized
using thermodynamics data from simulations carried out with
higher-resolution models, either using force matching or inverse
Boltzmann techniques. In the realm of proteins, another class of
CG potentials has been developed by fitting analytical functions
on a dataset of protein structures resolved by NMR spectroscopy
or X-ray crystallography. This type of model can be extremely
effective in predicting the native form of those proteins whose
three-dimensional structure is unknown. However, since these
potentials were parametrized using information about the global
free-energy minimum alone, their capability of correctly repro-
ducing the thermodynamics of the overall conformational land-
scape of a protein is arguable.

A CG potential with such an ability would indeed have a much
greater value, because it could be used not only for structure
prediction but also for studying protein dynamics, large con-
formational changes, and systems that are intrinsically disor-
dered. In this respect, a practical way of validating a CG potential
is to quantitatively compare it with all-atom (AA) explicit-solvent
force fields. In fact, these models have been proven to accurately
describe protein conformational landscapes and to reproduce
experimental observables.4,5 In doing this type of comparison,
advanced sampling techniques should be used to guarantee a
thorough exploration of all the relevant configurations of the
proteins chosen as test subjects.

Here, we have focused onOPEP,6 which is a CG potential that
has been developed for proteins. In this model, an amino acid is
represented by six beads and the energy function has been fitted
tomaximize the energy of the native structure and an ensemble of
non-native states for a large training set including peptides and
proteins.6,7 OPEP combined with a greedy algorithm and a
structural alphabet was able to locate using a benchmark of 25
peptides with 9�23 amino acids, lowest-energy conformations
differing by 2.6 A CR root-mean-square deviation from the full
NMR structures.8 OPEP has also been applied to the amyloid
peptide Aβ16-22 and provided structural information on the
aggregates consistent with or later confirmed by other computa-
tional studies and experimental studies.9 Finally, OPEP was also
able to reproduce the two NMR conformations of the Aβ21-30
peptide in solution.10

We assessed the quality of this potential with the help of two
peptides that are prototypical examples of β- and R-structures:
the C-terminal β-hairpin of protein GB1 and the C-peptide
corresponding to the N-terminal residues of RNase A. In parti-
cular, we compared the conformational landscape sampled by a

Received: November 10, 2010
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combined metadynamics and parallel tempering algorithm11�13

using the OPEP potential and two popular AA force fields in
explicit solvent, AMBER99SB14 and OPLS-AA.15 For both the
peptides, the OPEP force field could properly reproduce the
features of the atomistic free-energy landscape, despite a general
overstabilization of the β- and R-structures, compared to the
AA models.

2. METHODS

2.1. The OPEP Potential. OPEP is based on a six-bead
representation of an amino acid, namely, the N, H, CR, CO, O
atoms and one bead or centroid for the side chain. Unlike other
CG force fields, which group heavy backbone atoms into
interaction centers,16,17 OPEP is basically an AA backbone
with CG side chains. This choice was motivated by a tradeoff
between structural resolution, CPU speed, and accuracy of the
potential energy function, and, notably, for hydrogen-bond
(H-bond) interactions.6

The OPEP energy function is defined as a sum of local,
nonbonded, and hydrogen-bonded terms. The local term in-
cludes the potential energy associated with bond stretching,
bending, and torsional angles. These parameters were modeled
on the AMBER force field18 with an additional term in the
torsional potential for the Φ and Ψ dihedral angles, which
renders realistic Ramachandran plots. The nonbonded potential
term is expressed as a sum of van der Waals interactions between
a pair of beads. This interaction can be repulsive or attractive,
depending on the specific pair of beads. The hydrogen-bond
potential has a two-body contribution and a four-body contribu-
tion. The latter represents the cooperativity of hydrogen-bond
formation and accounts for the propensity of forming different
secondary structure as a function of the amino-acid sequence. All
the OPEP potential parameters were recently refitted using a
training set of 11 protein experimental structures. This version of
the potential has been proven to correctly identify 24 native or
native-like states for 29 proteins.7 In this work, we use the OPEP
molecular dynamics (MD) code (OPEP-MD), which allows one
to efficiently perform both single-replica and replica exchange
MD simulations using the OPEP potential.19,20

2.2. Metadynamics and Parallel Tempering.Metadynamics
is an advanced sampling algorithm that relies on the introduction
of a history-dependent potential acting on a selected number of
slow degrees of freedom, dubbed collective variables (CVs).11 If
properly applied, metadynamics can both accelerate sampling
and reconstruct the free-energy surface (FES) as a function of the
CVs. In the well-tempered variant,21 the FES is obtained by
exploiting the relation

Vðs, t f ¥Þ ¼ � T þΔT
ΔT

FðsÞ þ C ð1Þ

where s represents the CVs, V(s,t) denotes the bias potential at
time t,C is an irrelevant additive constant,T is the temperature of
the system, and ΔT denotes an input parameter representing an
effective sampling temperature of the CV space.21 Furthermore,
information about the degrees of freedom, other than the CVs,
can be easily recovered from a well-tempered metadynamics
simulation. In fact, the unbiased probability distribution of a
generic function of the microscopic coordinates of the system
can be reconstructed using a recently developed reweighting
algorithm.22 This algorithm is particularly helpful whenever one

wants to quantitatively compare a simulation with experimental
observables.5

The capabilities of metadynamics can be further enhanced by
combining it with parallel tempering (PT).12 In the combined
method (PTMetaD), several independent metadynamics calcu-
lations are performed using the same set of CVs at different
temperatures. As in standard PT, configurations are swapped
from time to time, following (modified) Metropolis criteria.
PTMetaD greatly improves the performance of both PT and
single-replica metadynamics.13

2.3. Simulation Details. We simulated both the GB1
β-hairpin (GEWTYDDATKTPTVTE) and the RNase C-peptide
(AETAAAKFLRNHA) using two AA force-fields (AMBER99SB
and OPLS-AA) and the OPEP potential for a total of six indepen-
dent PTMetaD runs.
In the AA simulations, the system was explicitly solvated using

TIP3P water molecules23 in a rhombic dodecahedron box with
periodic boundary conditions. The basic details of the simula-
tions are reported in Table 1. Additional technical details can be
found in the Supporting Information.
In the AA PTMetaD runs, exchanges were attempted every 0.2

ps, whereas in the OPEP simulations the stride used was 4 ps.
Note that, in all simulations, the average probability of accepting
an exchange was ∼0.3�0.4 across the temperature range.
In the case of GB1 β-hairpin, the metadynamics bias was

applied to two CVs that describe, respectively, the formation of
the hydrophobic core and the population of the backbo-
ne�backbone hydrogen bonds associated with the β-sheet
formation. In the AA simulations, the first CV was defined as
the radius of gyration of all the heavy atoms of the backbone and
side chain of residues Trp3, Tyr5, Phe12, and Val14. In theOPEP
simulation, we included in the definition the backbone atoms
plus the beads that represent the side chains of these residues.
The second CV was defined in the same way in both the AA and
OPEP simulations as

Sβ ¼ ∑
i, j

1� ðdðOi,HNjÞ=d0Þ6
1� ðdðOi,HNjÞ=d0Þ12

ð2Þ

where d(Oi,HNj) is the distance between the backbone oxygen
atom of residue i and the backbone amide hydrogen of residue
j, d0 = 3 Å, and the summation runs over all of the pairs of residues
whose separation in sequence is greater than 4.
The two metadynamics CVs chosen for the C-peptide were

the CR radius of gyration and the population of the R-helical

Table 1. Details of the PTMetaD Simulations of GB1
β-hairpin (HPIN) and RNase C-peptide (CPEP) Using the
OPEP CG Potential and the AA Force Fields AMBER99SB
and OPLS-AAa

force field length (ns) Natom Nsolv Nrep Tmin�Tmax (K)

HPIN AMBER99SB 70 5758 5502 64 270�695

OPLS-AA 51 5758 5502 64 270�695

OPEP 660 95 0 16 300�600

CPEP AMBER99SB 17 3777 3570 64 270�650

OPLS-AA 22 3777 3570 64 270�650

OPEP 300 84 0 16 300�600
aDetails include the length of the PTMetaD run (per replica), the total
number of atoms (Natom), the number of solvent atoms (Nsolv), the
number of replicas (Nrep), and the temperature range (Tmin�Tmax).
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hydrogen bonds. This latter CV was defined similarly to Sβ,
following the example of ref 5:

SR ¼ ∑
9

i¼ 1

1� ðdðOi,HNiþ4Þ=d0Þ6
1� ðdðOi,HNiþ4Þ=d0Þ12

ð3Þ

where d(Oi,HNiþ4) is the distance between the backbone oxygen
atom of residue i and the backbone amide hydrogen of residue
iþ 4 and d0 = 3 Å. Since, for this peptide, both CVs are a function
of the backbone atoms alone, the same definition was used,
regardless of the force field.
All the AA PTMetaD simulations were performed with

GROMACS 424 equipped with PLUMED,25 and metadynamics
was coded in OPEP-MD19 in order to run PTMetaD CG simula-
tions. The metadynamics bias potential was stored on a grid and
updated every time a new Gaussian was added, using the imple-
mentation available in PLUMED. This computational trick keeps
the (additional) cost of metadynamics constant during the simula-
tion and it is particularly convenientwhenever theOPEPpotential is
used. In fact, the cost of computing the CG forces is so small that it
would become negligible, compared to the exploding cost of
summing, at everyMD step, the ever-growing number of Gaussians
deposited by metadynamics.

3. RESULTS AND DISCUSSION

3.1. GB1 β-hairpin. The C-terminal domain of the GB1
immunoglobulin binding protein corresponding to residues
41�56 is a prototypical example of β-hairpin structure. It is
one of the smallest peptides, displaying two-state behavior with a
marginally stable fold at room conditions and a fast folding time
of 6μs.26 For these reasons, thisβ-hairpin has attracted the interest
of both the experimental community26�30 and the computational
community.31�53

Although the details of the folding mechanism are still under
debate, it is well-established that folding is a two-state process, in
which the turn plays a central role, the secondary structure is
formed cooperatively, and both interstrand hydrophobic side-
chain�side-chain interactions and backbone hydrogen bonds
contribute to the β-hairpin stability. Furthermore, in a recent
study,54 the nature of the configurations belonging to the
unfolded ensemble has been investigated and these have been
found to be rather compact and dominated by non-native,
misfolded β-hairpin structures.
Despite its small size, the conformational ensemble of this

peptide appeared to be extremely heterogeneous. Capturing this
complexity by projecting the conformations on a low-dimen-
sional set of descriptors is a difficult task. Here, we chose two
order parameters that have often been used for studying this
β-hairpin:13,35,41,49 the number of backbone hydrogen bonds and
the radius of gyration of few hydrophobic residues (see the
Methods section for details). A coordinate similar to the number
of hydrogen bonds used here has been recently used to model a
stochastic dynamics on it and calculate the folding time distribu-
tion of this very same β-hairpin from all-atom replica-exchange
simulations.55

In Figure 1, we show the FES as a function of these CVs, which
were obtainedwithPTMetaDusing theOPEPCG force field and the
twoAA force fields in explicit solvent (AMBER99SB andOPLS-AA).
The free-energy landscape obtained with the OPEP potential

looked qualitatively similar to the AA profiles. The region around
five hydrogen bonds and with a radius of gyration equal to 5 Å

corresponded to the native states of the β-hairpin (see Figure 2,
basin A). A cluster analysis of the structures that populate this
basin resulted in a single cluster whose central configuration had
a root-mean-square deviation (rmsd) of 0.8 Å from the crystal-
lographic structure of the C-terminal of protein GB1.
Basin B contained two main clusters. The former was popu-

lated by configurations where the two hydrogen bonds at the
termini were broken (Figure 2, basin B1), the latter by misfolded
structures with a shifted pattern of hydrogen bonds (Figure 2,
basin B2). The folded state predicted by the AA potentials more
closely resembled the configuration of type B1. In fact, it is well-
known that, in explicit-solvent simulations, the most stable
conformation is often a “fried state”, in which the terminal
hydrogen bonds are not formed. In OPEP, the 4-body term
describing the cooperativity of the hydrogen-bond formation and
the implicit description of the solvent effects might overstabilize
the “full” β-hairpin state.
The unfolded basin corresponded to compact states (SRg= 5 Å)

with no hydrogen bonds formed (Figure 2, basin C1). Part of
the structures that belong to this basin presented a single R-helix
loop in the central region of the peptide (see Figure 2, basin C2).
Despite a remarkable, yet qualitative, agreement between the

OPEP and the AA FES, it is clear that the native basin in the
OPEP landscape at 300 K is overpopulated with respect to the
unfolded region. This contrasts both with the recent AA simula-
tions in explicit solvent and with the experimental data which
suggested that this peptide was only marginally stable at room
temperature.26,53 Tomake our comparisonmore quantitative, we
further coarse-grained our description of the β-hairpin by defin-
ing those conformations with more than one hydrogen bond
formed as being “folded” and those conformations with less than
one hydrogen bond formed as being “unfolded”. Note that, based
on our definition, we included in the “folded” basin not only
native-like structures but alsomisfolded configurations. From the
monodimensional FES F(Sβ), we calculated the free-energy
difference ΔFFU between folded (F) and unfolded (U) states
for AMBER99SB, OPLS-AA, and OPEP (see the Supporting

Figure 1. GB1 β-hairpin FES as a function of the number of hydrogen
bonds (Sβ) and the radius of gyration of the hydrophobic residues (SRg).
The top panels show the OPEP FES at 300 K (left) and 361 K (right),
and the bottom panels show the FES from AA simulations in explicit
solvent at 300 K using AMBER99SB (left) and OPLS-AA (right) force
fields. Isoenergy lines are drawn every 1.5kBT.
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Information for details). The results reported in Table 2 show
that the estimates of ΔFFU obtained with two AA models
significantly differ and that the AMBER99SB data are more
similar to the experimental value.
From F(Sβ), we also calculated the free-energy difference

ΔFTF between the transition state (T) and the folded state (F).
This would correspond to the real kinetic barrier that the system
must overcome during the unfolding, assuming that Sβ is the
ideal reaction coordinate of this process. The discrepancy
between the values predicted by the two AA models for ΔFTF
was even greater than for ΔFFU.
As expected, the overstability observedwith theOPEP potential

at 300 K could be alleviated by increasing the temperature (see
Figure 3). In the temperature range of 345�361 K, the deviation
from AA data in terms of both ΔFFU and ΔFTF was minimized.

3.2. RNase C-peptide. The C-peptide corresponding to the
first 13 N-terminal residues of Ribonuclease A has a remarkable
R-helical propensity for a system of such a small size. In
particular, according to circular dichroism experiments, the
average helicity is dependent on both temperature and pH
and exhibits a maximum at T = 276 K and pH 5.25.57 NMR
experiments58 and AA MD simulations in explicit solvent on a
mutant sequence5,59 showed that the conformational landscape

Figure 2. Characterization of the OPEP GB1 β-hairpin FES at 361 K. For each basin, the structure(s) of the most populated cluster(s) is represented.
The cluster analysis has been performed using the g_cluster tool included in the GROMACS 4 package. The method of Daura and Van Gunsteren56 was
used for clustering, with a cutoff of 1.5 Å on the backbone atoms. The root-mean-sqaure deviation (rmsd) from the crystallographic structure of the
C-terminal of protein GB1 (PDB code: 1GB1) was calculated on the backbone.

Table 2. Free-Energy Difference between Folded (F) and
Unfolded (U) States of GB1 β-hairpin (ΔFFU) and Unfolding
Barrier (ΔFTF) from PTMetaD Calculations Using AM-
BER99SB, OPLS-AA, and OPEP Force Fields

force field T (K) ΔFFU (kcal/mol) ΔFTF (kcal/mol)

AMBER99SB 300 �2.1 2.5

OPLS-AA 300 �3.4 4.7

OPEP 300 �4.5 7.9

345 �2.3 6.1

361 �1.2 5.2

Figure 3. Free-energy difference between folded (F) and unfolded (U)
states of GB1 β-hairpin (left panel) and unfolding barrier (right panel),
as a function of temperature from the OPEP PTMetaD calculations.
Dashed lines indicate the results from the AA simulations at 300 K, using
AMBER99SB (green) and OPLS-AA (red).
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of the C-peptide is characterized by an equilibrium among
different conformers. These include a set of extended coil
conformations, a set of complete R-helical configurations, and
a set of partially formed R-helical structures with a salt bridge
between the side chains of Glu2 and Arg10.
Here, we reconstructed the FES as a function of the number of

R-helical hydrogen bonds and the radius of gyration calculated
on the CR atoms (see the Methods section for details). The FES
obtained with PTMetaD, using OPEP, AMBER99SB, and
OPLS-AA potentials, are reported in Figure 4.

As for the case of β-hairpin, it is clear from Figure 4 that the
OPEP potential overstabilized R-helical conformers at 300 K.
This affected both the extendedR-helix structure (Figure 5, basinA)
and the partially helical conformation that most resembled the
crystallographic structure of the N-terminal fragment of Ribo-
nuclease A (Figure 5, basin B).
At higher temperatures, the FES obtained with OPEP looked

qualitatively similar to the AA force field landscapes. However, a
more quantitative comparison among the FES became proble-
matic, since a two-state (or multistates) behavior was not well-
defined as the temperature increased. We decided on a different
approach and calculated the propensity of each residue of the
C-peptide to form anR-helix. This was defined as the free-energy

Figure 4. RNase A C-peptide FES, as a function of the number of R-
helical hydrogen bonds (SR) and the CR radius of gyration (SRg). The
top panels show theOPEP FES at 300 K (left) and 378K (right), and the
bottom panels show the FES from AA simulations in explicit solvent at
300 K using AMBER99SB (left) and OPLS-AA (right) force fields.
Isoenergy lines are drawn every 1.5kBT.

Figure 5. Characterization of the OPEP C-peptide FES at 378 K. The basins that are more clearly recognizable at 300 K become more shallow as
temperature increases. (Details of the cluster analysis are reported in the caption of Figure 2.) The rmsd from the crystallographic structure ofN-terminal
fragment of Ribonuclease A (PDB code: 2AAS) was calculated on the backbone.

Figure 6. C-peptide helical propensity profile defined as the free-energy
difference between helical (H) and nonhelical (H

_
) states at residue

level. The secondary structure was assigned by the STRIDE algorithm.
Data were obtained by reweighting the configurations sampled during
the PTMetaD run with OPEP at 300 K (blue), 361 K (green), and
378 K (yellow); AMBER99SB at 300 K (red); and OPLS-AA at 300 K
(light blue).
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difference ΔFHH
_ between the R-helix state (H) and the states

characterized by any other type of secondary structure (H
_
). We

used the STRIDE algorithm60 to assign the secondary structure
to the conformations sampled by the PTMetaD run, and, for each
residue, we calculated ΔFHH

_ by reweighting22 the statistics
accumulated during this biased simulation. Results are reported
in Figure 6.
At 300 K, the AA force fields predicted a very similarΔFHH

_ for
each residue, with an RMSD of 0.3 kcal/mol between the two
sets of data. In contrast, at this temperature, the OPEP potential
significantly overstabilized helicity. However, the trend along the
peptide sequence was correctly reproduced, with the central
residues being the most prone to form R-helix. Also in this case,
at higher temperatures, OPEP results became quantitatively
comparable to AA data at room temperature (see Table 3). In
particular, considering OPEP ΔFHH

_ data at 361 and 378 K, the
rmsd values were 1.0 and 0.5 kcal/mol, with respect to OPLS-AA
at 300 K, and 0.8 and 0.3 kcal/mol, with respect to AMBER99SB
at 300 K.

4. CONCLUSIONS

In this paper, we used an advanced sampling algorithm to
describe the conformational landscape of two peptides that are
prototypical examples of β-hairpin and R-helical structures. We
used three different models for the force field: two with atomistic
details (AMBER99SB and OPLS-AA), and one coarse-grained
(CG) potential (OPEP). This CG force field was fitted on a
dataset of protein structures, in order to maximize the energy of
the native configuration and of an ensemble of non-native states.

Our results showed that the OPEP potential could properly
reproduce the features of the free-energy landscape obtained
with the AA explicit-solvent force fields. However, an over-
stabilization of both R- and β-structures was observed with
OPEP at 300 K. To determine the optimal OPEP temperature
that minimized the deviation from AA data at 300 K, we analyzed
the temperature dependence of the OPEP folding free-energy
difference and unfolding barrier in the case of the β-hairpin and
of the R-helical propensity profile in the case of the C-peptide.
Our results showed that the optimal temperatures were similar
for both peptides and reside in the interval of 345�360 K for the
former system and 360�378 K for the latter system. By choosing
the OPEP simulation temperature in these regions, the agree-
ment with the AA results at room temperature was of the same
quality as that obtained between the two explicit-solvent AA
models. Furthermore, it must be pointed out that, if implicit
solvation models were added in the comparison, the discrepancies

among the AA results would be even greater, at least in the case of
the β-hairpin.61 This information, along with other more-exten-
sive tests, will be used to improve the model in future versions of
the OPEP potential.

A key feature of the OPEP potential is the detailed description
of the protein backbone and the introduction of specific potential
terms accounting for backbone�backbone hydrogen bonding.
Several studies showed that the introduction of backbone direc-
tional contacts intrinsically stabilized secondary structure
elements.62�64 In order to check the validity of our results in
the case of unstructured peptides, we performed OPEP PTMe-
taD simulation of an intrinsically disordered glycine-serine block
copolypeptide (GS)8. This peptide has been recently charac-
terized by means of MD simulations with umbrella sampling,
using the OPLS potential in explicit solvent.65 Even in this case,
the results of the OPEP simulations in the temperature range
of 360�378 K were comparable with the room-temperature
AA data reported in Figure 3 of ref 65 (see the Supporting
Information).

In conclusion, here, using advanced sampling techniques, we
have shown that simulations carried out with OPEP potential at a
universal temperature close to 360 K could properly reproduce
the results obtained with atomistic models for a variety of
different systems, including ordered and disordered peptides. It
must also be noted that, thanks to the reduced representation of
the system, OPEP significantly outperforms AA simulations, in
terms of computational efficiency. This computational advantage
further increases in PT and PTMetaD simulations, because of the
fact that fewer replicas are needed to cover the same temperature
range.66 For all these reasons, the combination of the OPEP
potential with the PTMetaD sampling algorithm, introduced and
tested here for small peptides, paves the way for extending the
capabilities of molecular simulations to the study of complex
biomolecular processes such as the folding of large proteins and
protein�protein interactions.
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Table 3. RMSD of OPEPΔFHH
_ Data from AAData at 300 K,

as a Function of the OPEP Temperature

T (K) AMBER99SB (kcal/mol) OPLS (kcal/mol)

300 2.7 2.9

314 2.3 2.5

329 1.9 2.1

345 1.4 1.6

361 0.8 1.0

378 0.3 0.5

396 0.4 0.5

415 0.7 0.6

434 1.0 0.9
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Analysis of Mammalian Histidine Decarboxylase Dimerization
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Catalytic Site Topology and Function
Aurelio A. Moya-García,†,‡,|| Daniel Rodríguez-Agudo,†,||,^ Hideyuki Hayashi,§ Miguel Angel Medina,†,‡

Jos�e Luis Urdiales,†,‡ and Francisca S�anchez-Jim�enez*,†,‡

†Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Campus de Teatinos, Universidad de M�alaga, M�alaga, Spain
‡CIBER de Enfermedades Raras (CIBERER), M�alaga, Spain
§Department of Biochemistry, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan

ABSTRACT: Selective intervention of mammalian histidine decarboxylase (EC 4.1.1.22) could provide a useful antihistaminic
strategy against many different pathologies. It is known that global conformational changes must occur during reaction that involves
the monomer�monomer interface of the enzyme. Thus, the dimerization surface is a promising target for histidine decarboxylase
inhibition. In this work, a rat apoenzyme structural model is used to analyze the interface of the dimeric active HDC. The
dimerization surface mainly involves the fragments 1�213 and 308�371 from both subunits. Part of the overlapping surfaces
conforms each catalytic site entrance and the substrate-binding sites. In addition, a cluster of charged residues is located in each
overlapping surface, so that both electrostatic hotspots mediate in the interaction between the catalytic sites of the dimeric enzyme.
It is experimentally demonstrated that the carboxyl group of aspartate 315 is critical for the proper conformation of the holoenzyme
and the progression of the reaction. Comparison to the available information on other evolutionary related enzymes also provides
new insights for characterization and intervention of homologous l-amino acid decarboxylases.

1. INTRODUCTION

Mammalian histidine decarboxylase (HDC) is a pyridoxal
50-phosphate (PLP)-dependent enzyme that is responsible for
the biosynthesis of histamine. This biogenic amine is involved in
several physiological responses (e.g., immune responses, gastric
acid secretion, neurotransmission, etc.), and consequently, it has
been implicated in many different human pathologies such as
anaphylaxis, peptic ulcers and other inflammatory responses,
basophilic leukemias, osteoporosis, schizophrenia, rare diseases
such as histidinemia (ORPHA2157), and mast cell related rare
diseases such as the different mastocytoses (ORPHA98292,
ORPHA66646, ORPHA2467, ORPHA98848, ORPHA98849,
and ORPHA98850). In spite of the importance of these diseases,
HDC has not been fully characterized. Thus, most of the current
antihistaminic strategies tend to interfere with histamine recep-
tion by target cells (i.e., histamine receptors) rather than with
histamine synthesis in histamine-producing cells. However, the
recent development of HDC knock-out animals suggests that HDC
activity is itself important for the development and proliferation of
the cells that produce it,1 indicating that selective intervention of
histamine synthesis could be a straightforward pharmacological
strategy for some of the histamine-related pathologies.

Mature histidine decarboxylase purified frommammalian tissues
has been reported as a dimer where eachmonomer (53�58 kDa) is
processed from a carboxy-elongated 74 kDa precursor.1,2 It has been
demonstrated that the first 476 residues of the protein can support
the enzymic activity.3 We have characterized the catalytic mechan-
ism of a recombinant version of a carboxy-truncated form of the rat
enzyme (fragment 1�512, also named HDC 1/512),4 which has
kinetic constants similar to the mature enzyme purified from rodent

tissues.2 We studied the rate-limiting step with atomic detail.5 We
have observed that the Stokes radius of the protein is modified
during catalysis, indicating that local changes in the catalytic site
of mammalian histidine decarboxylase affect its global conforma-
tion by a rearrangement of the dimerization surface.6 A flexible
region (within residues 330�360) has beenproven toparticipate7�10

in the conformational changes of the catalytic site neighborhood after
substrate binding, and we have established the role of this region in
the increased stability of the enzyme on substrate uptake.11 These
results have highlighted the importance of dimerization for the
enzymic activity of this protein and consequently implicate dimeriza-
tion as a potential target for selective inhibition of this mammalian
enzyme. Thus, we focus on the characterization and analysis of the
intermonomer interaction surface of this enzyme.

The computational analysis in the present work revealed that
an electrostatic hotspot, with contributions of the same cationic
and anionic residues from both monomers, is located between
the two catalytic sites of the homodimer. Residue D315 plays an
important role in the stabilization of the electrostatic hotspot and
the right active site conformation. This hypothesis was experi-
mentally tested by direct mutagenesis strategies, biophysical
measurements, and enzymic activity determinations.

2. MATERIALS AND METHODS

2.1. Structure Preparation. In order to investigate the hotspot
contribution to both the electrostatic properties and monomer

Received: December 1, 2010
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binding, we generated structural models for several mutations of
rat HDC (rHDC). Taking our previous homology-based model5

as the wild type enzyme, mutations of selected hotspot residues
were performed with PyMOL12 on each monomer of the homo-
dimeric enzyme.
To define the monomer�monomer interactions surface, water

accessibilities of the residues were calculated with the DSSP pro-
gram,13 and the proper protonation state at physiological pH and
atomic charges were established using the PDB2PQR and PROP-
KA server and software14,15 in order to obtain a suitable input
structure for electrostatics calculations.
The initial geometry of each system was relaxed using the

Steepest Descent algorithm (10 000 energy minimization steps)
and the OPLS force field implemented in the DYNAMO li-
brary.16 Each mutated structure was solvated in a 41.8 Å radius
sphere of TIP3P explicit water molecules and subjected to
Molecular Dynamics (MD) simulations with NAMD17 and the
CHARMM22 protein force field.18 The systems were heated to
310 K followed by equilibration without restraints using Langevin
dynamics to control the temperature. Once equilibrated, coordi-
nates were saved every 10 ps to obtain 20 ns MD trajectories.
2.2. Energy Calculations. Electrostatics binding free energies

for the formation of the homodimeric rHDC complex (ΔGelec)
were calculated by combining several hypothetical processes in
the thermodynamic cycle,19 depicted in Figure 1. The electro-
static binding free energy is then given by:

ΔGelec ¼ �ΔG3 ¼ ΔG4 �ΔG2 �ΔG1

Our framework essentially decomposes ΔGelec in terms of
transfer free energies from a homogeneous dielectric environ-
ment (in which a dielectric constant of 4 is applied to the
protein and the solvent) to a heterogeneous dielectric envir-
onment with different internal and external dielectric con-
stants (namely, 4 for the protein and 80 for the solvent). In
other words, we compute the electrostatic contribution to the
binding free energy in terms of solvation and Coulombic
electrostatic interaction free energies. The Adaptive Poisson�
Boltzmann Solver (APBS)20 was used to compute the con-
tribution of solvation to ΔGelec by solving the Poisson�
Boltzmann equation for the complex and for each component,
in both the homogeneous and the heterogeneous dielectric
environments. Intermolecular Coulombic contributions to
ΔGelec (ΔGcoul) are considered in our simulations by comput-
ing the change in Coulombic electrostatic energy upon com-
plex formation in a homogeneous dielectric environment (with a

dielectric constant of 4), ΔG1 depicted in Figure 1. Thus

ΔGcoul ¼ �ΔG1 ¼ ΔGAB �ΔGA �ΔGB

Each term in this equation is the sum of pairwise Coulombic
interactions among all atoms in the two rHDC monomers or in
the rHDC dimer. These terms were calculated with the accessory
program Coulomb, from the APBS software. The temperature
was 298 K, and the ionic strength equaled 0.15 M in all cases.
Due to the strong dependence of the calculated free energies

on the value taken for the protein dielectric constant and the
discussion and controversy regarding the most appropriate value
of this parameter,21�23 it is difficult to know whether the
calculated ΔGelec accurately represents experimental energies.
Therefore, the calculated values forΔGelec are meaningful only for
the comparison of relative complex formations among the wild
type enzyme and the mutants studied, so we offer relative binding
affinities in terms of ΔΔGelec = ΔGelec(mutant) � ΔGelec(wt),
where positive values indicate a decreased binding affinity and
negative values indicate an affinity increase caused by the
mutation.
2.3. Electrostatic PotentialMaps.Electrostatic potential maps

were calculated using APBS to solve the Poisson�Boltzmann
equation. The protein is centered in a 193 � 193 � 161 grid. A
solvent dielectric constant of 80 and a protein dielectric constant
of 4 were used for the electrostatic potential map calculations, as
they are standard values used by other authors.24

2.4. Recombinant HDC Expression and Purification.Direct
mutants were generated using the Quickchange system (Promega).
The previously reported recombinant pBluescript SK-II plasmid
encoding for fragment 1�512 of ratHDC(namely, p1/512.rHDC)
was used as the template.25 The primers used for the different
substitutions were the following: D315V, 50-GGATGATGGTG-
CACTTTGTTTGCACTGGGTTCTGGG-30 (sense) and its
antisense counterpart (the mutated codon is in italic lettering);
D315N, equal to the previous ones but AAT and its antisense
counterpart are in the respective primers as the mutated codon;
and C316A, 50-GGATGATGGTGCACTTTGACGCCACTG-
GGTTCTGGG-30 (sense) and its antisense counterpart. All
mutants were tested using full double-strand sequencing after
each subcloning step. Different expression systems have been
used throughout this work for the wild-type and the mutant
versions. The in vitro expression systemwas previously described.25

The purified preparations of the recombinant versions were
obtained as described elsewhere.4 For rapid screening of activ-
ities, the mutant enzymes were expressed and purified from
recombinant pGEX6P-1 plasmids as mutant versions of the
pGEX6P-1/HDC1/512 product, as reported previously.4 The
mutant versions were released from the glutathione S-transferase
fusions by treatment with the Pre-Scission TM protease supplied
with the kit. The HDC activity assay was carried out by following
14CO2 release from [U-14CO2]-labeled L-histidine (American
Radiolabeled Chemicals, U. S. A.), as reported elsewhere.25

Spectroscopic measurements were carried out with the expression
product of a recombinant pET11a plasmid encoding for mutant
D315N. It was expressed and purified as reported elsewhere for the
wild-type enzyme, following three chromatographic steps (Phenyl-
Sepharose CL-4B, DEAE interchange, and hydroxyapatite).4,6

Purity of the final preparations was assessed by Coomassie blue
staining andWestern blotting. All preparations used in this work had
greater than 90% purity. When required, the enzyme was con-
centrated in different Amycon ultrafiltration systems (cutoff
between 10 and 30 kDa) depending on the initial volume. To

Figure 1. Thermodynamic cycle for calculation of binding free energy.
The binding free energy is calculated from the transfer free energies of
the protein from a homogeneous dielectric environment to a hetero-
geneous dielectric environment.
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avoid interferences with free PLP, the final preparation was gel
filtrated in a Sephadex G25 immediately before starting spectro-
scopic measurements. For the experiments shown in Figures 3
and 4, purified HDC preparations were incubated at room
temperature in either the presence or absence of histidine methyl
ester (HisOMe) for 60 min. HisOMe and histidine were pro-
vided by Sigma-Aldrich (Spain).
2.5. Spectroscopic Measurements. Absorption spectra were

measured using a HP8452A diode array spectrophotometer
(Hewlett-Packard, U. S. A.). Fluorescence spectra were obtained
with a QuantaMaster SE spectrofluorimeter (Photon Technol-
ogy International Inc., U. S. A.). All spectroscopic measurements
were carried out at RT under the same conditions as those
described previously.4

3. RESULTS AND DISCUSSION

3.1. General Description of the Dimer Interface. Our
previous work indicates that the dimerization surface must be
involved in conformational changes occurring during catalysis,6

so we focused our attention on this part of the enzyme. In a close
examination of the dimerization surface, we found a cluster of
charged residues in each monomer between both catalytic sites.
Dimerization and active site conformations were explained previ-
ously.31 This led us to hypothesize that the electrostatic proper-
ties of this hotspot would be important in maintaining a proper
environment in each active site.
To check putative dramatic reorganizations in the molecular

structures after the mutations, we built molecular models for
mutations in the hotspot of HDC, and we made molecular
dynamics simulations with these versions. Results showed that
nomajor changes or structural reorganization occur in the enzyme
as a consequence of the mutations (Figure 2). In fact, backbone

root-mean-square deviations from the initial structure are below
2.5 Å during the 20 ns MD trajectory, and root-mean-square
deviations in the hotspot are below 1.4 Å for the wild type and
mutant models. Thus, the mutations do not seem to cause
important rearrangements in the enzymatic structure.
We computed changes in the electrostatic properties of the

monomer�monomer interface to address the importance of
surface complementarity in enzymatic activity using our homol-
ogy model of mammalian HDC structure. The major features of
the predicted quaternary structure of the mammalian enzyme are
(Figure 3) as follows: the dimer presents a 2-fold axial symmetry;
the first 100 residues of both polypeptides are intertwined; two
catalytic sites are conformed within the dimer interface, involving
mainly random coiled fragments of the central polypeptide se-
quence of both monomers.
Residues taking part in the dimer interface were predicted by

calculating the differences in the water accessibility scores of each
residue when comparing themonomeric and the dimericmodels.
Water accessibility values decreasing by more than 12 Å2 after
dimerization are the following: S5, Y7, Y10, Q11, K15, M17, V18,
Y20, I21, Y24, L25, R31, P35, V37-R43, I46, S48, A50, P54, D55,
W57, I60, I64, I68, M69, G71-Q76, Y83, Y84, A86, T88, L93,
L94, D96-L98, D100-L105, F107-S111, P113, E117, L118,
M120, N121, D124, W125, K128, D134, H139-P141, R151,
T152, S154, E155, T157, L158, L161, L162, R165, D180, E181,
S182, N185, A186, A190, A192, H197, S198, V200-F213, E225,
F243, T251, K308, H313-D315, F331-V333, P335-Y337, R339,
H340, N342, V345, T347,M350, I354-R359,W366, F367, R370,
S371, E424, K428, F437, I439, P440, and T442. They map the
dimerization surface. From these data, it can be deduced that
dimerization mainly involves residues of the amino-terminus, up
to residue 213, and those between positions 308 and 371 of each
monomer. The dimerization surface and the location of the active

Figure 2. Root-mean-square deviations from the first structure of the MD trajectory for each system studied, for the backbone (upper graph) and
hotspot residues (lower graph). WT, wild-type HDC; HSM, hotspot mutant.
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site (mapped by K308 and H197) are shown in panel A of
Figure 3. K308 is the residue responsible for the covalent PLP
binding during internal aldimine formation, and H197 seems to
stabilize the pyridine ring of the cofactor, not only inHDCbut also
in other homologous enzymes.26�28 Both residues, colored in
orange in Figure 3A, indicate the position of the PLP-binding site.
Protein�protein interaction surfaces are geometrically com-

plementary. In nonpermanent complexes, where each compo-
nent can exist in solution, electrostatic contacts direct protein�
protein interaction, while in permanent complexes hydrophobic
contacts are dominant.29 Electrostatic complementarity between
interacting proteins is also generally assumed30 despite the gen-
erally low and often unfavorable contribution of electrostatics to
the assembly of a complex.22

Mammalian HDC is proposed as a homodimer,31,32 and as can
be seen in Figure 3, there is important shape complementarity.
Most of the hydrophobic surface of each monomer is quenched
during dimerization. Thus, as expected for a permanent complex,
hydrophobic contacts direct monomer�monomer interactions.
There is only one electrostatic patch on the dimerization surface
of each monomer; it is located next to the PLP binding site of the
contrary monomer. This electrostatic hotspot is formed by side
chains of residues D96, D100, R151, E155, D315, and R359, all of
them exposed to the dimer interface and delineating an area of
positive potential (Figure 3C), suggesting a way to stabilize neg-
atively charged PLPs in the active sites.
Because both monomers have an identical patch, they must

influence the dimer conformation by minimizing direct contact

between these areas. We checked the role of this patch in sta-
bilizing the quaternary structure, comparing the electrostatic
potential in the dimerization surface of the wild-type enzyme and
a mutant in which every residue of the electrostatic hotspot was
replaced with valine residues. Results are shown in Figure 3C
and D. In the hotspot mutant HDC, the positive electrostatic
potential patch is considerably larger than that of the wild type
enzyme, in accordance with the net elimination of two negative
charges. The hotspot mutant HDC cannot avoid the overlapping
of these two electropositive regions. Consequently, the relative
binding affinity of the hotspot mutant HDC is ΔΔGelec =
371.518 kcal/mol. This large dimer destabilization indicates that
the electrostatic patch contributes to stabilizing the dimeric
quaternary structure in mammalian HDC.
3.2. Aspartate 315 is Predicted to Play an Important Struc-

tural Role. The fact that the enzyme minimizes an unfavorable
monomer�monomer electrostatic interaction, provided that it can
maintain a polar environment between the two active sites, points to
the idea that the enzyme needs these charges. We focused our
attention on residue D315 due to the following observations. This
negatively charged residue holds a central position in the electro-
static hotspot, and it is located close to the essential residue K308
(10 Å between both R-carbons). Both K308 and D315 take part
in the same random-coiled loop (residues 305�317). In spite
of their opposite charges, these two residues could not establish
a direct interaction because the aromatic group of F314 (of the same
polypeptide) prevents such interactions. Consequently, the orienta-
tion of the D315 γ-carboxylate group does not seem to be deter-
mined by the secondary structure of the fragment but by polarity
of the residues in its surroundings. Only four residues, namely, F314
(monomer A), D315 (monomer A), D315 (monomer B), and
F314 (monomer B), separate the two K308 residues of the homo-
dimer. Altogether, these considerations allow us to hypothesize an
essential role for the carboxylate group of this residue as a stabilizer
of the electrostatic hotspot at its closest part to both catalytic centers.
Besides its effect on the electrostatic potential, removal of D315
could also disturb the optimal topology of the catalytic site (mainly
K308 orientation) and consequently the PLP-binding to the apo-
enzyme and subsequently the HDC activity.
3.3. Aspartate 315 is Proven to Be Essential for HDCActivity.

We generated computationally and experimentally two different
substitutedmutants calledD315V andD315N. In the former, the
acid group moiety was substituted by an uncharged group with a
similar volume. The second substitution nullified the positive
charge of the group. Both versions, together with the wild 1/512
version, were expressed in vitro and in E. coli and were further
purified. In all cases, no enzymatic activity was detectable for both
D315 mutants by following decarboxylation of radiolabeled
histidine, even when both concentrations of the purified dimeric
enzyme were higher than 7 μM and 3.2 mM histidine was used.
In order to test whether D315N contributes to establishing a

proper quaternary structure, binding free energies were com-
puted for the four systems (Table 1) as described in theMaterials
and Methods section.
These results indicate that removal, or even amidation, of the

carboxylate group at this position has dramatic consequences on
the catalytic site structure.
It was necessary to check whether this effect on the active site

could be reproduced by mutation of any other residue as close to
the catalytic site as D315. This was tested with a C316A mutant.
In addition, this residue is one of the most conserved residues in
the 308�316 fragment (apart from the essential K308), not only

Figure 3. Dimerization surface and electrostatic potential maps. The
dimerization surface is shown in dark blue, and the active site is colored
in orange, mapped by K308 and H197 (A). Quaternary structure of
rHDC: one subunit is colored in dark blue, and the other is colored in
white (B). The lower panels show the surface representations of the
electric potential, for the wild-type (C) and the hotspot mutant (D).
Color range from deep red to deep blue corresponds to the range in
values of electrostatic potential from �3.1 to þ3.1 kT/e, where k is the
Boltzmann constant, T is the absolute temperature, and e is a proton’s
charge.
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amongmammalian HDCs but also in other evolutionarily related
enzymes. In contrast to D315 mutants, the C/A substitution,
which abolishes any polar interaction of this residue, gave rise to
an active HDC with a 66( 5% (mean( SD, n = 3) reduction in
activity compared to the wild-type 1/512 version. The calculated
relative affinity for C316V (Table 1) together with those
calculated for the D315 mutants show a direct relationship
between electrostatic binding free energy and enzyme activity.
We conclude that a proper electrostatic complementarity be-
tween both HDC monomers is essential for a proper quaternary
structure of the enzyme and thus for the activity. In addition,
D315 plays a fundamental role in stabilizing the electrostatic
patch that directs monomer�monomer interactions, and it
establishes an electropositive environment in the PLP interaction
region of each active site.
3.4. Amidation of the D315 Carboxylate Group Is Enough

to Alter Catalytic Site Conformation and PLP Binding.
Because enzymic activity was followed by CO2 decarboxylation,
the D315 mutants seem to lack the ability to release CO2 (one of
the final products). However, we wanted to further check
whether the reaction could at least proceed during its first steps
(Michaelis complex and/or external aldimine formation). For
PLP-dependent enzymes, this kind of information can be ob-
tained from spectroscopic approaches by analyzing absorption
and fluorescence spectra of the cofactor during Michaelis com-
plex and PLP�substrate or PLP�product complex forma-
tion.27,33 In fact, this approach has been used previously for the
recombinant wild-type 1/512 version.4,6 The substrate analog
histidine methyl ester (HisOMe) acts as the substrate during the
initial steps and reproduces the spectral changes observed with
histidine but blocks the reaction in the external aldimine state
(PLP-substrate complex). Thus, any HDC enzyme that could
accept the substrate (or the analogue) and proceed along any of
these steps would change the shape of its spectrum.
Absorption spectra of wild-type HDC (Figure 4) reproduced

those reported previously.4 They reveal a major enolimine tau-
tomeric form for the holoenzyme (maximum at 335 nm) and
a low percentage of the complex in the ketoenamine tau-
tomeric form (maximum at 420 nm). However, the spectra of
the analogue-untreated mutant enzyme were very different to
those of the free wild-type holoenzyme and HisOMet could
induce no major shift when added up to the final 5 mM con-
centration. The main absorption bands of D315N are those
centered at 360�370 nm and at 470�480 nm. Unusual spike
peaks are also found at 380 and 450 nm. Additionally, the shallow
valley between the two peaks suggests the presence of absorption
peak(s) in this region (around 430 nm). At a glance, the overall
shape of the absorption spectrum of D315N suggests that the
two main bands correspond to those of the wild-type enzyme. If
this is the case, the 360 and 480 nm absorption bands could
reflect the enolimine and ketoenamine structures of the Schiff

base, which are 30�50 nm red-shifted by some conformational
or environmental factors. As an approach to identify the compo-
nents of these absorption peaks, we measured the fluorescence
(Figure 5A) and excitation (Figure 5B) spectra because different
structures of PLP Schiff bases show distinctive fluorescence
spectra.27,33

With excitation at 360, 380, 430, 450, and 480 nm, fluorescence
was observed with maximum emission wavelengths at 434, 454,
507, 527, and 556 nm, respectively. That is, the emission wave-
lengths were generally 74�77 nm longer than the excitation
wavelength. The observed fluorescence spectra with variable
maximum emission wavelengths indicate that the two main
absorption bands are each composed of multiple absorption
transitions. These transitions may correspond to distinct species.
Alternatively, theymay be considered to come from similar species
with different conformations or placed in different environments.
The 480 nm absorption could initially be considered to corre-

spond to the quinonoid structure that usually absorbs at around
500 nm. However, the fluorescence excitation spectrum for this
band showed a broad band ranging between 450 and 500 nm
(Figure 5B) and is different from the narrow peak typical for the
quinonoid structure. Therefore, we consider that the 480 nm
absorption is not the quinonoid intermediate andmay be related to
the 430 nm absorption, which is thought to be the ketoenamine
tautomeric species.
The absorption at 360�380 nm is generally ascribed to the

deprotonated Schiff base. The absorption spectrum of D315N,
however, does not essentially change with pH. This indicates that
the 360�380 nm absorption band of D315N does not come
from the deprotonated Schiff base. Again, we consider that this
species may be related to the 340 nm absorption, which is
interpreted to be the enolimine tautomeric species. That the
fluorescence excitation spectra (Figure 5B) showed smooth
curves and had no spikes observed for the absorption spectra
(Figure 4) indicates that these spikes arise fromminor impurities
that are difficult to remove and that the absorption bands are
largely those of PLP derivatives. From these considerations,
we adopt the interpretation that the multiple absorption bands
arise from a limited number of PLP species placed at different
environments.

Table 1. Electrostatic Binding Free Energies of Wild Type
and Mutants HDCa

WT D315N D315 V C316 V

ΔGelec �294.942 �134.669 �161.871 �289.761

ΔΔGelec 160.273 133.071 5.181
aReported values (kcal/mol) are calculated as described in theMaterials
and Methods section: ΔΔGelec = ΔGelec(mutant) � ΔGelec(wt).
Positive values indicate a dimer stability decrease, whereas negative
values indicate a complex stability increase.

Figure 4. Absorption spectra of the HDC 1/512 wild-type and its
mutant D315N in the absence or the presence of the substrate analog
histidine methyl ester (HisOMe). Spectra of purified and gel-filtered
wild-type 1/512 and D315N HDC were recorded before and 1 h after
HisOMe addition.
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For many PLP enzymes, excitation of the enolimine species of
the Schiff base results in emission at around 500 nm, identical to
that of the emission caused by the excitation of the ketoenamine
species, in addition to the emission around 390 nm. The∼500 nm
emission comes from a species generated by the migration of the
proton from O30 (enolimine) to the imine N (ketoenamine) in
the excited state, and the ∼390 nm emission is the direct
emission of the enolimine in the excited state before migration
of the proton.34 The wild-type HDC shows little emission at
500 nm on excitation of the enolimine species.4 In the D315N
mutant, however, no emission at around 500 nm was seen upon
excitation of the 360 nm absorption species, although the
∼500 nm emission is clearly seen upon excitation of the 430
and/or 480 nm absorption bands.
In summary, the results obtained with this mutant allow us to

suggest that the D315N mutation could strongly alter the status
of the PLP Schiff base in the active site, as indicated by the
possible existence of ketoenamine and enolimine species placed
in multiple microenvironments, lack of the large Stokes shift on

excitation of the enolimine species caused by the proton migra-
tion in the excited state, and the shift in tautomeric equilibrium
toward the ketoenamine form reflecting a decrease in polarity in
its microenvironment. Altogether, we consider that the mutation
of the D315 residue should indeed distort the optimum con-
formation of K308 and the polarity of its environment, thereby
decreasing the efficiency of the initial Schiff base formation, as
well as the following steps necessary to further the reaction and
release the products.
3.5. Comparison among Homologous PLP-Dependent

Decarboxylases Allows Us to Suggest New Applications
for the Present Findings. To investigate the putative existence
of a similar ionic arrangement in other evolutionary enzymes, we
initially carried out multiple sequence alignments, including
HDCs and DDCs from different living organisms and mamma-
lian GADs. An alignment of representative sequences is shown in
Figure 6. Curiously, inmammalian GADs, the D315 homologous
position is occupied by a Q residue. As mentioned before, an
amide group at this position caused the inactivation of mamma-
lian HDC. Following our hypothesis on the role of the electro-
static hotspot interaction as one of the major structural
determinants of mammalian HDC dimerization, the differences
observed in the alignment should be accompanied by important
differences in the quaternary structural organization of Gram-
negative HDCs and GADs with respect to mammalian HDCs
and DDCs. In fact, some of the bacterial HDCs have been
described as tetrameric enzymes.35,36 Some GAD enzymes have
been found to be hexameric enzymes.37 To avoid speculation, we
do not do any further structural comparison with bacterial and
plant PLP-dependent HDCs, or with GADs. However, the
present data should provide valuable information for those
groups working on the structural characterization of these other
related enzymes, which control biogenic amine and alkaloid
synthesis in many different organisms where they also play im-
portant physiological roles.
In any case, it is tempting to think that synthesis of specific

ligands of this ionic motif could constitute a novel possibility for
selective intervention of PLP-dependent HDC activities because
dimerization (more specifically, the negative charge of the D315
carboxylate group) is critical for the proper conformation of the
catalytic site of animal HDC. For instance, this strategy could
allow us to inhibit, in a selective manner, animal HDC versus the
same enzyme from other sources. This possibility would be
relevant, as such a selective inhibition cannot yet be reached by
using other previously characterized inhibitors that have the
PLP-dependent HDC catalytic center as the target. In fact, HDC
from both Gram-negative bacteria and animal sources can coexist

Figure 5. Fluorescence spectra of the mutant version D315N. (A) Fluo-
rescence emission spectra. Excitation wavelengths are indicated on the
different peaks. (B) Fluorescence excitation spectra of the peaks shown in
panel A. Emission values are indicated on the respective excitation peaks.

Figure 6. Alignment of fragments homologous to those of rat HDC that contain the ionic residues mentioned in the text. In boxes, the most relevant rat
HDC residues mentioned in the text and their identical counterparts in other homologous L-aaDCs are highlighted. The first residues of each
homologous fragment are numbered for each protein.
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in the same physiological system (for instance, in the gastroin-
testinal track).
On the other hand, it is noteworthy that a similar but larger

electrostatic hotspot is also observed in the X-ray structure of
pig DDC. This electrostatic hotspot involves the following ionic
residues of both DDCmonomers: D92, E150, D310, R356, and
R358, which are exactly the counterparts of D96, E155, R359,
and R361 in rat HDC (Figure 6). Therefore, HDC and DDC
also seem to share this dimerization motif, as occurs with other
structural and functional characteristics. It has been suggested
that the side chain of D310 of DDC could establish hydrogen
bonds important for the right conformation of the K303-
containing loop.38 The occurrence of these hydrogen bonds
is indeed supported by our work. Nevertheless, the present
work shows that the role of D315, or its counterparts in the
other homologous enzymes, is more drastic than a simple local
structural distortion of weak electrostatic interactions, as the
lack of these carboxylate groups could also affect the whole
arrangement of the dimerization interface and the dynamics of
these surfaces, which has been demonstrated to occur, at least
during HDC reaction.
The electrostatic hotspot studied here adds to other structural

and functional parallelisms between mammalian HDC and DDC,
including sequence identity, tautomeric forms of the holoenzyme,
and quaternary structure. But there are also slight structural dif-
ferences that lead finally to important functional differences
between both enzymes. These include the higher catalytic effi-
ciency and less stringent substrate specificity of the latter when
compared to mammalian HDCs. The slight differences between
them could be responsible for any functional differences, and
testing this hypothesis would need further work. In any case, the
present results should also be of interest for groups working on the
molecular bases of dopamine and serotonin synthesis. As far as we
know, this structural characteristic of DDC has not been men-
tioned so far.

4. CONCLUDING REMARKS

The present work was designed to analyze the dimer interface
of mammalian HDC. The enzyme prevents direct interaction
between the electrostatic hotspots of both monomers because
they are in a mainly hydrophobic dimerization surface and show
electrostatic repulsion. Some of the ionic residues participating in
the hotspot (especially D315) are located just in between the two
catalytic sites, establishing an electropositive environment that
can anchor PLP to each active site. In addition to the most
exposed charged moieties, other thiol and hydroxyl groups and
charged residues can contribute to the stabilization of the polar
patch. It is tempting to hypothesize that this part of the protein
could suffer rearrangements during the different stages of the
reactions, thereby contributing to the conformational change
that has been previously observed from biophysical approaches.
These findings can provide valuable information for the full
characterization of this poorly understood mammalian enzyme
and also for DDC, an enzyme producing other biogenic amines
that also has physiological and pharmacological importance. This
ionic motif does not seem to be shared by other PLP-dependent
L-aaDCs, such as the bacterial PLP-dependent HDC, providing
insight for developing selective inhibitors that are able to
distinguish between these two enzymes sharing both substrates
and cofactors.
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ABSTRACT: Steered molecular dynamics (SMD) simulations for the calculation of free energies are well suited for high-
throughput molecular simulations on a distributed infrastructure due to the simplicity of the setup and parallel granularity of the
runs. However, so far, the computational cost limited the estimation of the free energy typically over just a few pullings, thus
impeding the evaluation of statistical uncertainties involved. In this work, we performed two thousand pulls for the permeation of a
potassium ion in the gramicidin A pore by all-atom molecular dynamics in order to assess the bidirectional SMD protocol with a
proper amount of sampling. The estimated free energy profile still shows a statistical error of several kcal/mol, while the work
distributions are estimated to be non-Gaussian at pulling speeds of 10 Å/ns. We discuss the methodology and the confidence
intervals in relation to increasing amounts of computed trajectories and how different permeation pathways for the potassium ion,
knock-on and sideways, affect the sampling and the free energy estimation.

1. INTRODUCTION

Biologically relevant events often take place at time scales far
beyond those accessible by fully atomistic simulations, for
example, conduction of ions through narrow channels.1�3 A
successful approach for describing molecular phenomena at
longer time scales is to average out all but a few degrees of
freedom of the system by selecting a reaction coordinate. The
forces affecting the process are then described as an effective
potential of mean force (PMF), i.e., the free energy profile along
the reaction coordinate.4�6 The PMF can, in principle, be
computed by sampling the equilibrium statistical distribution
of the system. However, the time required for the system to cross
high free energy barriers may be long enough to make the
computation infeasible.

This problem has been successfully addressed with biasing
protocols,7,8 such as umbrella sampling (US),9 which overcomes
this limitation by sampling several biased equilibrium distribu-
tions, which are later merged by histogram-based techniques.10�13

Jarzynski equation (JE) and Crooks fluctuation theorem (CFT)
equalities showed that the PMF can also be recovered from
nonequilibrium steered molecular dynamics.14,15 Steered mole-
cular dynamics (SMD) is a well-known computational protocol
to exploit nonequilibrium sampling, in which the application of
time-dependent biasing forces guides the system according to a
predefined protocol.16,17 In SMD experiments, several pulls are
simulated in one (forward)15,18 or two (forward and reverse)
directions.14,19�21

A number of previous studies have used SMD simulations to
compute free energy profiles on realistic biomolecules. The JE
applied to one-directional (forward only) SMD experiments has
been used by several authors to compute the free energy profile in
large biomolecular systems. Among the most recent works,
Cuendet et al.22 used two groups of n ∼ 150 single directional
trajectories (total sampled time of approximately 2 μs) to com-
pute the PMF of the T cell receptor with a major histocompatibility

complex peptide (TCR-pMHC) complex and a mutant. Martin
et al.23 used single directional SMD on a large system to compute
the energetics of translocation of a polynucleotide through a
nanopore. The pullings were conducted with various parameters,
and the PMF curves computed on 2�6 samples. Liu et al.24

studied the permeation of Naþ through gramicidin A (gA) with
n = 8 single directional trajectories. Zhang et al.25 used n ∼ 35
trajectories and four different computational methods based on
the JE to compute the unbinding of acetylcholine from the R-7
nicotinic receptor along four different paths. Jensen et al. com-
puted the energetics of sugar permeation through lactose
permease26 and glycerol through aquaglyceroporin,27 respec-
tively, via four SMD runs with cumulant expansion. Compara-
tively, fewer works have discussed the use of bidirectional pulling
experiments in large proteins. De Fabritiis et al.28 computed the
PMF in gA with 25 pulls in each direction. Forney et al.19

computed the PMF of gA, as well, with 10 pulls in each direction
comparing various ionic strengths and backbone restrain types.
Due to limitations in computational resources, most studies
could only sample a low number of trajectories and were there-
fore unable to assess the impact of increased sampling on the
precision of the PMF profiles.

Here, we expand the amount of sampling with respect to
previous bidirectional SMD studies by almost two orders of
magnitude in a realistic system, the gA dimer embedded in a
membrane and explicit solvent, to test the methodology in a
properly sampled system. Gramicidin A (see Figure 1) is a helical
antibacterial dimer (15 amino acids each) which increases
permeability of biological membranes to inorganic ions.29 The
backbone of the gA dimer forms a narrow pore, allowing a single
file of water molecules (or potassium ions) to fill it. Due to the
diameter of the pore, the transport of a single ion drags with it a
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column of six to nine water molecules in a single file, reducing
drastically the possibility that water molecules slip past each
other.30 The small size and the early availability of its structure
made gA a frequently used model for a membrane channel.31,32

Despite its simplicity, permeation is not so well reproduced com-
putationally; several studies reported with a barrier to permea-
tion of 10�20 kcal/mol, several kcal/mol higher than the
experimental one.3,33,34 The barrier height was recently shown
to be much improved with the use of a polarizable force field.35

We performed an extensive set of all-atom molecular dy-
namics (MD) experiments on the gA channel36 and computed
the PMF from bidirectional pulling experiments21,37 using 1000
pulls per direction. Confidence bands for an increasing number
of pulls, computed with a variable-size bootstrap procedure, are
also presented. The importance of sampling effectively the
degrees of freedom orthogonal to the reaction coordinate is well
illustrated by two permeation pathways shown by the potassium
ion in the interface between the two monomers of gA with
different free energy profiles.

2. MATERIALS AND METHODS

2.1. The Potential of Mean force. The PMF is a convenient
description of the energetics of the system obtained integrating
out all of the degrees of freedom with the exception of one
reaction coordinate, z = z(R), which should capture the inter-
esting features of the system. The PMF G(z) would then be

e�βΔGðz0Þ ¼

Z
dRdPδðzðRÞ � z0Þ expð� βHÞZ

dRdP expð� βHÞ

where H = H(R,P) is the Hamiltonian of the system, R = (r1, ...,
rN), P = (p1, ...,pN) are the positions and momenta of the
N atoms, δ( 3 ) is the Dirac delta function, and β = 1/(kBT),
where kB is the Boltzmann constant and T the temperature of the
system.
The Crooks fluctuation relation18,38,39 allows one to compute

the equilibrium free energy differenceΔG between two states “0”

and “1” described by two Hamiltonians H0 and H1 as

PFðþ βWÞ
PRð� βWÞ ¼ expðβðW �ΔGÞÞ ð1Þ

whereW is the external work done on the system by forcing it to
change from state 0 to 1, and PF and PR are the probability
distributions of releasing the work W into the system during a
transformation in the forward (F) 0f 1 and reverse (R) 1f 0
direction, respectively, in a finite time. The Crooks fluctuation
relation is a generalization of the Jarzynski equality (JE):15

Æexpð� βWÞæF ¼ expð� βΔGÞ
recovered from Crooks fluctuation relation by integrating both
sides of eq 1. The Crooks fluctuation relation can be estimated
using the optimal Bennett acceptance ratio method.40 Interest-
ingly, these two fundamental relations have their equilibrium
counterparts obtained for an infinite pulling speed, where CFT
resembles an equilibrium relation previously derived by Shing
and Gubbins41 and JE corresponds to Widom’s formula used to
compute the chemical potential by test particle insertion42 (with
well-known poor convergence properties).43 The exponential
average of the JE causes few rare low-energy trajectories dom-
inating the estimate ofΔF. When only few trajectories are available,
the estimate can be improved using a first-order cumulant expan-
sion, which is exact in the limit when the distribution ofW values is
Gaussian.22,44 The CFT has much better convergence properties
than a direct application of JE and was therefore used in a previous
study28 and in this study. Both the JE and the CFT have been
confirmed experimentally in atomic force and single-molecule
pulling experiments.18,39

In this work, we use the estimator for the PMF G(z) proposed
by Minh and Adib:21

e�βGðzÞ ¼ ∑
t

nFδðz� ztÞe�βWt
0

nF þ nRe�βðW � ΔFÞ

� �
F

þ nRδðz� zτ�tÞeβW τ
τ � t

nF þ nR eβðW þ ΔFÞ

� �
R

#2
4

� eβΔFt

∑
t
e�β½Vðz;tÞ � ΔFt � ð2Þ

where nF and nR are the number of forward and reverse
trajectories, respectively, Wa

b is the partial work performed in
the interval between time a and b, τ is the final simulation time,
andΔFt is the free energy difference between the initial state and
the one at time t. In this work we used the implementation of eq 2
provided in the FERBE package.45

2.2. Steered MD Protocol. To describe the permeation
experiments of one potassium ion through the gA channel, the
collective reaction coordinate was assumed to be the z coordinate
of one of the cations, which will be called KSMD

þ in the following,
i.e., z(R) = zK. The chosen cation was driven through the channel
applying a simple harmonic biasing potential parallel to the z axis
producing the force:

FzðzK, tÞ ¼ � kðzK � bðtÞÞ ð3Þ
where k is the spring constant, zK is the instantaneous z
coordinate of the ion, and b(t) is the time-dependent equilibrium
point for the biasing force. The spring constant k = 10 kcal/mol
of the biased system was set in order to fulfill the strong spring
approximation, k > max(2R/δz2, 2Umax/δz

2), where δz is the
spatial resolution that we are seeking for the PMF, Umax is the
maximum energetic barrier that we expect in δz, and R. 1. The

Figure 1. Structure of the gramicidin A dimer, with the starting Kþ ion
positions for the forward and reverse steered molecular dynamics runs
(yellow). In the former, the cation is pushed from the outside toward the
inside of the channel (z increasing from�15 toward 0 Å). In the reverse
simulations, the ion is pulled along the time-reversed path. The z axis
runs through the center of the pore. Lipid bilayer (117 DMPC
molecules), water (8668 molecules), and other solvated ions have been
omitted for clarity.
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biasing position was displaced linearly with time:

bðtÞ ¼ zF þ vt ðforwardÞ
zR � vt ðreverseÞ

(

The cumulative work profile was obtained by integrating the
instantaneous forces over the corresponding interval:

WðtÞ ¼
Z T

t0 ¼ 0
Fðt0Þvdt0 ð4Þ

with F(t) given by eq 3. For the numerical computation of eq 4,
the integral was approximated as a discrete summation over time
intervals of length Δt:

Wb
a ¼ ∑

b

tj¼ a
� kðzðtjÞ � z0 - vtjÞvΔt ð5Þ

where tj = jΔt is the time corresponding to the j-th interval, z0 is
the starting position of the pull, and the sign is taken according to
the pull direction. The z axis was divided in 100 bins, equally
spaced over the interval z = �10, ..., 0 Å.
2.3. Preparation of the System. The gA dimer was prepared

based on the Protein Data Bank entry PDB:1JNO,46 extending
the protocol already presented in De Fabritiis et al.28 The
structure used in the previous study, comprising the gA dimer
and dimyristoylphosphatidylcholine (DMPC) lipid bilayer, was
solvated with 8668 TIP3 water molecules and ionized at a ionic
strength of 150 mM with 24 pairs of Kþ and Cl� ions. The final
system, comprising 40 410 atoms, was then equilibrated at 1 atm
and 305 K with the CHARMM2747 force field in the NPT
ensemble for approximately 13 ns. The lipid bilayer is oriented in
the xy plane, and the z axis goes through the gA pore (see
Figure 1). The simulation box resulting from the NPT equilibra-
tion was 66.1 � 65.8 � 88.9 Å3. The preparation runs were
performedwith theNAMDprogram,48 with particle-mesh Ewald
(PME) electrostatics,49 rigid bonds, cubic periodic boundary
conditions, and a time step of 2 fs.
In order to generate the initial configurations for the forward

run, the position of one potassium ion was exchanged with that of
a water molecule located close to the entrance of the pore, i.e.,
approximately at (0,0,�15) Å. For the reverse runs, the ion was
exchanged with the water molecule closest to the middle of the
channel. The two systems were subject to a further 20 ns of
equilibration in the NVT ensemble, while restraining KSMD

þ to its
initial position with a spring constant of 10 kcal/mol/Å2. After
the initial 20 ns of equilibration, the runs were extended further
for 20 ns in the same conditions, taking snapshots at 200 ps
intervals, thus yielding 100 snapshots for each of the two systems.
Each snapshot was used as an initial configuration for 10 SMD
runs. Figure 1 shows the ion at the initial positions zF and zR for
one of the forward and reverse pulls, respectively.
Further analysis on the configurations, e.g., the water occupancy

of the pore, and statistics on ion�water�protein relative positions
were performed using the scripting facilities of theVMDprogram.50

2.4. Production Runs.We performed 1000 forward and 1000
reverse SMD runs, starting from the 200 distinct initial config-
urations prepared according to the protocol explained above.
The pulling speed and the SMD spring constants were set at
v = (10 Å/ns and k = 10 kcal/mol/Å2, respectively. Each SMD
run lasted 2 ns, long enough for the pulled ion to reach the
starting position for the opposite direction, i.e., until z < zR for the
forward runs and z > zF for the reverse ones. When the ion was

outside of the channel, a flat bottom potential was applied to keep
the ion in line with the pore during the approach (the region z <
10 was excluded from the PMF calculation). No constraints were
imposed on the ion on the plane orthogonal to z. Only the center
of mass of the CR atoms of the pore was restrained to its initial
position with a harmonic potential of 100 kcal/mol/Å2, to avoid
the pore being displaced out of the membrane by the net force
applied throughout the simulations. The restrain was just applied
to the center of mass, in order not to artificially constrain the local
helix radius, interdimer distance, or orientations of the side-
chain. The pore was therefore free to expand under the influence
of the permeating cation; this flexibility has been shown to play
an important role in the permeation energetics.19,51,52

All of the production runs were performed with ACEMD,53

which leverages off-the-shelf accelerated graphic processing units
(GPUs) allowing one to achieve approximately 100 ns per day of
simulated time on a single GPU for system size of the order of
23 000 atoms, performance decreasing linearly with system size.
Production runs have been performed in the constant volume
and temperature (NVT) ensemble, Langevin thermostat at
305 K with a relaxation of 0.1/ps, computing the electrostatic
interactions with the PME algorithm.54 The integration time step
was set to 4 fs, enabled by the hydrogen mass repartitioning
scheme53,55 available in ACEMD. This scheme allows for longer
timesteps by using the property that the equilibrium distribution
is not affected by individual atom masses provided that the total
mass of the system stays the same. Transport properties change
by less than 10%, a small amount compared of the errors intrinsic
in the TIP3P water model compared to real water.55

The runs were performed on a distributed computing grid
called GPUGRID.net.56We set up a server based on the Berkeley
Open Infrastructure for Network Computing (BOINC) to
automatically distribute the runs through the Internet.57 In order
to be executed remotely, each forward and reverse run was
arranged as a separate work unit. As soon as each participating
computer finished computing the assigned simulation time, it
returned a log file with the trajectory z(t) and the force F(t)
exerted on the SMD ion, recorded at intervals of 200 fs. The
computational effort used for computing the PMF curves
amounted to the generation of 4 μs of total simulation data.
2.5. Bootstrapping Procedure. The convergence properties

of the PMF were estimated with respect to increased configura-
tion sampling by recomputing the potential curves with a varying
sample size bootstrapping technique,58 similar to the one em-
ployed by Cuendet et al.22 In this procedure we constructed
resampled sets of the available bidirectional pulls of increasing
cardinality. Each of the available pulling trajectories was ran-
domly taken zero or more times, in order to build a resampled set
containing R bidirectional trajectories. A PMF profile was
computed considering only the resampled set, and the PMF
depth was obtained. The process was iterated until B boot-
strapped replicas were obtained, finally yielding the standard
deviation of the PMF depth, σ(R). The procedure was repeated
for resampled sets of sizes R = 10, 50, 100, 250, 500, 750, n, with
n = 1000 being the count of all available pulls. The case R = 1000
corresponds to the plain bootstrap procedure, which creates re-
sampled sets as large as the number of trajectories originally available.

3. RESULTS

We computed cumulative work profiles using eq 5 for all of the
2000 pulling experiments. The upper and lower part of Figure 2
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shows the work profiles for the forward (a) and reverse work (b),
respectively. For the forward pulls, the work was taken as the one
required to push the KSMD

þ ion from z =�10 to 0; for the reverse
pulls, the end points are reversed. The distributions of final work
values for the forward and reverse pulls are shown on the right-
hand side of Figure 2, respectively in panels (c) and (d). The
mean work performed in the forward direction at the end of the
pulls (dashed line) was 55.5 kcal/mol [standard deviation (SD)
14.9 kcal/mol]; for the reverse direction it was 31.9 kcal/mol
(SD 11.2 kcal/mol).
3.1. Final Work Distributions. The CFT implies that if the

forward work values follow a normal distribution with a variance
σ, the reverse work values should also be a Gaussian with the
same variance.59 To check whether the final work values obtained
in the simulations follow a normal distribution, we applied the
well-known Shapiro�Wilk normality test.60 The test quantifies
the probability p that a given set of values could have been taken
from a Gaussian distribution (null hypothesis). If the p value
computed by the test is smaller than a fixed threshold, usually
taken as 0.05, then one concludes that there is strong evidence
against normality. The Shapiro�Wilk test rejected the null
hypothesis that the final work values follow normal distributions
in either direction (p < 4� 10�7 for both the forward and reverse
runs). Given that the pulling speed used here was 10 Å/ns, it
is unlikely that the work distribution is Gaussian, at least for
a system with enough dissipation like pulling an ion through
a pore.
3.2. PMF Profiles. The PMF curves recovered from the

bidirectional pulls with the analysis protocol cited above21 are
shown in Figure 3. For clarity, the potential profile has been
symmetrized around the z = 0 axis and offset so that the PMF is 0
at z =�10 Å. The PMF exhibits a binding site at z= 8.5 Å and a
total barrier height with respect to the bulk of∼14 kcal/mol. The

location of the binding site is approximately consistent with the
ones reported in the literature.19,34,35,61

The barrier height obtained here is lower with respect to the
one computed from the ref 28 data set (19 kcal/mol), obtained
from 25 bidirectional pulls. As discussed in the same paper, the
induced dipole of the water molecules surrounding the channel
provides an important component to the barrier to permeation.
In particular, when the Kþ ion is not in the middle of the channel,
a large fraction of its electrostatic interaction energy is due to
atoms between 6 and 16 Å of distance, i.e., in the second
coordination shell. This fact underlines the role played by the
water molecules’ polarization and the finite time required for
their reorientation. Part of the relatively higher barrier to
permeation found in this study with respect to others performed
with US34,61 or SMD19 may be therefore ascribed to the biological
(150 mM) KCl ionic strength employed outside the pore,
compared to higher concentrations used in other studies.
Furthermore, the previous study ref 28 sampled only 25

bidirectional pulls and therefore could not provide a measure of
the statistical uncertainty. We shall show later that that this amount
of sampling still incurs a statistical uncertainty of tens of kcal/mol.
3.3. Permeation Pathways. Ion and water permeate through

the narrow gA channel as a single file;30,61 the sequence of ion
and water molecules should therefore be preserved during a pull.
However, during some of the reverse (outgoing) pulls, KSMD

þ was
observed to exchange places with the preceding water molecule.
These trajectories could be distinguished according to the value
of the work W cumulated at 300 ps, as shown in Figure 4a. We
inspected the structural features of the two groups analyzing a
subset of the reverse runs and labeled the trajectories for which
W(300 ps) > 10 kcal/mol as belonging to the “H” group (37% of
the trajectories) and “L” otherwise (63%). To analyze the
atomistic basis for this difference, we computed 52 additional
trajectories recording the state of the system every 10 ps and
labeled the pulls in groups H (14 pulls) and L (38 pulls) as above.
Inspection of the trajectories in group H revealed that the order
in the water file was partially lost around 300 ps after the
beginning of the pull (Figure 4b and c). When this event
occurred, the KSMD

þ ion overtook the preceding water molecule

Figure 2. Profiles of the accumulated work W(z) spent to pull the ion
inside (a, forward) or outside (b, reverse) the gA channel at 10 Å/ns
(1000 pulls per direction). The panels on the right-hand side show the
distribution of final work values for the forward (c) and reverse (d)
directions, respectively. The mean work performed in the forward
direction at the end of the pulls was 55.5 kcal/mol (SD 14.9 kcal/mol);
for the reverse direction it was 31.9 kcal/mol (SD 11.2 kcal/mol).

Figure 3. PMF curves for a Kþ atom to cross the gA channel, computed
from 1000 steered MD experiments at pulling speed of 10 Å/ns in each
direction.



1947 dx.doi.org/10.1021/ct100707s |J. Chem. Theory Comput. 2011, 7, 1943–1950

Journal of Chemical Theory and Computation ARTICLE

(indicated as W2 in Figure 5, left). Conversely, in the pulls in
group L, the order of the water file is preserved (Figure 5, right).
The interruption of the water file may be traced back to the

formation of hydrogen bonds betweenW2 and carbonyl atoms in
the gA backbone. Figure 4b and c shows the residues whose
carbonyl atoms were most often acceptors of a hydrogen atom of
W2 at the time when it was overtaken byKSMD

þ . A hydrogen bond
was observed with residue Val1 of chain A in about 50% of the
runs in group H and with residue Ala3 of chain B in about 70%
(chains A and B being the monomer placed at positive and
negative z, respectively). Radial and angular cutoffs for hydrogen
bonds were taken as 4 Å and 30�, respectively.
Finally, we performed a control simulation to check the

stability of the dimer’s embedding in the hydrophobic membrane
environment. Specifically, we checked the equilibrium config-
uration of the dimer when the permeating ion was held close to
the dimer interface (z = 0Å) by a constant biasing potential of k =
10 kcal/mol/Å2, analogous to a setup that would be used for a US
window in the middle of the channel. A simulation of 50 ns was
sufficient to disrupt the pore structure, with water fingering from
bulk on the side of the channel in order to balance the ion charge
in the middle of the membrane. Thus, the biased equilibrium
with the ion forced to stay within the pore is substantially
different from the unbiased permeation event, which could imply
that SMD is better than US for this system.
3.4. Sampling and Convergence. We characterized the

convergence of PMF estimates with respect to increased sam-
pling with two methods. First, the available trajectories were split
in nonoverlapping blocks of different sizes, computing the PMF
profiles using the data contained in each, assuming G(0) = 0.
Figure 6a shows the PMF curves obtained using 10 bidirectional
trajectories each, i.e., 1�10 (first block), 11�20 (second block),
and so on, for a total of 100 profiles. Analogously, Figure 6b
shows PMF profiles computed with blocks of 50 bidirectional
pulls each (20 profiles), and Figure 6c shows the same using 250
bidirectional pulls at a time (4 profiles). For reference, in panels
(a�c) the thick blue line shows the PMF computed with all
available data. Increased sampling clearly improves the reprodu-
cibility of PMF curves. In particular, it appears that curves
obtained with only 10 bidirectional pulls each are affected by a
statistical error of the order of 10 kcal/mol, comparable to the
PMF depth.

We used the bootstrapping procedure outlined in Section 2.5
to quantify the effect of increased sampling on the variability of
the PMF depth, G(10)�G(0). Figure 6d shows the SD of the
PMF depth over the bootstrapped profiles, obtained including
different number of trajectories. The results confirm that the SD
for R = 10 trajectories is of the order of 5 kcal/mol, which
decreases to 3 for R = 50 and to 2 for R = 250. When using all of

Figure 4. (a) Work profiles for the pulls in groups H (37% of the pulls at v = 10 Å/ns) and L (63%), with the distinction drawn at t = 0.3 ns. Inset: PMF
profiles reconstructed considering the pulls of the two groups separately. (b and c) The putative structural explanation of the water file disruption in
group H. In these runs the water molecule preceding the pulled ion, W2, formed hydrogen bonds with the carbonyl atoms of the backbone close to the
dimer interface. The bonds were most frequently observed with residues Val1 of chain A (about 50% of the runs in group H) and Ala3 of chain B (70%).

Figure 5. Left: the position of water molecules and KSMD
þ at three

snapshots (60, 330, and 350 ps after the beginning of the run) during a
representative trajectory of group H. The ion steered upward (yellow)
laterally “slips past” the preceding water molecule in the file (W2). The
water molecule is held in place by hydrogen bonds with carbonyl
oxygens of the backbone and exchanges sides with the ion. Right: during
runs in group L, the water filling the channel is displaced together with
the ion, preserving the sequence of the file (knock-on).
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the 1000 available trajectories, the bootstrap analysis estimates a
statistical error of 1 kcal/mol.
Finally, we performed two additional simulation sets as

controls to check the influence of pulling speed on the PMF
depths and profiles. The structures for these runs were taken
from the previous study28 and were slightly smaller than the
production simulations (∼ 29 000 atoms in total). In the two
control sets the ion was pulled at v = 10 (221 bidirectional pulls)
and 2.5 Å/ns (171 bipulls), respectively. We used the aforemen-
tioned bootstrapping technique to compute the convergence of
the PMF depth in the two data sets (Table 1). The final PMF
profiles are qualitatively similar with each other and with one
obtained from the production simulations. Consistently to what
is observed in the production runs, decreasing the statistical error
below 2 kcal/mol requires significant computational effort for
both pulling speeds. Given that slow pulls require four times
as much simulation time as the fast ones, performing SMD at v =
10Å/ns appears to bemore computationally efficient for this system.

4. DISCUSSION AND CONCLUSIONS

In this paper we performed an extensive set of SMD
forward�reverse experiments, sampling a simple but realistic
biomolecular test system, gA, well beyond the state of the art, to
analyze the effect of increased sampling on the precision of the
estimate of the PMF of permeation of a potassium ion steered
through the channel.

The advent of accelerator processors and codes able to exploit
them, like ACEMD for graphical processing units,53 should play

an important role in reducing sampling limitations to obtain free
energy estimates up to the accuracy of the force fields. The SMD
protocol is well suited for high-throughputmolecular simulations
in distributed computing infrastructures, like GPUGRID. Still,
considering the particle being steered, the case of ion permeation
through gA is a relatively simplistic test case. In particular, a single
ion does not have orientational nor conformational degrees of
freedom; this is not the case when dealing with generic ligands,
whose internal degrees of freedom have to be sampled as well.

Figure 6. PMF curves computed in nonoverlapping blocks of (a) 10 bidirectional, (b) 50, and (c) 250 pulls. SD of the PMF depth with various amounts
of sampled trajectories, obtained by 200-fold bootstrapping (d).

Table 1. Statistical Uncertainty of the PMF Depth Estimate
(in kcal/mol), at Ion Pulling Speeds of v = 10 and 2.5 Å/ns,
Computed through Bootstrapping for Increasing Number of
Pullsa

PMF depth CI (kcal/mol)

pulls 10 Å/ns 2.5 Å/ns

10 8.3 8.7

25 5.4 6.9

50 3.9 5.8

100 3.2 4.3

150 2.8 3.9

171 � 3.6

221 2.5 �
aThe figures show the width of the 68% confidence interval (CI),
matching a 1-σ interval around the mean. Computation of each of the
slower pulls requires four times the computational effort of a fast one.
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The scientist has to prepare two initial systems (forward and
reverse) from which many simulations are spawned. Umbrella
sampling offers a similar degree of parallelism, as long as several
uncorrelated configurations are generated to start each US
window or a sufficient equilibration time (100 ns or more) is
allowed for each window.56 US simulations with stratification of
windows showedmuch less variability than the one reported here
for SMD, but the question remains of howmuch is actually due to
poorer sampling. As each US window is starting from a single
initial configuration, the US protocol is averaging the effective
potential on a small area of the configurational space close to it. If
multiple configurations are used, as in ref 56, similar levels of
fluctuations in the free energy are obtained.With US, the method
used to generate the initial configurations of the biasing windows
has a crucial importance, but it is subject to the specific choice of the
scientist; the SMD protocol mitigates the problem of generating
initial conditions because better sampling is achieved simply by
increasing number of trajectories. However, for gA, the US biased
equilibrium with the ion forced to stay within the pore was
structurally different from the unbiased configuration and thus
probably less representative of a permeation event than a SMDpull.

Finally, the choice of the pulling speed influences the amount
of pulls for a fixed computational cost: pulling too fast would
produce higher energy pathways but allows for more pulls, while
slower pulls would be closer to equilibrium but more computa-
tionally demanding. Given that the system is in nonequilibrium,
however, there may be regions of the phase space that only
become accessible after some transient time, like for the two
permeation pathways showed for the potassium ion in gA, and
faster pulling speeds may prevent some conformational transi-
tions from happening. Therefore, the preference of SMD versus
US is probably system dependent, and the biasing methodology
that produces the lesser perturbation compared to the unbiased
case should be chosen.

In the case studied here, thousands of pulls were required to
reach a statistical precision within 1 kcal/mol. Even though the
results were obtained on the basis of extensive experiments on a
specific, admittedly simple, system, similar considerations may
apply to more complex cases.
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ABSTRACT: Absolute pKa values of the amino acid side chains of arginine, aspartate, cysteine, histidine, and tyrosine; the C- and
N-terminal group of tyrosine; and the tryptophan radical cation are calculated using a revised density functional based molecular
dynamics simulation technique introduced previously [Cheng, J.; Sulpizi, M.; Sprik, M. J. Chem. Phys. 2009, 131, 154504]. In the
revised scheme, acid deprotonation is considered as a dissociation rather than a proton transfer reaction, and a correction term for
treating the proton as a hydronium ion is suggested. The acidity constants of the amino acids are obtained from the vertical energy
gaps for removal or insertion of the acidic proton and the computed solvation free energy of the proton. The unsigned mean error
relative to experimental results is 2.1 pKa units with amaximum error of 4.0 pKa units. The estimatedmean statistical uncertainty due
to the finite length of the trajectories is(1.1 pKa units. The solvation structures of the protonated and deprotonated amino acids are
analyzed in terms of radial distribution functions, which can serve as reference data for future force field developments.

1. INTRODUCTION

The prediction of pKa values of solvated molecules has
attracted much attention in the computational chemistry com-
munity over many years.1�32 This is not very surprising if one
takes into consideration that proton transfer is the most fre-
quently occurring reaction in nature, and an often encountered
reaction in technological processes. Protons play an important
role in energy conversion in living cells and fuel cells, facilitate ion
exchange in biological and synthetic membranes, and catalyze
chemical reactions at the active site of proteins and in synthetic
reactions. Central to a quantitative characterization of such
processes is the knowledge of the pKa values of the molecules
involved, as this quantity determines the protonation state of the
system at a given pH as well as the energetics for intra- or
intermolecular proton transfer. The ability to predict pKa values
from computation is very important, in particular when the
system under consideration is not amenable to experimental
measurements.

The majority of pKa calculations of solvated molecules have
been carried out by treating the solute at the QM level, while
assuming that the interactions with the environment can be
modeled by an electric continuum; see refs 1�18 for a selection
of papers that have appeared in the past 10 years. Using
thermodynamic cycles, the deprotonation free energy is ex-
pressed as the sum of the deprotonation free energy of the
molecule in the gas phase and the solvation free energy difference
of products (deprotonated acid plus proton) and the reactant
(protonated acid). The advantage of such a scheme is that high-
level ab initio methods can be used to describe the chemical
deprotonation step. The disadvantage is that short-range

intermolecular interactions with solvent molecules, such as
hydrogen bonds and ion�dipole interactions, are not explicitly
accounted for, although they are considered to be particularly
important to describe solvation free energies.

In a recent study, a number of QM-continuum protocols for
calculation of pKa values of biologically important carbonic acids
have been compared.16 While none of the standard continuum
calculations were reported to give a satisfactory overall perfor-
mance for neutral and charged acids, it was possible to obtain in
some cases good agreement with experimental results by either
comparing relative pKa values of iso-Coulombic deprotonation
reactions or by adding explicit solvent molecules in the QM
calculation. It was concluded that the consideration of the “real”
character of the solvent is of major importance in the future
development of solvation models beyond the continuum
approximation.

An alternative to QM-continuum computations is the density
functional based molecular dynamics (DFMD) calculation of
pKa values.

25�32 In contrast to QM-continuum methods, in the
DFMD approach, both the solute and the solvent are treated at
the DFT level of theory, and the deprotonation free energy can
be obtained from the statistical mechanics formalism of con-
densed phase simulation. The advantage of DFMD is that
solute�solvent interactions are accounted for at the same QM
level of theory, albeit at a higher computational cost and a more
restricted choice of the electronic structure method. In early
applications, proton transfer free energies were obtained from
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the potential of mean force for transfer of a proton from the
solvated acid to a neighboring water molecule.25,26 Using this
method, the pKa value of an inorganic acid

25 could be calculated
to a good degree of accuracy as well as the proton transfer free
energy in an enzyme active site.26

More recently, some of us have developed an alternative
simulation protocol, by combining DFMD with the thermody-
namic integration method (DFMD-TI).29�32 Here, the pKa

value is obtained in a two-step process. In the first step, the free
energy is calculated for the alchemical transformation of the
acidic proton into a dummy atom in the condensed phase by
sampling the vertical DFT energy gap for this transformation
along DFMD trajectories. In the second reaction step, the free
energy for the transfer of the dummy atom into the gas phase is
calculated. The absolute deprotonation free energy is the sum of
the two contributions, and the pKa value is the difference in the
absolute deprotonation free energy for the acid under considera-
tion and the solvated proton (see section 2 for details). Similar
simulation approaches have been carried out before with
classical19�21 or QM/MM22�24 potentials. However, application
in the framework of all-QM DFMD remains scarce.

The aim of our present study is three-fold. First, we present a
scheme for the DFMD-TI computation of pKa values that is
somewhat different from our previous formulation. Here, we
consider deprotonation as a dissociation reaction rather than a
proton transfer reaction, and we suggest a correction term for
treating the solvated proton as a hydronium ion. Second, we
investigate the performance of this method for the prediction of
absolute pKa values of naturally occurring amino acids. In
particular, we investigate the relative error of this method with
respect to experimental results, and how the achieved accuracy
compares with that of typical continuum calculations. Third, as
the pKa calculation requires us to run DFMD of the protonated
and deprotonated solute, we provide reference data for the
solvation structure of the amino acids in both protonation states.
Such structural information is important for the future develop-
ment of QM/MM models for protein pKa predictions, where
aqueous amino acid solutions serve as reference states. The pKa

calculations carried out for tyrosine and the tryptophan cation
radical are similar to the ones of ref 33, where proton transfer
coupled reduction potentials of these amino acids are reported.

We find that DFMD-TI in the present form can predict
absolute acidity constants of amino acids to an accuracy of
(2.1 pKa units, which is comparable to the performance of some
of the best QM-continuum calculations carried out recently for a
set of similar acids.17

2. THEORY

2.1. Definition of pKa Value.We consider the dissociation of
an acidic molecule AH in aqueous (aq) solution to the solvated
proton Hþ(aq), and the conjugate base A�(aq),

AHðaqÞ f A�ðaqÞ þHþðaqÞ ð1Þ
The pKa value of AH(aq) is defined as the negative logarithm of
the equilibrium constant Ka of reaction eq 1:

pKa ¼ � log Ka ð2Þ

Ka ¼ aA�aHþ

c�aAH

� �
ð3Þ

where aX is the equilibrium activity of species X, which is equal
to the equilibrium concentration for dilute solutions, and c� =
1 mol dm�3 is the standard concentration.
The aim is the computation of the standard reaction free

enthalpy of reaction eq 1, ΔdpG�, related to the equilibrium
constant by

ΔaG� ¼ � kBT ln Ka ð4Þ
where the subscript “dp” refers to deprotonation. In practice, we
neglect the (small) difference between free enthalpies and free
energies in condensed phase reactions and formulate a computa-
tional scheme for the reaction free energy for deprotonation,
ΔaA�. For this purpose, we split the full reaction eq 1 into two
steps. In the first step, the proton is transferred into the gas phase
while the conjugate base remains in aqueous solution:

AHðaqÞ f A�ðaqÞ þHþðgÞ ð5Þ
and in the second step the proton is transferred from the gas to
the solution phase, the reverse process of the reaction

HþðaqÞ f HþðgÞ ð6Þ
In order to make the reaction eq 5 amenable to DFMD
computation, we describe it by a series of two alchemical
transformations:

AHðaqÞ f Ad�ðaqÞ ð7Þ

Ad�ðaqÞ f A�ðaqÞ þHþðgÞ ð8Þ
In the reactant state of reaction eq 7, the acidic proton is treated
like the rest of the system, at the DFT level of theory. The proton
is transformed into a dummy atom in the product state as
indicated by the symbol “d”. The dummy atom is connected to
A by harmonic spring potentials (see eq 18), but it does not
interact with the system otherwise. In reaction eq 8, the artificial
spring is removed, and the dummy atom is transferred from the
aqueous to the gas phase and transformed back into a proton.
The free energy changes of reaction eqs 7 and 8 are denoted as
ΔdpAAH and �ΔAAd, respectively. When adding a quantum
correction for nuclear motion, ΔAqc, one obtains the reaction
free energy of reaction eq 5:

ΔdpA
�
AH ¼ ΔdpAAH �ΔAAd �ΔAqc ð9Þ

The computation of the desolvation free energy of the aqueous
proton, reaction eq 6, is complicated by the transient nature of
this species. The solvated proton is often modeled as a hydro-
nium ion (H3O

þ(aq)), but one should bear in mind that this is
only an idealized structure adopted by the proton during its
structural diffusion in aqueous solution.34 Thus, we make a clear
distinction between the “real” solvated proton Hþ(aq) and the
idealized hydronium ion. In order to compute the desolvation
free energy, we consider the following reaction steps:

HþðaqÞ þH2OðaqÞ f H3O
þðaqÞ ð10Þ

H3O
þðaqÞ f H2OdðaqÞ ð11Þ

H2OdðaqÞ f H2OðaqÞ þHþðgÞ ð12Þ
In the first step, reaction eq 10, the idealized hydronium ion is
“assembled” from the hydrated proton and a water molecule with
a reaction free energy of �ΔAH3Oþ. The second and the third
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reaction steps, eqs 11 and 12 with reaction free energies ΔdpAAH
and �ΔAH2Od, respectively, are similar to the two reaction steps
eqs 7 and 8 with AH replaced by the hydronium ion. The sum of
all free energy contributions gives the free energy for desolvation
of the aqueous proton:

ΔdsA
�
Hþ ¼ ΔdpAH3Oþ �ΔAH2Od �ΔAqc �ΔAH3Oþ ð13Þ

where we have also added a quantum correction term.
Combining eqs 2, 4, 9, and 13, the pKa value of AH is given

by the difference in the deprotonation free energy of AH and
the desolvation free energy of the solvated proton, reaction eqs 5
and 6:

pKa ¼ 1
ln 10kBT

ðΔdpA
�
AH �ΔdsA

�
HþÞ ð14Þ

with ΔdpAAH� andΔdsAHþ� computed according to eqs 9 and 13,
respectively.
The present definition of pKa is somewhat different from the

one used previously.29�31 Here, we consider acid deprotonation
according to Arrhenius as a dissociation reaction (eq 1), whereas
in previous work we considered it according to Brønsted, as a
proton transfer reaction:

AHðaqÞ þH2OðlÞ f A�ðaqÞ þH3O
þðaqÞ ð15Þ

with equilibrium constant

K
0
a ¼

aA�aH3Oþ

c�aAH

� �
ð16Þ

The subtle difference between the two definitions is that in the
Brønsted picture one assumes that the acidic proton is chemically
bonded to a solvent molecule forming a solvated hydronium ion,
whereas in the Arrhenius picture this assumption is not made.
Indeed, the equilibrium constants eqs 3 and 16 differ only by the
notation for the proton, aHþ and aH3Oþ, respectively. While this
distinction is of course irrelevant in experiments, it affects the
results of computations, where a model for the proton in solution
must be chosen. The difference between the two pKa definitions
is the free energy for assembling the hydronium ion from the
solvated proton and a water molecule, �ΔAH3Oþ of reaction
eq 10. We will estimate ΔAH3Oþ in section 2.5, after we have
described the computation of the other free energy terms that
appear in the expressions for ΔdpAAH� and ΔdsAHþ� .
2.2. Free Energy for Alchemical Transformation, ΔdpAAH.

The free energy for transformation of the proton into a dummy
atom, ΔdpAAH of reaction eqs 7 and 11, is computed using
Kirkwood’s coupling parameter method.35 A mapping potential
Eη is defined that couples the potential energy surfaces of the
reactant and product states.

Eη ¼ ð1� ηÞE0 þ ηE1 ð17Þ
In eq 17, η is a coupling parameter that takes values from 0 to 1.
E0 is the DFT potential energy surface (PES) of AH(aq) (or
H3O

þ(aq)), and E1 is the DFT PES of Ad�(aq) (or H2Od(aq))
plus the restraining potential Vr that keeps the dummy atom
attached to A (H2O).

Vr ¼ ∑
bonds

kr
2
ðr� reqÞ2 þ ∑

angles

kθ
2
ðθ� θeqÞ2

þ ∑
dihedrals

kj
2
ðj� jeqÞ2 ð18Þ

The presence of the restraining potential in the product state E1
allows one to generate positions for insertion of the proton as
required for the energy gap calculation according to eq 20. Note
that E0 of the weakly acidic amino acids does not contain the
restraining potential Vr, whereas E0 of the hydronium ion does
contain Vr in order to suppress spontaneous dissociation and
proton hopping that would otherwise occur during the DFMD
simulation.
The free energy difference between reactant and product

described by the PESs E0 and E1, respectively, is the thermo-
dynamic integral:

ΔdpAAH ¼ Aðη ¼ 1Þ � Aðη ¼ 0Þ

¼
Z 1

0
dηÆΔdpEAHæη ð19Þ

where ΔE is the vertical energy gap

ΔdpEAH ¼ E1 � E0 ð20Þ
and the brackets Æ 3 3 3 æη denote the usual thermal average on the
PES Eη. The vertical energy gap eq 20 is sampled along DFMD
trajectories on the PES Eη. In present calculations, the full
thermodynamic integral eq 19 is approximated using Simpson’s
rule:

ΔdpAAH � ΔATP

¼ 1
6
ðÆΔdpEAHæ0 þ ÆΔdpEAHæ1Þ þ

2
3
ÆΔdpEAHæ0:5 ð21Þ

and compared to the standard linear response (LR) expression:

ΔdpAAH � ΔALR ¼ 1
2
ðÆΔdpEAHæ0 þ ÆΔdpEAHæ1Þ ð22Þ

The LR approximation is exact if the thermal probability
distribution of ΔE is Gaussian, or equivalently, if the root-
mean-square fluctuations (rmsf) of the energy gap

ση ¼ ðÆðΔdpEAH � ÆΔdpEAHæηÞ2æηÞ1=2 ð23Þ
are the same for any value of η.
2.3. Free Energy for Dummy Atom Insertion, ΔAAd. The

reaction free energy for the reverse of reactions eq 8 and 12,
ΔAAd, is related to the restraining potential Vr by

ΔAAd ¼ kBT lnÆexpðβVrÞæ1 ð24Þ
Equation 24 is rigorous and can be readily derived from statistical
mechanical principles (see the Supporting Information (SI) of
this article for a proof). It is the free energy of transforming a free
dummy particle confined to the volume V� = 1 mol/c� plus a
solvated species A� at concentration c� and described by the PES
E1 � Vr, to the solvated species Ad�, described by the PES E1
(that is, with the dummy atom attached to A�, see eq 12 in the
SI). In the derivation of eq 24, the standard concentrations of the
aqueous phase and gas phase are assumed to be the same, c� = 1
mol dm�3. A term kBT ln(c�RT/p�) has to be added to eq 24 if
the conventional standard state of the gas phase is used. The free
energy ΔAAd thus depends on the strength of the dummy
potential, and also on the definition of the standard volume V�.
Our previously derived expression for ΔAAd reads

30

ΔAAd ¼ � kBT lnðc�Λ3
Hþ fAdÞ ð25Þ
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where fAd is the ratio of the internal gas-phase partition functions
of Ad� and A�; fAd = qAd�

int /qA�
int with qint the product of electronic,

vibrational, and rotational partition functions; and ΛHþ is the
thermal wavelength of the proton (1.01 Å at 298 K). In the SI, we
show that eq 25 follows from eq 24, if one assumes that the
excess chemical potentials of A� and Ad� as well as their
thermal wavelengths are the same. One can expect that the
first approximation is a very good one as long as the presence
of the dummy atom does not induce any major changes in the
equilibrium structure of the solute. The second approximation
is valid if the mass of A is much larger than that of the dummy
atom, which is usually the case. As discussed in the SI, we
prefer to calculate ΔAAd according to eq 25, since the MD
estimate of the expectation value on the rhs of eq 24 gives very
poor results. The ratio of gas-phase partition functions, fAd, is
approximated by the three mode vibrational partition
function:30

fAd ¼ T3

θvib1 θvib2 θvib3
ð26Þ

where θi
vib = hνAd,i/kB is the vibrational temperature and νAd,i

is the frequency of mode i. The approximation eq 26 is
justified when the mass of A is sufficiently large compared
to the mass of the dummy atom, so that the vibrations of the
latter can be treated as local modes decoupled from the
molecular modes of A. The effect of the dummy atom on the
inertial tensor used to calculate the rotational partition
function is ignored. We have previously shown that under
these approximations ΔAAd is the free energy for confining
the free dummy particle from volume V� to the volume
(2π)3/2Δ1Δ2Δ3, where Δi = (kBT/ki)

1/2 is the mean square
displacement of the local normal mode i of the dummy
particle with force constant ki.

30 The same physically
appealing picture can be derived from eq 24 (see SI for
details). For fH2Od, eq 26 is not a good approximation. Here,
the full classical partition functions of H2Od and H2O
have to be calculated. We refer to ref 30 for an explicit
expression.
2.4. Quantum Corrections,ΔAqc. The first two terms on the

rhs of eqs 9 and 13,ΔdpAAH�ΔAAd, are the reaction free energy
for the deprotonation reactions eqs 7 and 8 and eqs 11 and 12, if
one assumes classical ionic motion. Nuclear quantum effects
are expected to be significant, however, because in these
reactions three modes of rather high frequency are lost when
lifting the proton into the gas phase. We correct for this effect
by subtracting the classical vibrational free energy of the acid
in the gas phase using the three mode model (ΔAcl

vib) and
adding the corresponding quantized vibrational free energy
(ΔAq

vib):

ΔAqcðXÞ ¼ ΔAvib
q ðXÞ �ΔAvib

cl ðXÞ ð27Þ

For X = AH,

ΔAvib
q ðAHÞ ¼ � kBT ln

Y3
i¼ 1

expð � hνAH, i=ð2kBTÞÞ
1� expð � hνAH, i=ðkBTÞÞ

� ∑
3

i¼ 1

1
2
hνAH, i ð28Þ

ΔAvib
cl ðAHÞ ¼ � kBT ln

Y3
i¼ 1

kBT
hνAH, i

ð29Þ

where νAH,i denotes the three modes of the proton. For the
hydronium ion, X = H3O

þ, all modes of the solute are taken
into account:

ΔAvib
q ðH3O

þÞ ¼ ∑
6

i¼ 1

1
2
hνH3Oþ, i � ∑

3

i¼ 1

1
2
hνH2O, i ð30Þ

ΔAvib
cl ðH3O

þÞ ¼ � kBT ln
Y6
i¼ 1

kBT
hνH3Oþ, i

� ln
Y3
i¼ 1

kBT
hνH2O, i

 !

ð31Þ

2.5. Dissociation Free Energy of H3O
þ, ΔAH3Oþ. The free

energy for dissociation of the hydronium ion into the solvated
proton and a water molecule, the reverse process of reaction
eq 10, can be written as follows:

ΔAH3Oþ ¼ kBT ln
c�Λ3

HþΛ3
H2O

Λ3
H3Oþ

qqH3Oþ

qqHþq
q
H2O

ð32Þ

where qX
q is the quantum partition function of the solvated

species X after separation of the thermal wavelength ΛX. The
ratio of partition functions on the rhs of eq 32 is difficult to
calculate in practice due to the delocalized nature of the solvated
proton. To estimate this term, we adopt a mixed quantum-
classical scheme, where the hydronium ion is modeled with one
quantum proton and two classical protons, H2OHq

þ, interacting
with a classical environment. The ratio of partition functions
qH3Oþ
q /qH2O

q is then approximated by an effective quantum
vibrational partition function of the single quantum proton,
qHþ,eff
q = qH3Oþ

q /qH2O
q :

ΔAH3Oþ ¼ kBT ln c�Λ3
Hþ

qqHþ, eff
qqHþ

¼ kBT ln c�Λ3
Hþ

qq0Hþ, eff
qqHþ

�ΔEzpHþ, eff ð33Þ

where we have neglected the (small) difference in the thermal
wavelengths of water and the hydronium ion, similary as in eq 25. In
the last equation, we have separated qHþ,eff

q into the zero-point energy
term ΔEHþ,eff

zp and the partition function qHþ,eff
q0 , in which vibrational

energies are referred to the vibrational ground state, so that qHþ,eff
q0 =1

forT = 0. Assuming that the zero-point motion for the proton in the
hydronium ion and the solvated proton are similar, we obtain

ΔAH3Oþ � kBTln c�Λ3
Hþq

q0
Hþ, eff ð34Þ

Equation 34 is of course an approximation that could in principle be
validated with path-integral DFMD calculations. This equation can
be further simplified by noting that the vibrational temperature
constant of a proton is significantly higher than room temperature,
i.e., qHþ,eff

q0 ≈ 1. Thus, under the above assumptions, the dissociation
free energy is equal to the translational free energy of the proton

ΔAH3Oþ � kBT ln c�Λ3
Hþ ð35Þ

We find that eq 35 compensates for the loss in the translational free
energy for dummy atom insertion (eq 25), thereby leaving the
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number of degrees of freedomunchanged. Indeed, this should be the
case for the transfer of a proton from the gas to the aqueous phase.
2.6. Final Expression for pKa. We can now write the pKa

explicitly in terms of the deprotonation integrals and the dummy,
quantum, and dissociation corrections. Insertion of eqs 9 and 13 in
eq 14 gives

pKa ¼ 1
ln 10kBT

ðΔdpAAH �ΔdpAH3Oþ �ΔAAd þΔAH2Od

�ΔAqcðAHÞ þΔAqcðH3O
þÞ þΔAH3OþÞ ð36Þ

and insertion of eqs 19, 25, and 35 gives

pKa ¼ 1
ln 10kBT

Z 1

0
dηÆΔdpEAHæη �

Z 1

0
dηÆΔdpEH3Oþæη

 

þ kBT ln
qintAd�q

int
H2O

qintA�qintH2Od

�ΔAqcðAHÞ þΔAqcðH3O
þÞ

þ kBT ln c�Λ3
Hþ

!
ð37Þ

Wewill see that the vibrational frequencies of the dummy atom in the
acid (Ad�) and in the hydronium (H2Od) are rather similar.
Consequently, the third term on the rhs of eq 37 will be small. The
same is true for the proton frequencies inmost acids, leading to partial
cancellation of the fourth and fifth terms on the rhs of eq 37.Thus, the
pKa of an acid is approximately equal to the difference of the
deprotonation integral of the acid and the hydronium ion corrected
by the standard translational free energy of the proton.

3. SIMULATION DETAILS

Aqueous solutions of amino acids were simulated under
periodic boundary conditions. Each unit cell comprised of one
amino acid molecule (modified arginine (Argmod), aspartic acid
(Asp), cysteine (Cys), histidine (His), tryptophan radical cation
(Trp*), and tyrosine (Tyr)), and a variable number of water
molecules (48�55, see Table 1). A model aqueous solution for
the simulation of Tyr is shown in Figure 1. The long side chain of
arginine was shortened by two CH2 groups in order to fit the
molecule into the simulation box specified below.We refer to this
amino acid as Argmod. The pKa calculations are for the side chain
ionizable proton, if not specified otherwise, and the N- and
C-termini of the amino acids are treated in the ionized form. For
pKa calculation of the C-terminus of tyrosine (TyrC), the

N-terminus and the side chain were protonated, and for pKa

calculation of the N-terminus (TyrN), the C-terminus was depro-
tonated and the side chain was protonated. The net charge of the
solutions is compensated by the neutralizing background charge
included in the Ewald summation of the electrostatic energy. The
number of water molecules per unit cell was obtained from classical
MD simulation runs of each amino acid, by varying the number of
solvent molecules until a box length close to 12.426 Åwas obtained.
This value was taken as the dimension of the cubic unit cell in all
DFMD simulations described below.

A snapshot from an equilibrated classical MD trajectory of the
protonated amino acid (η = 0) was taken as an initial configura-
tion for DFMD. The solution was equilibrated for 5 ps at 330 K,
and the following 10�15 ps of dynamics was taken for calcula-
tion of thermal averages. A higher temperature than the standard
temperature of 298 K is chosen to compensate for the under-
estimation of dynamical properties due to the approximate
nature of the exchange correlation functional used (see below).
The MD time step was 0.5 fs. Trajectories for the deprotonated
state (η = 1) and for the midpoint (η = 0.5) were generated
similarly. The thermal averages in eqs 21 and 22were obtained by
calculating the energy gap, eq 20, for about 150 equidistantly
spaced snapshots of these trajectories. The calculations for

Table 1. Force Constants and Equilibrium Values for Bonds
(kr, req), Angles (kθ, θeq), and Dihedrals (ku, ueq) of the
Restraining Potential Vr for the Dummy Particle (eq 18)

kr (au) req (Å) kθ (au) θeq (deg) kj (au) jeq (deg) n (H2O)
a

Argmod 0.2 1.03 0.2 122 0.02 13 54

Asp 0.2 1.02 0.2 111 0.20 9 53

Cys 0.2 1.35 0.2 97 0.02 92 55

His 0.2 1.05 0.2 123 0.02 173 54

Trp* 0.2 1.03 0.2 125 0.20 178 48

Tyr 0.2 1.00 0.2 110 0.02 20 53

TyrC 0.2 1.03 0.2 112 0.02 166 53

TyrN 0.2 1.05 0.2 112 0.02 47 53

H3O
þ 0.2 1.00 0.2 111 63

aNumber of solvent water molecules per unit cell.

Figure 1. Aqueous model solution used for calculation of the pKa value
of tyrosine (Tyr). The latter is depicted in ball and stick representation,
and the watermolecules are depicted in stick representation. Color code:
C, cyan; O, red; N, blue; H, white. The arrow indicates the hydrogen
atom that is treated quantum mechanically in the protonated state (H)
and as a dummy atom in the deprotonated state (d).

Table 2. Local Normal Mode Frequencies of the Dummy
Atom d (νAd,i) and of the Quantum Mechanically Treated
Proton H (νAH,i) for the Gas Phase Amino Acids Ad and AH,
Respectively, and the Vibrational Temperature θi

vib Corre-
sponding to νAd,i

νAd,i (cm
�1) θi

vib (K) νAH,i (cm
�1)

Argmod 440, 1182, 2290 633, 1701, 3295 263, 1204, 3340

Asp 1186, 1797, 2290 1706, 2585, 3295 577, 1141, 3446

Cys 284, 893, 2290 409, 1285, 3295 240, 877, 2542

His 433, 1154, 2290 623, 1660, 3295 575, 1165, 3417

Trp* 1182, 1448, 2290 1701, 2083, 3295 503, 1203, 3392

Tyr 1212, 1296, 2290 1744, 1865, 3295 382, 1208, 3566

TyrC 396, 1171, 2290 570, 1685, 3295 667, 1131, 3420

TyrN 384, 1152, 2290 552, 1657, 3295 1183, 1227, 3173

H3O
þ a 1450, 1810, 1920 2090, 2600, 2760 1032, 1668, 1692

3340, 3660, 3760 4810, 5260, 5400 3449, 3523, 3540
a νAd,i and θi

vib from ref 30.
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aqueous H3O
þwere carried out in the Eigentype structure of the

hydronium ion as described in ref 29. All three O�H bonds were
restrained by a harmonic potential with a force constant of 1.0 au
and an equilibrium bond length of 1.0 Å to avoid spontaneous
proton transfer to a neighboring water molecule. The energy E0
used to calculate the energy gap, eq 20, does not include these
additional potential terms. The parameters defined in eq 18 for
the dummy potential are summarized in Table 1. The frequencies
used for the calculation of ΔAAd and ΔAqc are summarized in
Table 2.

The exchange-correlation energy was calculated according to
Becke36 and Lee, Yang, and Parr.37 Core electrons and the nuclei
were described using Goedecker�Teter�Hutter pseudopoten-
tials, and the valence electrons were expanded in the TZV2P
atomic basis set. The density cutoff for the auxiliary plane wave
basis was 280 Ry. The tryptophan radical cation (Trp*) was
treated at the local spin density functional level of theory,
enforcing the lowest (doublet) spin state in both protonation
states. DFMD simulations were carried out with the CP2k
simulation package.38 The initial equilibration of the structures
was performed using the AMBER99 force field39 and TIP3P
water40 as implemented in the NAMD simulation package.41

Snapshots of the equilibrated systems can be made available on
request.

4. RESULTS

4.1. Vertical Energy Gaps.The thermal average of the vertical
energy gaps, ÆΔdpEAHæη, and the corresponding root-mean-
square fluctuations (rmsf), ση, were obtained from DFMD
simulation of the aqueous amino acids and are summarized in
Table 3. The mean values are reasonably well converged, despite
the rather short simulation time of 10�15 ps. The statistical
uncertainty, estimated as half the difference of the mean value
obtained for the first and the second half of the trajectory, is no
more than about 0.1 eV for the initial (η = 0) and midpoint states
(η = 0.5). The uncertainty for the final state (η = 1) is in general
larger, 0.1�0.3 eV. This trend is paralleled by the rmsf of the
energy gap. In the initial state, the rmsf is between 0.2 and 0.3 eV,
which, interestingly, is in the same range as the rmsf reported for
vertical ionization of aqueous solutes42,43 and proteins.44 The
rmsf in the final state is significantly larger by a factor of 2 (Cys)
to 7 (Tyr).

The large fluctuations in the final state are a consequence of
the very small distance between solvent molecules and the
inserted proton. The water molecules are oriented so as to
solvate the deprotonated acid Ad� (note that the dummy atom
does not interact with the solvent). Thus, two to three hydrogen
atoms of the solvent are within 0.5�1 Å of the dummy atom.
This unusually small H�H distance leads to relatively high
energies when the dummy atom is transformed into the proton,
as required for the calculation of the vertical energy gap, eq 20. As
a consequence, the fluctuations of this energy and of the energy
gap are large, too. Yet the distance is large enough for the
insertion to be feasible; i.e., there is no hard core repulsion
problem, which is usually the case in alchemical transformations.
In fact, the proton affinities are still positive in the final state. By
contrast, in the protonated state AH, the proton is typically
solvated by one solventmolecule at aH�Odistance of about 2 Å.
Transformation of the proton into the dummy atom does not

Table 3. Summary of Vertical Energy Gaps and Root-Mean-Square Fluctuations for Removal and Insertion of an Excess Proton
out of or into Aqueous Solutions of Amino Acids, As Obtained from Density Functional Based Molecular Dynamics Simulationa

AH ÆΔdpEAHæ0b σ0
c ÆΔdpEAHæ0.5b σ0.5

c ÆΔdpEAHæ1b σ1
c ΔALR

d ΔATP
e ΔAAd

f ΔAqc
g

Argmod 17.75( 0.11 0.29 16.48( 0.03 0.26 14.08( 0.13 0.84 15.92 16.29 0.32 0.17

Asp 17.43( 0.02 0.30 15.55( 0.10 0.28 13.41( 0.10 0.65 15.42 15.50 0.35 0.18

Cys 17.31( 0.08 0.26 15.97( 0.16 0.27 14.20( 0.06 0.49 15.79 15.93 0.33 0.12

His 17.33( 0.02 0.20 16.17( 0.02 0.21 13.14( 0.11 1.15 15.23 15.85 0.31 0.18

Trp* 16.97( 0.04 0.21 15.73( 0.03 0.19 13.60( 0.05 0.98 15.29 15.57 0.35 0.17

Tyr 17.79( 0.07 0.25 16.27( 0.13 0.33 12.67( 0.34 1.76 15.22 15.94 0.34 0.18

TyrC 17.40( 0.07 0.27 15.72( 0.08 0.30 13.61( 0.16 0.77 15.50 15.64 0.31 0.18

TyrN 17.49 ( 0.07 0.27 16.34( 0.10 0.26 13.06( 0.19 1.28 15.28 15.98 0.31 0.19

H3O
þ 17.40( 0.03 0.28 15.46( 0.00 0.31 11.98( 0.07 0.84 14.69 15.20 0.34 0.20

a Energies are for protonation/deprotonation of the side chain, except for TyrC and TyrN, where the C-terminus and N-terminus is protonated/
deprotonated. All energies are in eV. bThermal average of the energy gap eq 20 for η = 0, 0.5, and 1. c Equation 23 for η = 0, 0.5, and 1. d Equation 22.
e Equation 21. f Equation 25 using the data given in Table 2. g Equation 27 using the data given in Table 2.

Table 4. Calculated Free Energies of Deprotonation and
Comparison of Calculated and Experimental Absolute pKa

Values of Amino Acids

AH ΔdpAAH� a (eV) ΔdpAAH� b (eV) pKa (calc)
c pKa (exp)

d

Argmod 15.43( 0.08 15.80( 0.03 16.1( 0.6 12.10

Asp 14.89( 0.05 14.97( 0.07 2.0( 1.2 3.71

Cys 15.34( 0.05 15.48( 0.11 10.7( 1.8 8.14

His 14.74( 0.06 15.36( 0.02 8.6( 0.4 6.04

Trp*e 14.77( 0.03 15.05( 0.02 3.4( 0.4 4.30f

Tyre 14.70( 0.17 15.42( 0.11 9.7( 1.8 10.10

TyrC 15.01( 0.09 15.15( 0.06 5.1( 1.0 2.24

TyrN 14.78 ( 0.10 15.48( 0.07 10.7( 1.2 9.04

Hþ 14.34( 0.04 14.85( 0.01
a Equation 9 for the amino acids, using the linear response approxima-
tion (LR) toΔdpAAH,ΔALR of eq 22, and eqs 25 and 27 for estimation of
ΔAAd and ΔAqc, respectively. For the solvated proton (Hþ), the
computed desolvation free energy is given, ΔdsAHþ� of eq 13. ΔAH3Oþ
in eq 13 is approximated by eq 35. Data are taken from Table 3. bAs in
footnote a, but withΔdpAAH estimated by the three-point approximation
ΔATP of eq 21 (TP).

c Equation 14 using the TP estimate for ΔdpAAH.
dRef 48 if not specified otherwise. eThe numerical values differ some-
what from the values given in ref 33 due to different system composition
for Tyr and the neglect of quantum corrections for Tyr and Trp* in ref
33. fRef 49.
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lead to high energy solvation structures. Hence, the fluctuations
are smaller in the initial state.
According to our explanation, one would expect the difference

in the rmsf of the gap in the initial and final states to increase with
increasing strength of solvation of the deprotonated state (as this
would lead to shorter H�H distances in the protonated state).
This is indeed the case. For deprotonated Cys, the first peak of
the radial distribution function between the S atom and the
hydrogen atoms of the solvent (Hw) is at a rather large distance,
2.4 Å, giving the smallest difference in rmsf, whereas for
deprotonated Tyr the first peak of the O�Hw radial distribution
is at a very small distance, 1.6 Å, giving the largest difference
in rmsf.
4.2. Free Energies and Absolute pKa Values. The free

energies ΔdpAAH� of eq 9 and ΔdsAHþ� of eq 13 are summarized
in Table 4. They include the deprotonation free energy, the
dummy and quantum correction, and, in case of ΔdsAHþ� , the
thermochemical correction for the hydronium ion. The depro-
tonation free energy ΔdpAAH was calculated from the average
energy gaps according to the three-point (TP) approximation of
the thermodynamic integral, eq 21 (third column in Table 4),
and according to the linear response formula (LR), eq 22
(second column in Table 4). It is already clear from the above
observations that linear response is not a good approximation in
the present calculations. For this approximation to hold, the
rmsf’s in the initial and final states have to be the same or should
at least be similar. Indeed, the LR estimate differs by up to 0.7 eV
(Tyr, TyrN) from the TP estimate, but also smaller deviations are
observed (0.1 eV, Asp). Similar results were found in previous
pKa calculations of ammonia,29 indicating that three points are
the absolute minimum for evaluation of the thermodynamic
integral, eq 19. An alternative cumulant expansion of the free
energy ΔdpAAH up to second order (which requires the simula-
tion of the two end states only, similarly to LR) does not give an
improvement over the linear response estimate.
The deprotonation free energies ΔdpAAH� obtained from the

TP approximation of the thermodynamic integral correlate
reasonably well with the experimental pKa values, see Figure 2.
The R2 value for the linear fit is 0.93, and the computed slope of
64 meV is in good agreement with the theoretical slope of kBT ln
10 = 59 meV. The correlation with experimental results is poor
for the linear response estimates, showing again that this
approximation cannot be applied for the calculation of pKa

values. The absolute pKa values are obtained according to
eq 14 by subtracting the desolvation free energy of the solvated
proton, ΔdsAHþ� , from ΔdpAAH� . The results are summarized in
Table 4. We obtain an unsigned mean error (UME) of 2.1 pKa

units, a signed mean error (SME) of þ1.3 pKa units, and a
maximum error of 4.0 pKa units. The agreement is fairly good if
one takes into account the average statistical uncertainty of 1.1
pKa units, caused by the limited length of the DFMD trajectories.
4.3. Importance of ΔAH3O

þ, ΔAAd, and ΔAqc. In view of
possible simplifications of the computational procedure, it is of
particular interest to analyze the importance of the terms
ΔAH3Oþ, ΔAAd, and ΔAqc, which relate the thermodynamic
integral (eq 19) to the deprotonation free energies (eq 9) and
absolute pKa values (eq 2). Of the three corrections, the
thermochemical correction for the hydronium ion, ΔAH3Oþ, is
the most important one, amounting to �0.19 eV according to
the approximation eq 35. The effect is a decrease in absolute pKa

by 3.2 units for all amino acids; relative pKa values remain
unchanged.

Numerical values for the other terms ΔAAd and ΔAqc are
summarized in Table 3. We find that the dummy correction
ΔAAd obtained from the gas phase partition function formula
(eq 25) lies in the interval 0.31�0.35 eV for all amino acids
investigated as well as for the hydronium ion. Thus, the effect of
this correction is small, leading typically to an increase in absolute
pKa by less than 0.5 units and to a change in relative pKa by less
than 0.7 units. Indeed, we aimed at keeping the variation inΔAAd

small by choosing the equilibrium geometry of the dummy atom
to be close to that of the proton. In this way, one also avoids
introducing additional barriers for the transformation of the
proton into the dummy atom.
The vibrational quantum correction ΔAqc varies only margin-

ally among amino acids, 0.17�0.19 eV, except for Cys, where a
significantly smaller value of 0.12 eV is obtained. This trend is not
surprising if one bears in mind that the quantum correction
increases with increasing frequencies. While in all amino acids
except Cys the proton is bound to a (light) second row atom (O
or N), which gives rise to high frequencies in the range
3100�3600 cm�1, in the case of Cys, the proton is bound to
the heavier sulfur atom with a maximum frequency of about
2500 cm �1 (see Table 2). The hydronium ion has three modes
that have a frequency larger than 3400 cm�1. It thus exhibits the
largest quantum correction. However, the difference in quantum
correction between the amino acids and the hydronium ion
(which enters the pKa calculation) is rather small, 0.01�0.03 eV,
but significant for Cys, 0.08 eV. This corresponds to an increase
in the absolute pKa value by 0.2�0.5 and 1.4 units, respectively.
Thus, we conclude that the quantum correction for deprotona-
tion from N and O atoms is relatively small, at least according to
the simple correction model used, but can be significant if
deprotonation from heavier heteroatoms is considered.
4.4. Solvation Structure. The solvation structure of the

protonated and deprotonated amino acids is investigated to
characterize the response of the solvent to the removal of the
acidic proton. For this purpose, we have calculated the radial
distribution function between the hydrogen atoms of solvent
water molecules (HW) and the heteroatom of the amino acid (O,
N, S) to which the acidic proton is bonded in the protonated
state. The distributions are shown in Figure 3 for all amino acids
investigated as well as for aqueous hydronium ions. Peak posi-
tions and coordination numbers obtained by integration of the

Figure 2. Computed free energies for deprotonation of amino acids in
aqueous solution as obtained from density functional based molecular
dynamics simulation, versus experimental pKa values. The free energies
ΔdpAAH� , defined in eq 9 for amino acids and in eq 13 for the solvated
proton, as well as their error bars are taken from Table 4. Best linear fit
functions for the free energies obtained from the three-point (�, TP,
eq 21) and linear response (O, LR, eq 22) approximation to the
thermodynamic integral, eq 19, are shown in red and blue, respectively.
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radial distributions up to a distance of 2.4 Å or 3.0 Å for cysteine
are summarized in Table 5.
Cysteine exhibits the most significant change in solvation

structure upon removal of the acidic proton (see Figure 3 (3A
and 3B)). In the protonated state, the side chain forms a
hydrophobic cavity, as indicated by the large distance for the
first peak at R0 = 4.0 Å (Figure 3 (3A)). Removal of the HS
proton and formation of a negative charge on the S atom causes a
major reorganization of the solvation shell, which is indicated by
the formation of four weak hydrogen bonds with water molecules
at an S�H distance of 2.3 Å (see Figure 3 (3B)). Thus, the water

coordination is qualitatively similar to the one reported for
aqueous hydroxide.34,45,46 However, we observe that an addi-
tional hydrogen bond is formed with the ammonium group,
giving in total an approximately quadratic pyramidal hydrogen
bond network.
A strong reorganization of the hydrogen bond network can

also be observed when tyrosine is deprotonated. The coordina-
tion number changes from 0.6 (Figure 3 (6A)) to 2.9 ((Figure 3
(6B)), concomitant with a significant increase in the strength of
the hydrogen bonds, as indicated by the decrease in the peak
position from R0 = 1.9 to 1.6 Å. The three water molecules bound
to the tyrosinate oxyanion form a tetrahedral coordination,
implying that the oxygen atom is better described as sp3

hybridized rather than sp2. Considering the carboxyl group of
tyrosine, we find that in the protonated state the oxygen atom
OH forms occasionally one weak hydrogen bond and, in the
deprotonated state, 1.8 hydrogen bonds. Interestingly, this is less
than for aspartate, which forms 2.4 hydrogen bonds, and aqueous
formate.28 This can can be explained by the fact that the
positively charged R-ammonium group of tyrosine is in close
proximity to its carboxylate group, thereby replacing the stabiliz-
ing effect of an additional hydrogen bond donating water
molecule. The second oxygen atom of the carboxylate group of
tyrosine points in a direction opposite the ammonium group,
with the result that the coordination number (= 2.3) is very
similar to the one obtained for aspartate.
Turning to the amino acids Argmod, His, Trp*, and TyrN, we

find that in the protonated state the positively charged nitrogen
atom does not form any hydrogen bonds with the solvent. Upon
deprotonation, the nitrogen atoms of His, Trp*, and TyrN form
one strong hydrogen bond in accord with expectation. By
contrast, for Argmod, we find a coordination number of 1.7.
One hydrogen bond is due to a water molecule strongly bonded
to the sp2 lone pair of the imide nitrogen as well as to the
carboxylate group. A second hydrogen bond is formed by water

Figure 3. Radial distribution functions gX�Hw(r) (solid lines) and coordination numbers (dashed lines) for protonated and deprotonated amino acids.
HW denotes the hydrogen atoms of water molecules (solvent). X denotes the basic N(H) atom of the side chain of Argmod (1A, 1B), the O(H) atom of
the side chain of Asp (2A, 2B), the S(H) atom of the side chain of Cys (3A, 3B), the εN atom of the side chain of His (4A, 4B), the N(H) atom of the side
chain of Trp* (5A, 5B), the O atom of the side chain of Tyr (6A, 6B), the O(H) atom of the carboxyl group of TyrC (7A, 7B), the N(H3) atom of TyrN
(8A, 8B), and the O atom of hydronium/water, respectively (9A, 9B). Coordination numbers are obtained by spherical integration of gX�Hw(r). The
positions of the first maxima and coordination numbers are given in Table 5.

Table 5. Characterization of the First Solvation Shell of
Protonated and Deprotonated Amino Acids, As Obtained
from Density Functional Based Molecular Dynamics
Simulation

protonated deprotonated

CNa R0
b (Å) CNa R0

b (Å) Δnc

Argmod 0.0 3.3 1.7 1.8 1.7

Asp 0.1 3.3 2.4 1.7 2.3

Cys 0.3 4.0 4.1 2.3 3.8

His 0.0 3.4 1.2 1.8 1.2

Trp* 0.0 3.3 1.0 1.8 1.0

Tyr 0.6 1.9 2.9 1.6 2.3

TyrC 0.5 2.0 1.8 1.8 1.3

TyrN 0.0 3.4 1.0 1.8 1.0

H3O
þ 0.0 3.0 2.2 1.9 2.2

aCoordination numbers obtained from spherical integration of the
radial distribution functions gX�Hw, shown in Figure 3, up to a distance
of 2.4 Å (except for Cys integrated up to 3.0 Å). b Position of the first
peak of gX�Hw shown in Figure 3. cΔn = CN(deprotonated) �
CN(protonated).
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molecules that penetrate the space perpendicular to the molec-
ular plane and interact with the Π-bonding orbital of the imide.
This hydrogen bond is weak and of a temporary nature, thus
giving only a fractional contribution of 0.7.

5. DISCUSSION

Our computations reproduce experimental absolute pKa va-
lues of natural amino acids rather well judging from the reason-
ably small UME of 2.1 pKa units. A similar accuracy was reported
in our previous study on smaller inorganic and organic aqueous
acids.31 However, the present investigation differs in one im-
portant aspect from our previous work.30,31 In refs 30 and 31, the
aqueous proton was modeled as a hydronium ion in its Eigen-
structure, whereas in current work, we treat the proton as a
solvated particle that is not attached to a particular water
molecule (it is modeled as a hydronium ion only in the inter-
mediate states of the thermodynamic cycle, see eqs 10�12). By
assuming that the proton forms a stable hydronium ion in water,
one overestimates its free energy by a contribution ΔAH3Oþ,
corresponding to the free energy of the reverse process of
reaction eq 10. The present approach takes into accountΔAH3Oþ,
whereas our previous formulation did not.

An accurate estimation ofΔAH3Oþ is difficult, however, due to
the delocalized nature of the “true” solvated proton, and the
limited length of the DFMD trajectories. Adopting a simple
quantum-classical model for the hydronium ion, we found that at
ambient temperature the free energy difference between the
solvated proton and the solvated hydronium is approximately
equal to the ideal translational free energy of the proton, see
eq 35. The result is that the absolute pKa values are now shifted
down by 0.19 eV with respect to our previous approach.30,31

Indeed, a similar down shift of pKa values by 0.2 eV was obtained
previously, by fitting the calculated deprotonation free energies
of small acids to the experimental pKa values.

31 This gives some
credence to our assumption that the reaction free energy of
reaction eq 10 is dominated by the standard translational free
energy of the proton.

We have recalculated the pKa values reported in ref 31
according to our revised scheme and combined them with the
results obtained herein for the amino acids. This gives in total a
set of 18 inorganic and organic acids and natural amino acids for
which we obtain a UME of 2.3 pKa units and a SME of 2.0 pKa

units. The relatively small difference between UME and SME
implies that pKa values are in general overestimated. Though, for
the amino acids studied here, the difference between UME and
SME (2.1 and 1.3, respectively) is larger, implying a less
systematic trend in the errors for this subset of acids. This could
be related to the statistical uncertainty of the computed pKa

values, which is on the same order of magnitude as the UME. A
breakdown of the UME into groups with the same functional
groups reflects the overall trend (hydroxyl, 1.9; carboxylic acid,
2.1; amine/imine, 2.4), except for the thiol group which has a
larger UME of 3.4 pKa units.

There are a number of sources for errors in our pKa calcula-
tions in addition to the modeling of the solvated proton. This
becomes evident when the pKa value differences of amino acids are
compared, for which the solvation free energy of the proton
drops out. The UME and the SME of the corresponding relative
pKa values are 2.4 and 0.2 when averaged over all possible pairs of
amino acids. Since the SME is close to zero, the deviations are
evenly spread in both directions and therefore not systematic.

They are likely to be the result of a number of factors. First, the
three point approximation of the thermodynamic integral eq 21
may introduce some error. In previous work we have shown that
this approximation gives accurate results for aqueous HCl and
H2S, but this may not be the case in general.31 Unfortunately,
using a finer grid for the integration was computationally not
feasible for the relatively large system sizes studied. Second, the
amino acids were modeled in their zwitterionic state in accord
with their experimental protonation state at the pH where the
side chain acidic groups titrate. Thus, the amino acids carry a
large and permanent dipole that interacts with the acidic group of
the side chain. While the structures were initiated from the
minimum energy configuration and were found to be stable on
the 10�20 ps time scale of our simulation, it may be that the
charged groups forming the molecular dipole undergo fluctua-
tions on a longer time scale, which could lead to shifts of the pKa

value that are not accounted for in the present simulations. Third,
the finite number of solvent molecules used may also have some
effect. We have used a simulation box large enough to include the
first solvation shell of the amino acid. This is sufficient to model
the response of the solvent in the vicinity of the acidic group. The
effect of higher solvation shells on the energetics of deprotona-
tion is expected to cancel to a good approximation for iso-
Coulombic half reactions, i.e., for reactions where reactant and
product have the same net charge. In this respect, it is interesting
to note that the UME for the subsets of iso-Coulombic reactions
is not lower than for the overall UME that includes all amino acid
pairs. This indicates that the error is likely to be due to other
reasons. Finally, there is also an error due to the approximation of
the exchange-correlation functional. While proton affinities are
generally very well described by the BLYP functional that was
used in DFMD-TI, the UME of this functional for the PA8 set of
molecules and atoms is not negligible on the pKa energy scale,
1.53 kcal/mol or 1.1 pKa units.

47 We expect, however, that the
DFT error is smaller for proton affinity differences, which is the
relevant quantity in pKa calculations.

A comparison between the present DFMD-TI approach and
QM-continuum calculations may be of interest. In ref 17, the
performances of a number of QM-continuum calculation proto-
cols with different continuum models were investigated on
neutral organic and inorganic acids. It was found that the direct
approach was unsuitable for calculation of absolute pKa values,
although reasonable results with UME < 3 and maximum error <
5 pKa units were possible for alcohols and phenols in combina-
tion with the COSMO-RS continuummodel. Hybrid approaches
performed better with best UMEs of about 2 pKa units, but the
calculations were very sensitive on the number of explicit water
molecules included. The proton exchange scheme, which yields
pKa values relative to a reference compound, gave good overall
results with UMEs of 1�2 pKa units for alcohols, phenols, and
carboxylic acids. Thus, the error reported here for the DFMD-TI
approach is comparable to the error of the proton-exchange
scheme. Yet, this comparison can only be of a qualitative nature,
since different compounds have been investigated with the two
methods.

Finally, a word on the solvation structures obtained in this
study. They generally comply with expectations, with a few
exceptions. The oxyanion of tyrosinate forms three strong
hydrogen bonds in a tetrahedral arrangement, implying that
the oxygen atom is best described as sp3 hybridized. This
contrasts the situation in the gas phase, where oxygen is
described as sp2 hybridized, as required for delocalization of
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the negative charge over the phenyl ring. Evidently, the polarizing
effect of the solvent leads to charge localization and a change in
hybridization. We have also shown that in addition to solute
�solvent interactions, also intramolecular interactions are im-
portant for the stabilization of the deprotonated species. In the
cysteine anion, an approximately quadratic pyramidal hydrogen
bond network is observed that includes the ammonium group.
Similarly, one carboxylate oxygen of tyrosine is stabilized by the
positive charge of the nearby ammonium group, whereas in
modified arginine a water molecule binding to the imine group is
tightly held in place by the nearby carboxylate group.

6. CONCLUSION

In conclusion, we have shown that DFMD-TI can reproduce
absolute experimental acidity constants of naturally occurring
amino acids to a UME of 2.1 pKa units with a maximum absolute
deviation of 4.0 pKa units. The errors for absolute and relative
pKa values of the amino acids do not appear to be systematic.
This is probably a consequence of the relatively small number of
compounds investigated (limited by the high computational cost
of DFMD compared to QM/continuum approaches) and the
statistical uncertainty of our simulations of 1.1 pKa units.
Extending the set of amino acids with the set of acids studied
previously,30,31 we find a more systematic correlation in the
errors. The computed pKa values are on average overestimated
by about 2 pKa units. The accuracy reported here is comparable
with that reported recently for the best QM/continuum calcula-
tions on a series of alcohols, phenols, and carboxylic acids.17

Our calculation of absolute pKa values relies on a computa-
tional model for the solvated proton. We have used the Eigen-
structure of the hydronium ion as in our previous calculations,
but now corrected by a free energy term that accounts for the
formation of the Eigen-structure from the “real”, delocalized
solvated proton. This correction term was estimated to be the
standard translational free energy of the proton. It would be
interesting and challenging to further investigate the accuracy of
this approximation by explicit calculation of the free energy
difference between the delocalized proton and the Eigen-structure
of the hydronium ion.

The approximation made for the solvated proton is not the
only source of errors in our calculations, because the average
error in pKa differences, for which the solvated proton drops out,
is just as large. The accuracy of our approach can in principle be
systematically improved (i) by carrying out longer simulations to
reduce the statistical uncertainty, (ii) by using more integration
points for evaluation of the thermodynamic integral, and (iii) by
using a larger number of solvent molecules to reduce possible
system size effects. With the steady increase in computational
power, we remain confident that a more accurate and precise
estimation of pKa values from DFMD should be possible in the
near future.
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ABSTRACT: pH is an important parameter in condensed-phase systems, because it determines the protonation state of titratable
groups and thus influences the structure, dynamics, and function of molecules in solution. In most force field simulation protocols,
however, the protonation state of a system (rather than its pH) is kept fixed and cannot adapt to changes of the local environment.
Here, we present a method, implemented within the MD package GROMACS, for constant pH molecular dynamics simulations in
explicit solvent that is based on the λ-dynamics approach. In the latter, the dynamics of the titration coordinate λ, which interpolates
between the protonated and deprotonated states, is driven by generalized forces between the protonated and deprotonated states.
The hydration free energy, as a function of pH, is included to facilitate constant pH simulations. The protonation states of titratable
groups are allowed to change dynamically during a simulation, thus reproducing average protonation probabilities at a certain pH.
The accuracy of the method is tested against titration curves of single amino acids and a dipeptide in explicit solvent.

1. INTRODUCTION

Together with temperature, pressure, and ionic strength, pH is
one of the key parameters that determine the structure and
dynamics of proteins in solution. Most notably, many proteins
denature at low pH values,1 and aggregation, such as formation of
amyloid fibrils in Alzheimer’s disease2 and insulin aggregation,3 is
pH-dependent. Because the function of a protein depends on its
structure, pH is critical for protein function. Examples of pH-
dependent regulation of protein function are the pH-controlled
gating of membrane channels,4�6 or activation of influenza virus
in host cells.7

pH affects protein structure, because the protonation state of
the ionizable groups of a protein depends on pH, in particular
histidine amino acids for which the proton affinity (pKa) is very
close to the physiological pH. Mainly via its charge, the
protonation state of each ionizable group influences, in turn,
the physicochemical properties of proteins, their structure, and
their function.

Despite its relevance to biomolecular structure and function,
pH and changes of protonation state of titratable groups of a
protein are usually not described in computer simulations. Typi-
cally, a structure with fixed protonation states is used, chosen
according to the most probable protonation arrangement at a
given pH. This choice is often not straightforward, because
hydrogens are usually not resolved in X-ray crystallography and
the acid dissociation constant (Ka) values of the ionizable groups,
in most cases, are not known. Therefore, the protonation state
must be inferred from NMR8 or spectroscopic data,9 or from
electrostatic calculations (e.g., Poisson�Boltzmann (PB)10,11 or
Generalized Born12 approaches). Furthermore, changes in the
protonation state, either due to a change in the environment pH
or in the protein conformation, as well as equilibrium protonation
fluctuations leading to fractional protonation probabilities, are
not taken into account by conventional simulations. As a conse-
quence, the understanding of many biological phenomena, which
involve a redistribution of charge, such as ligand binding reactions

inducing a proton redistribution,13,14 peptide insertion in mem-
branes (e.g., fusion peptides),15,16and pH-dependent conforma-
tional changes,2,6 would greatly benefit from a dynamic description
of the protonation states.

Several attempts have been made to overcome these limita-
tions. The most-accurate way of modeling (de)protonation
events is to describe the system at a quantum mechanics level,
where the electronic structure responds to changes in the local
environment. However, these calculations are very expensive, in
terms of computational cost. This drawback has been partly
overcome in mixed quantum mechanics/molecular mechanics
approaches,17 where only the ionizable groups of the protein are
treated at the quantum level.

Computationally more affordable approaches to describe
proton transfer events are EVB18�21 and QHOP22 methods.
Here, the potential energy surface on which protons move is
parametrized by ab initio calculations, whereas the rest of the
system is described by a molecular mechanics force field.

A complication common to these approaches is that the
equilibrium state is generally reached at time scales that are
much slower than those accessible to molecular dynamics (MD)
simulations. This is particularly true for protein systems, where
typical deprotonation times of ionizable groups in the interior of
a protein are microseconds or slower.23 As a consequence,
enhanced sampling of the transitions between the protonated
and deprotonated state is particularly relevant for simulations of
protein systems. For the aforementioned approaches, however,
there is no obvious way how to enhance proton transfer rates.

A further problem concerns the proper description of the pH
of a solution. The average hydronium concentration in a typical
simulation box can be described by a time average, as well as via
an ensemble average. In the case of a time average, because of the
fact that the concentrations of hydronium considered are low,
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typically pH 7, it might require very long simulation times to
sample the hydronium distribution in the solution. In the case of
the ensemble average, however, unpractically large simulation
boxes would have to be considered, as, for example, for a typical
simulation box of∼30 000 water molecules, one hydronium ion
already corresponds to a pH of ∼2�3, thus increasing the
computational cost of the calculation.

To address these issues in the context of force field simula-
tions, several approaches have been proposed, all of which use a
titration coordinate λ, which describes the protonation state of a
certain ionizable group. For example, values of λ = 0 and λ = 1
correspond to the protonated and deprotonated states of a
titratable group, respectively, as will be used in this work. Two
main categories of approaches can be distinguished depending
on the nature�discrete or continuous�of this titration
coordinate.24

A discrete titration coordinate is typically used by methods
combining MD and Monte Carlo (MC) simulations for the
sampling of the protonation reaction coordinate. At intervals
during the MD simulation, a MC step is performed, in which the
protonation state of a residue is changed. The acceptance
criterion to keep the new protonation state is based on the
protonation free energy of the titratable group, which is com-
puted at every MC step. The major differences between the
approaches in this category concern the way that this free energy
is computed. In the approaches of Baptista and co-workers,25

Dlugosz and Antosiewicz26 and Mongan and Case,12 the con-
tribution of each protonation state to the protonation partition
function is evaluated, and the protonation free energy (and pKa)
is then obtained from the partition function. Because all possible
protonation states of the system have to be considered, the
computational effort formally scales exponentially (2N) with the
number of titratable sites in the system (N). In practice, however,
MC sampling and cutoffs are applied to reduce computational
effort. To estimate the free energy of each state, implicit solvent
Poisson�Boltzmann (PB)25,26 or Generalized Born12 ap-
proaches are used. The use of continuum approximations in
the estimation of protonation free energies has the advantage of
reducing degrees of freedom of the system. However, to describe
more-complex systems, such as membrane proteins, or systems
such as channels for which explicit water molecules are crucial,
continuum solvent models are of limited use.

In contrast, B€urgi et al. suggested to evaluate the protonation
free energy at theMC step by a short thermodynamic integration
(TI) simulation.27 However, the cost of the free-energy calcula-
tion step can become significant, because it has to be evaluated at
each trial. Also, inclusion of interactions between titratable sites is
difficult.

In contrast to MD/MC simulations, in the second category of
approaches, the titration coordinate λ is allowed to change
continuously between the protonated and deprotonated states.
B€orjesson andH€unenberger28,29 developed the “acidostat”meth-
od, where the extent of deprotonation is relaxed to equilibrium
by weak coupling to a proton bath in a way similar to methods for
constant temperature and pressure.30 Equilibrium fluctuations of
the protonation states are not described, and each site thus
experiences the average effect of the others.

In a different approach, introduced by Merz and Pettitt,31 the
continuous λ coordinate is treated as an additional particle of the
system, which is propagated in time, according to the equations
of motion. The potential of the system is coupled to the chemical
potential, which is a function of pH, of the reactants and of the

products. Along the same lines, the successive λ-dynamics
approach32 and λ-adiabatic free-energy dynamics33 treat λ as
a dynamical variable in the Hamiltonian. In particular, the
λ-dynamics approach was applied to constant pH simulations
in implicit solvent by Lee et al.34 and Khandogin and Brooks.35,36

In their approach, the potential energy landscape, which drives
continuous changes of λ, is modulated by the potentials of
isolated model titratable groups, and by the pH. Protons are
not transferred explicitly to bulk water, forming H3O

þ; rather,
similar to the acidostat of B€orjesson and H€unenberger,28,29 the
proton-solvation contribution to the force acting on λ is im-
plicitly taken into account. Because this contribution depends on
pH, by setting the pH parameter in the simulation, the effect of
the proton concentration is included. Coupling between titra-
table sites, described by multiple λ particles, is implicitly taken
into account via the potential energy landscape. In principle,
linear scaling of the calculation with the number of protonatable
sites is achieved. Because of the continuous character of the
titration coordinate, fractional λ values can occur, which corre-
spond to a partially protonated state. To decrease the population
of these unphysical states, a barrier potential is used.34 This is
introduced as a separate parabolic function centered at λ = 0.5.34

Alternatively, ad hoc nonlinear interpolation schemes between
the potentials of the end states sampled by λ have been used to
decrease the population of intermediate λ values, and thus obtain
minima at λ = 0 and λ = 1.33

As seen, most of the approaches for constant pH simulations
both in the first and second category rest on an implicit
description of the solvent. We are not aware of any fully atomistic
description that (i) achieves sampling of the relevant space of the
titration coordinate (i.e., the physically meaningful end states)
and (ii) allows one to control the protonation/deprotonation rate.

In this work, we develop and test a framework to describe
changes in protonation states at constant pH that meets all of
these requirements. Our method extends the λ-dynamics ap-
proach of Brooks and co-workers32,34,35 by introducing a new
coupling scheme to describe chemically coupled titratable sites,
such as those on the side chain of histidine. Both pH and, via the
height of the barrier potential, the protonation rates can be
controlled to either reflect experimental proton transfer rates,
if available, or to enhance sampling of the protonation space.
The method has been implemented within the MD package
GROMACS.37�39

To test our method, the titration behavior of simple systems in
an explicit solvent was analyzed. First, we considered glutamic
acid with neutral termini. To provide a simple example of
interactions that can occur in a protein environment, a small
dipeptide of sequence Glu-Ala was simulated. Because of its
importance in protein systems, imidazole and histidine were
chosen as a test case for chemically coupled titratable sites.
Finally, the effect of different temperature coupling schemes and
different barrier potential heights on deprotonation/protonation
rates was assessed.

2. THEORY

To clarify the notation, we will first summarize the thermo-
dynamic integration and λ-dynamics approaches. Subsequently,
we will describe and develop the building blocks of our approach.
First, we will describe how the interval sampled by the titration
coordinate λ is constrained, to describe the protonated and
deprotonated states of the system during the constant pH
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simulation. We will then specify how λ is coupled to a tempera-
ture bath. After introducing the thermodynamic cycle that is used
to couple the protonated and deprotonated states to the appro-
priate reference states, we will develop the constant pH MD
method. Finally, we will generalize the λ-dynamics approach for
multiple protonation sites in a protein.
2.1. Thermodynamic Integration. Thermodynamic integra-

tion (TI)40 is used to calculate the free-energy difference (ΔG)
between a reactant state R and a product state P:

ΔGPR ¼
Z λ¼1

λ¼0
dλ

DHTIðλÞ
Dλ

� �
λ

ð1Þ

Here, HTI is the Hamiltonian of the system, and λ is a coupling
parameter that interpolates between the R (λ = 0) and P (λ = 1)
states, e.g.,

HTIðλÞ ¼ ð1� λÞH0 þ λH1 ð2Þ
To calculate ΔG via eq 1, λ is changed from 0 to 1 during the
simulation, thus forcing the system from its reactant to its
product state. The ensemble average in eq 1 is then taken from
the MD ensemble generated from the Hamiltonian HTI(λ).
For later use, and following the notation of Kong and

Brooks,32 we split the Hamiltonians of the reactant and product
in λ-dependent (~H0 and ~H1) and λ-independent (HEnv) parts:

HTIðλÞ ¼ ð1� λÞ~H0 þ λ~H1 þHEnv ð3Þ

2.2. λ-Dynamics. In the λ-dynamics approach,32 a Hamilto-
nian similar to eq 3 is used. In contrast to TI, λ is defined as an
additional dynamic degree of freedom of the systemwith massm,
coordinate λ, and velocity λ

·
. Accordingly, the Hamiltonian of the

system is now expressed by32

HðλÞ ¼ ð1� λÞ~H0 þ λ~H1 þHEnv þm
2
_λ2 þU�ðλÞ ð4Þ

with a force acting on λ,

Fλ ¼ � DVðλÞ
Dλ

ð5Þ

where V(λ) is the potential energy part of the Hamiltonian in
eq 4:

VðλÞ ¼ ð1� λÞ~V 0 þ λ~V 1 þ VEnv þU�ðλÞ ð6Þ
In eq 4, (m/2)λ

·2 is the kinetic energy term associated with the λ
“particle”. The λ-dependent potential term U*(λ) will serve as a
biasing potential to limit the range of λ; this will be defined
further below.
2.3. Constraining the Interval of λ. Because only λ = 0 and

λ = 1 represent physical states of the system�the protonated and
deprotonated states�we require λ to be close to these values for
most of the simulation time. More specifically, we require that:
(1) the λ space is limited to the interval between the two

physical states;
(2) the average values of λ in the protonated and deproto-

nated states are close to 0 and 1, respectively;
(3) the time spent at intermediate states by the system is

short, i.e., the transitions between the protonated and
deprotonated states are fast;

(4) the residence time at the physical states is sufficiently long
to allow conformational sampling of each state; and

(5) the frequency of transitions can be controlled.

To address condition 1, a projection of an angular coordinate
on the λ space has been proposed in previous applications.33,34,41

Here, we will extend this approach to meet also condition 2.
Following Lee et al.,34 we will address condition 3 by using a
suitably chosen biasing potential. Finally, we will meet conditions
4 and 5 by adjusting the height of the biasing potential, taking
into account the entropic part introduced by the use of the
angular coordinate.
Note that a similar shape of the λ free-energy profile, which

meets conditions 3 and 4, can be achieved also by designing ad
hoc interpolation schemes between the potentials of the proto-
nated and deprotonated states of λ, as previously proposed in the
λ-adiabatic free-energy dynamics approach by Tuckerman and
co-workers.33 By adjusting the temperature of the λ particle,
Tuckerman and co-workers,33 ensured efficient barrier crossing,
also meeting the last condition.
2.3.1. Projection of the Angular θ Coordinate on the λ Space.

In order to constrain the space sampled by λ, we switch to a new
dynamic angular coordinate θ, as shown in Figure 1. By this
modification, the actual dynamics takes place in θ space, and λ is
redefined as the projection of θ on the abscissa (see Figure 1),

λ ¼ r cosðθÞ þ 1
2

ð7Þ

The force acting on θ is

Fθ ¼ � DVðλðθÞÞ
Dθ

¼ r sinðθÞDVðλðθÞÞ
Dλ

ð8Þ

with V being the potential energy of the system, as defined in
eq 6.
In contrast to previous approaches,33,34,41 where r = 1/2, and

to meet condition 2, we chose r = (1/2)þ σ, with an appropriate

Figure 1. (A) Schematic describing the angular coordinate. λ is defined
as a function of the angular θ coordinate, λ = r cos(θ)þ (1/2), with the
radius of the circle being defined as r = (1/2)þσ, andσ a fluctuation size
(see main text). The segments of circumference corresponding to the
intervals a and b close to the end and center of the λ interval,
respectively, are indicated. (B) Entropic free-energy term introduced
by the use of an angular coordinate θ.
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fluctuation size σ. Several values of σwere tested. We have used a
value of σ = 0.05, because, with this value, the average λ at the
physical states was∼0 (protonated state) and∼1 (deprotonated
state).
2.3.2. Biasing Potential. To meet condition 3, a parabolic

biasing potential of the form34

U�ðλÞ ¼ 4hλð1� λÞ ð9Þ
is used. By adjusting its height h, the frequency of the protonation
transitions can be controlled, as required by condition 5.
Note that the choice of the above angular coordinate implies

an entropic contribution to the effective free energy governing
the λ-dynamics. This contribution originates from the higher
density of λ states at the end points of the λ interval, with respect
to the center of the interval, as indicated by the mapping of the
intervals a and b in Figure 1A onto the circumference. The
segment length for a given value of λ is

dλ ¼ dθ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � λ� 1

2

� �2
s

ð10Þ

resulting in a free-energy contribution of

AðλÞ ¼ � TSðλÞ ¼ RTln

�����dλdθ
�����

¼ 1
2
RTln r2 � λ� 1

2

� �2
" # ð11Þ

where R is the gas constant and T is the temperature. The A(λ)
term in eq 11 stabilizes the end parts of the λ interval by a barrier
of a few kJ mol�1, as shown in Figure 1B. This barrier needs to be
taken into account when adjusting the height h of the biasing
potential.
Note that the free energy A(λ) in Figure 1B, as well as the

corresponding probability distribution, diverges for λ = 0 and λ = 1.
This is, however, not a problem, because, for any finite interval
[λ1 3 3 3 λ2], there is a finite probability for the system to be within
this interval. Similarly, the partition function integral

Z ¼
Z λ¼1

λ¼0
expð�βAðλÞÞ dλ ¼ π ð12Þ

with β = 1/(kBT), over every finite λ interval of the free-energy
curve is also finite.
2.4. λ-Dynamics Thermostat. The temperature of the λ

particle is kept constant by coupling the particle to an external
heath bath. We have considered two coupling schemes, the
Berendsen,30 or weak coupling thermostat, and the Andersen
thermostat.42

It is not clear a priori whether to couple the λ particle to (i) the
same heat bath as the real atoms of the system, or (ii) a separate
heat bath. In the first situation, the temperature is computed from
the total kinetic energy of the real atoms and the λ particle. In the
second, different heat baths are used to couple the λ particle and
real atoms separately, and the kinetic energy of the λ particle is
used to calculate the temperature of the λ subsystem.
Therefore, we have tested the two coupling schemes. For

variant (i), we used the Berendsen thermostat (with a coupling
time of 0.10 ps), whereas, for variant (ii), the λ particle was
coupled to the Andersen thermostat (with a coupling time of
0.15 ps), and the rest of the system to the Berendsen thermostat.

We have used the Andersen thermostat, because the Berendsen
thermostat is not suitable for low-dimensional systems, such as
the λ subsystem.30 At 300 K and with a λ particle mass of 20 u, the
latter coupling scheme generated λ-trajectories that were more
suitable (i.e., sufficiently long residence time at the physical
states, fast transitions) to simulate biomolecular systems (see the
Results section).
2.5. Constant pH MD Simulations with λ-Dynamics. To

describe protonation and deprotonation events of a titratable site
at a given pH, we included, within theHamiltonian in eq 4, (i) the
effect of the external pH bath on protonation and (ii) contribu-
tions to the free energy of protonation due to breakage and
formation of chemical bonds, which are not described by the
force field. These two free-energy contributions will be described
by an additional term Vchem(λ), which will shift the protonation
equilibria by a certain free energy (ΔGchem).
To determine ΔGchem, we considered the equilibrium be-

tween a protonated (AH) and a deprotonated acid (A�), in a
(solvated) protein (see Figure 2, top) and in water (see Figure 2,
bottom). We will use the latter as a reference state. This state is
chosen such that a measured deprotonation free energy is
available, and the reference compound AH is chemically similar
for the reference and protein states, generally a solvated amino
acid. Note that no Hþ or H3O

þ species appears on the right side
of the equilibria in Figure 2, since, here, we consider the free-
energy difference between the protonated and deprotonated
forms of the titratable site. Below, we will describe how the pH
dependency of this free energy is taken into account.
The free energies for the top (prot) and bottom (ref) reactions

of Figure 2 are split into a contribution ΔGFF (obtained via a
force field calculation) and ΔGchem (contributions (i) and (ii)
from pH bath and bond breakage and formation, respectively).
Because of the choice of the reference state, ΔGchem is not
expected to differ significantly between the top and bottom
reactions in Figure 2.18,43,44 Thus, the dominant contribution to
the difference in the free energies of these two reactions is due to
the different environment of the titratable site in the protein and
in water. This contribution essentially depends on the long-range
interactions of the titratable group, which are described by the
force-field free-energy terms ΔGprot

FF and ΔGref
FF.

Accordingly,

ΔGchem
prot � ΔGchem

ref ¼ ln 10ð ÞRTðpKa, ref � pHÞ �ΔGFF
ref

ð13Þ

where pKa,ref is themeasured pKa of the reference titratable site in
the reference state. The pH term describes the pH dependency of

Figure 2. Equilibria between the protonated (AH) and deprotonated
(A�) forms of a titratable site in a protein and in the reference state in
water.ΔGprot

FF andΔGref
FF are obtained from a molecular dynamics (MD)

simulation, whereasΔGprot
chem andΔGref

chem include contributions from the
environmental pH and from bonded terms, which are missing in the
force field. We assume ΔGprot

chem ≈ ΔGref
chem.
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the equilibria in Figure 2, thus accounting for the missing proton
in Figure 2.
The last contribution in eq 13, ΔGref

FF, is obtained from a
thermodynamic integration calculation (reference free-energy
simulation), which is performed prior to starting the constant
pH simulation,

ΔGFF
ref ¼ GFF

ref ðλ ¼ 1Þ � GFF
ref ðλ ¼ 0Þ

¼
Z λ¼1

λ¼0

DHref ðλÞ
Dλ

� �
λ

dλ ð14Þ

where Href(λ) is the Hamiltonian of the reference system.
Having determinedΔGchem for the protein state, the following

potential Vchem(λ) serves to implement the desired free-energy
difference in the λ-dynamics calculations:

V chemðλÞ ¼ λ ln 10ð ÞRTðpKa, ref � pHÞ �Δ~G FF
ref ðλÞ ð15Þ

with Δ~Gref
FF(λ) as a polynomial fit to Gref

FF(λ), which is typically
close to a parabola.45,46

Note the use of Δ~Gref
FF(λ) to describe the ΔGref

FF(λ) contribu-
tion, instead of a linear function of λ (analogously to the first term
in eq 15). By this choice, the free-energy profile of the reference
state (Gref

FF(λ)) is effectively subtracted (except for fluctuations)
from the one of the protein state (Gprot

FF (λ)). In the simplest case
of a constant pH simulation of an amino acid in water, in which
case Gref

FF(λ) and Gprot
FF (λ) are the same, Δ~Gref

FF(λ) will, therefore,
remove the barrier in the energy landscape between the proto-
nated and deprotonated states of the titratable site. Therefore,
the barrier is given and controlled directly by the height of the
biasing potential, which thus can be adjusted to achieve the
desired transition rates. In the less trivial case of a protein
simulation, Δ~Gref

FF(λ) will not remove the barrier completely,
but still the remaining perturbation can be assumed to be small
also in the general case.
2.5.1. Reference Thermodynamic Cycle. If a measured pKa is

available only for a compound that is similar, but not identical, to
that considered in the reference state, a thermodynamic cycle can
be used to calculate and correct for the free-energy difference due
to this modification. In Figure 3, the free-energy difference of the
reference state (ΔGref) is given by

ΔGref ¼ ΔGexp þ ðΔGtransf
AH �ΔGtransf

A� Þ ð16Þ
where ΔGAH

transf and ΔGA�
transf indicate the free-energy differ-

ences for the transformation of the protonated and deprotonated
forms of the reference state into the corresponding compounds
of the experimentally known state (exp), respectively. The terms
*AH and *A� in Figure 3 denote compounds chemically similar
to those in the reference state.

After calculation of ΔGAH
transf and ΔGA�

transf by conventional
TI, these two free-energy differences are included in eq 4, similar
to Vchem(λ) in eq 15:

V transf ðλÞ ¼ λðΔGtransf
AH �ΔGtransf

A� Þ ð17Þ
This approach will be used further below to parametrize the λ-

dynamics simulation of histidine.
2.6. Generalization to Multiple Titratable Groups. The

above formulation of the λ-dynamics approach for constant pH
simulations is extended to multiple titratable groups by assigning
a separate λ-coordinate to each titratable group in the pro-
tein.34,35 In order to illustrate the approach, we first will consider
the case of two titratable sites on a protein and derive the
Hamiltonian for this system. We will then distinguish the case of
two sites, which are (i) chemically uncoupled and (ii) chemically
coupled. In the first case of uncoupled sites, interactions between
titratable sites are mainly governed by electrostatics. In terms of
the force field, these sites interact only via nonbonded interactions,
which are described by the Coulomb and Lennard-Jones potential
energies. For this reason, the Hamiltonian for uncoupled sites can
be extended in a straightforward manner to any number N of
uncoupled titratable sites in a protein,34,35 and formally linear
scaling with the number of sites is achieved. As this approach will
be used later on, we will review it below. For chemically coupled
sites, this straightforward approach is not applicable. In this case,
the chemical character, which is described in the force field by a set
of parameters, such as atomic charges, bonds, and angles, of the
titratable sites depends on the protonation states of the respective
other coupled sites. Because of this dependency, cross terms occur
in the expression for the potential energies, which have to be taken
into account explicitly, and the contributions of interacting atoms
cannot be rearranged as conveniently as those for uncoupled sites.
Therefore, unavoidably, in this case, the number of calculations
scales exponentially with the number of sites, rather than linearly.
Here, we will discuss the example of histidine, where the two
deprotonation sites on the side chain are chemically coupled. Note
that, in this case, since only two sites are coupled, the calculations
still scale linearly. We will also discuss how this description of
histidine differs from the treatment of Khandogin and Brooks.35

2.6.1. Constant pH λ-Dynamics of Two Titratable Sites on a
Protein. We start by considering the case of two titratable sites
on a protein. Each of the two sites i and j is described by a
λ-coordinate, λi and λj, respectively. At λ = 0, the site is
protonated; at λ = 1, the site is deprotonated. Independent of
whether the two titratable groups are uncoupled or coupled, four
protonation states are relevant. In Figure 4, these four states for
histidine are denoted as 00 (both sites i and j protonated), 10

Figure 3. Thermodynamic cycle for the calculation of the reference
free-energy difference ΔGref. AH and A� are transformed to chemically
similar compounds *AH and *A�, respectively, for which the free-energy
difference has been experimentally measured (ΔGexp).

Figure 4. Four protonation states of the histidine side chain: λ1 and λ2
are the titration coordinates of the Nε and Nδ deprotonation sites,
respectively. λ1 = λ2 = 0 (00) corresponds to the fully protonated and
positively charged histidine; λ1 = 0, λ2 = 1 (01) and λ1 = 1, λ2 = 0 (10)
correspond to the neutral histidine; and λ1 = λ2 = 1 (11) corresponds to
the negatively charged fully deprotonated histidine.



1967 dx.doi.org/10.1021/ct200061r |J. Chem. Theory Comput. 2011, 7, 1962–1978

Journal of Chemical Theory and Computation ARTICLE

(site i deprotonated and site j protonated), 01 (site i protonated
and site j deprotonated), and 11 (both sites i and j deprotonated).
Applying eq 4 in a first step to each group i and j separately, and

combining the two resulting Hamiltonians again, according to
eq 4 in a second step, yields

Hðλi, λjÞ ¼ ð1� λiÞ½ð1� λjÞ~H00 þ λj ~H01� þ λi½ð1� λjÞ~H10

þ λj ~H11� þHEnv þ mi

2

� �
_λ2i þ

mj

2

� �
_λ2j

þU�ðλiÞ þU�ðλjÞ ð18Þ
where the first four Hamiltonians on the right side of the
equation describe the titratable sites of the protein in the four
protonation states in Figure 4, and U*(λ) is the biasing potential
discussed earlier in section 2.3.2.
Similarly, the potential energy of the system described by the

Hamiltonian H(λi,λj) in eq 18 is given as

Vðλi, λjÞ ¼ ð1� λiÞ½ð1� λjÞV00 þ λjV01�
þ λi½ð1� λjÞV10 þ λjV11� þ VEnv

þU�ðλiÞ þU�ðλjÞ ð19Þ
where the first four potential energies V on the right side of the
equation describe the interactions of the titratable sites in their
respective states (see Figure 4), with forces acting on λi and λj,
respectively:

� DVðλi, λjÞ
Dλi

¼ � ½ð1� λjÞðV10 � V00Þ þ λjðV11 � V01Þ�

� dU�ðλiÞ
dλi

ð20Þ

and

� DVðλi, λjÞ
Dλj

¼ � ½ð1� λiÞðV01 � V00Þ þ λiðV11 � V10Þ�

� dU�ðλjÞ
dλj

ð21Þ

As can be seen for the case of two interacting titratable sites,
the force acting on each site depends on the protonation state of
the respective other site, which also holds true for the general
case of N interacting sites. This interdependence entails an
exponential scaling.
2.6.2. Chemically Uncoupled Titratable Sites. If the two

titratable sites are chemically uncoupled, however, the computa-
tional complexity is dramatically reduced. Uncoupled sites
interact only via long-range (nonbonded) interactions. Below,
we will show how these interactions (Coulombic and van der
Waals) are efficiently described, achieving linear scaling of the
calculations.
Coulombic Interactions. For two uncoupled titratable sites i

and j, the Coulombic potential energy (Vc) for two interacting
atoms simplifies (from eq 19) to

V cðλi, λjÞ ¼ 1
4πE

½ð1� λiÞqi0 þ λiq
i
1�½ð1� λjÞqj0 þ λjq

j
1� ð22Þ

where q0 and q1 are the atomic charges in the protonated (λ = 0)
and deprotonated (λ = 1) states, respectively, of the correspond-
ing atoms, r is the distance between the two atoms, and ɛ is the
permittivity. Note that eq 22 involves only two states, compared
to the four states of eq 19.

Accordingly, the force acting on λi is

� DVcðλi, λjÞ
Dλi

¼ � ½Vcðλi ¼ 1, λjÞ � V cðλi ¼ 0, λjÞ� ð23Þ

where the Coulombic energies Vc(λi = 0, λj) = [1/(4πɛ)]q0
i

[(1� λj)q0
j þ λjq1

j ] andVc(λi = 1, λj) = [1/(4πɛ)]q1
i [(1� λj)q0

j þ
λjq1

j ] are evaluated at λj.
Equation 23 is extended in a straightforward manner to N

uncoupled interacting sites:

� DV cðλ1, :::, λi � 1, λi, λiþ1, :::, λNÞ
Dλi

¼ � ½V cðλ1, :::, λi � 1, λi ¼ 1, λiþ1, :::, λNÞ
� V cðλ1, :::, λi � 1, λi ¼ 0, λiþ1, :::, λNÞ� ð24Þ

and linear scaling of the calculation with the number of interact-
ing uncoupled sites is achieved.
van der Waals Interactions. The remaining long-range

interactions are somewhat less straightforward. We consider
the usual case where the van der Waals energies, together with
the Pauli repulsion, are described by a Lennard-Jones potential
VLJ:

VLJ ¼ A
r12

� B
r6

ð25Þ
where r is the distance between the two atoms, and A and B are
two parameters, which depend on the pairs of interacting atoms i
and j,

A ¼ ðAiAjÞ1=2 ð26Þ
and similarly for B.
For two uncoupled titratable sites i and j, the Lennard-Jones

potential energy for two interacting atoms is (here, we treat only
the r12 part; the r6 part is very similar)

V 12
LJ ðλi, λjÞ ¼ ð1� λiÞ½ð1� λjÞA00 þ λjA01� þ λi½ð1� λjÞA10 þ λjA11�

r12

ð27Þ
where the indices of the A parameter indicate the protonation
states of the two titratable sites (see Figure 4).
Similar to the Coulombic energy, eq 27 is rearranged in terms

of the protonated (λ = 0) and deprotonated (λ = 1) values of the
Ai and Aj Lennard-Jones parameters,

V 12
LJ ðλi, λjÞ ¼ ½ð1� λiÞðAi

0Þ1=2 þ λiðAi
1Þ1=2�½ð1� λjÞðAj

0Þ1=2 þ λjðAj
1Þ1=2�

r12

ð28Þ
with force acting on λi

� DV 12
LJ ðλi, λjÞ
Dλi

¼ � ½V 12
LJ ðλi ¼ 1, λjÞ � V 12

LJ ðλi ¼ 0, λjÞ� ð29Þ

The potentials VLJ
12(λi = 1, λj) and VLJ

12(λi = 0, λj) are obtained by
evaluating the second term in square brackets on the right side of
eq 28 prior to starting the force calculation, analogous to the
calculation of the Coulombic forces. As a more technical remark,
note that, in GROMACS,39 the Lennard-Jones parameters are
not accessible in a straightforward manner in the MD source
code. Therefore, instead of interpolating linearly between (A0

j)1/2

and (A1
j)1/2, we define the atom type (a) of the j atom, which is
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used to determine A0
j and A1

j, prior to calculating the force, by

ajðλjÞ ¼ a0 λj e 0:5
a1 λj > 0:5

(
ð30Þ

This yields, effectively, an approximation to the second term in
square brackets on the right side of eq 28. Note that, in the
GROMOS96 force field,47 only the A term of the atoms of the
carboxylic group changes upon deprotonation. Since, in the
Lennard-Jones potential (eq 25), the A (the repulsion) term decays
with 1/r12, the approximation in eq 30 is not expected to introduce
significant artifacts.
2.6.3. Chemically Coupled Titratable Sites. We move now to

the situation of chemically coupled sites. To illustrate this case,
Figure 4 shows the four protonation states of histidine, where λ1
and λ2 denote the titration coordinates of the Nε and Nδ sites,
respectively. In contrast to the chemically uncoupled situation,
here, the protonation state of one site (e.g., Nδ) does affect
the charge of the other site (Nɛ). Depending on the chemistry,
other force-field parameters also may be affected. This pre-
vents further simplification of eq 18, which leaves us with four
Hamiltonians (~H00, ~H01, ~H10, and ~H11) and four states for the
atomic charges (q00, q01, q10, and q11). Therefore, the calcula-
tions will scale exponentially with the number of coupled sites,
as each combination of the protonation states of the sites must
be evaluated.
We note that this description of histidine differs from that

of Khandogin and Brooks,35 in that each of the two titratable
sites on the side chain is described by a titration coordinate, and
the coupling between the two sites is taken into account
explicitly. Accordingly, our treatment also describes the doubly
deprotonated, negatively charged form of histidine, which is
not included in the model of Khandogin and Brooks,35 where
only three states are considered. Furthermore, our treatment is
readily generalized to more than two chemically coupled
titratable sites.
Chemically Coupled Reference States. The chemical cou-

pling between titratable sites also must be taken into account for
the reference states in a constant pH simulation. For example,
when λ2 changes from 0 to 1 in histidine, the reference
deprotonation reaction of the titratable site described by λ1
changes from the bottom (00 H 10) to the top (01 H 11)
deprotonation equilibrium in Figure 4.
To account for this dependency, we define Vchem(λ1, λ2) (see

for comparison Vchem(λ) in eq 15), e.g., for group λ1, as

V chemðλ1, λ2Þ ¼ λ1 ln 10ð ÞRTðpK�
a, ref ðλ2Þ � pHÞ �Δ~G FF

ref ðλ1, λ2Þ
ð31Þ

where

pK
�
a, ref ðλ2Þ ¼ ð1� λ2ÞpKa, ref ð00 h 10Þ þ λ2pKa, ref ð01 h 11Þ

ð32Þ
and Δ~Gref

FF(λ1, λ2) is a polynomial fit to Gref
FF(λ1, λ2), which is the

force-field free-energy profile for the reference deprotonations.
To determine Δ~Gref

FF(λ1, λ2), several reference free-energy simu-
lations at different values of λ2 are performed (see the Methods
section).
Similarly to the reference state, the reference thermodynamic

cycle (in section 2.5.1) of chemically coupled titratable sites will
depend on the protonation state of the respective other sites. For

the example of histidine, eq 17 becomes, e.g., for group λ1,

V transf ðλ1, λ2Þ ¼ λ1½ð1� λ2ÞðΔGAHHþ �ΔGAHÞ
þ λ2ðΔGAH �ΔGA�Þ� ð33Þ

withΔGAHHþ,ΔGAH, andΔGA� being the transfer free energies
of the double protonated (00), singly protonated (10 or 01), and
fully deprotonated (11) forms of histidine (see Figure 4).

3. METHODS

3.1. pKa Calculations. To estimate the pKa of a titratable
compound, constant pH simulations of the compound at differ-
ent pH values were performed, similar to a titration experiment.
From each simulation, the fraction (S) of deprotonated acid was
calculated, and the Henderson�Hasselbalch equation was fitted
to the obtained titration curve,

Sdeprot ¼ 1

10ðpKa � pHÞ þ 1
ð34Þ

which, for N noninteracting titratable sites, takes the form

Sdeprot ¼ ∑
N

i

1

10ðpKa, i � pHÞ þ 1
ð35Þ

In one case, where the fit was not satisfactory, theHill equation
has been used,

Sdeprot ¼ 1

10nðpKa � pHÞ þ 1
ð36Þ

where n is the Hill coefficient, which accounts for the degree
of cooperativity (n > 1) or anticooperativity (n < 1) of the
system.48,49

The fraction of deprotonated acid S in a constant pH simula-
tion was calculated from the titration coordinate λ during the
simulation, where all steps with λ < 0.1 were recorded as
protonated and those with λ > 0.9 as deprotonated. The error
in the calculated S was estimated via a Bayesian approach from
the number of transitions observed during the simulations
between the protonated and deprotonated states (see the
Supporting Information).
In contrast to a conventional titration experiment, in a constant

pH simulation, the titration coordinates of each titratable site in
the compound are accessible. Therefore, both the macroscopic
(or apparent) pKa values of the entire compound, and the
microscopic pKa values of each site, can be estimated.
For a compound with two titratable sites, such as histidine, the

equilibrium constant for the deprotonation of the first proton
(Ka,I) is related to the equilibrium constants for the deprotona-
tions at sites Nɛ and Nδ (Ka,1

0 and Ka,2
0 , respectively) by

Ka, I ¼ K
0
a, 1 þ K

0
a, 2 ð37Þ

from which follows

pKa, I ¼ � log10ð10�pK
0
a, 1 þ 10�pK

0
a, 2Þ ð38Þ

with pKa,I the (macroscopic) pKa value for the deprotonation of
the first proton of histidine, and pKa,1

0 and pKa,2
0 the (microscopic)

pKa value for the deprotonation of the first proton of histidine at
sites Nɛ and Nδ, respectively.
Similarly, the equilibrium constant for the deprotonation of

the second proton of histidine (Ka,II) is related to the equilibrium
constants for the deprotonations at sites Nɛ and Nδ (Ka,1

00 and
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Ka,2
00 , respectively) by

Ka, II ¼ 1
1

K 00
a, 1

þ 1

K 00
a, 2

ð39Þ

from which follows

pKa, II ¼ log10ð10pK
00
a, 1 þ 10pK

00
a, 2Þ ð40Þ

where pKa,II is the secondmacroscopic pKa value of histidine, and
pKa,1

00 and pKa,2
00 the microscopic pKa values for the deprotonation

of the second proton at sites Nɛ and Nδ, respectively.
In all cases, the error in the calculated pKa has been deter-

mined from the standard deviation of a set of four or five pKa

obtained from different fragments of the simulations.
3.2. Constant pH MD Simulations. The constant pH MD

simulation method, as described above, was implemented in the
GROMACS MD package (version 3.3).37�39

As test cases, constant pH simulations were carried out for four
compounds: glutamic acid (Glu) with neutral termini, a dipep-
tide of sequence glutamic acid-alanine (Glu-Ala), imidazole, and
a capped histidine (acetyl-NH-CHR-CO-methylamide with R
the side chain of histidine). Glu, Glu-Ala, and histidine (His)
were described with the GROMOS96 53A6 force field.50 Force-
field parameters of imidazole were adapted from histidine
(atomic charges are listed in Table s1 in the Supporting
Information). For the fully deprotonated form of histidine, no
force-field parameters are available in GROMOS96.50 Charges
for this protonation state were thus taken from imidazole and,
therefore, are not very accurate. However, in the pH interval
considered here (pH 4�10), the doubly deprotonated state
should never be visited, because the pKa value for the second
deprotonation of histidine is far beyond than the pH interval.1

Thus, we do not expect a large influence of the charges on the
protonation populations.
Each compound was placed in a dodecahedral box, which was

subsequently filled with ∼4200�5200 SPC (simple point
charge) water molecules.51 Interactions between atoms within
1.0 nm were evaluated at every step of the simulation, while
interactions with atoms beyond 1.0 nm were evaluated every five
steps. The Lennard-Jones long-range cutoff was set to 1.6 nm.
The ParticleMesh Ewald (PME)52,53 was used for the long-range
electrostatic interactions, with a grid spacing of 0.12 nm and an
interpolation order of 4. Constant pressure and temperature
were maintained by weakly coupling the system to an external
bath at 1 bar and 300 K, using the Berendsen barostat and
thermostat30 with coupling times of 1.0 and 0.1 ps, respectively.
A leapfrog integrator was used with an integration time step of
2 fs. The bond distances and bond angles of water were constrained
using the SETTLE algorithm.54 All other bond distances were
constrained using the LINCS algorithm.55 Prior to the simula-
tions, the potential energy of each system was minimized using a
steepest descent approach. A 50-ps MD simulation with position
restraints (with a force constant of 1000 kJ mol�1 nm�2) on the
amino acid/peptide atoms was then performed to relax the water
molecules. Finally, a 5-ns simulation was performed to equilibrate
each system before starting the constant pH MD simulations.
Deprotonation of a site was achieved by transforming the

titratable hydrogen into a dummy atom, which is topologically
bound to the acid, but has no interactions with the rest of
the system. Charges and atom types of the ionizable groups
were changed accordingly, from their force-field values in the

protonated state (λ = 0) to the deprotonated state (λ = 1).
Bonded terms (bonds, angles, and torsions) were maintained in
the protonated state. For glutamic acid and C-terminal, this
effectively yields an approximate description of the deprotonated
state. For N-terminal, imidazole, and histidine, instead, the
bonded terms do not differ in the protonated and deprotonated
states of the GROMOS9650 force field. For glutamic acid in
explicit solvent, the free energy of deprotonation was calculated,
as described in the next section for the reference free-energy
simulations, with and without change in the bonded terms.
The difference was less than 2 kJ mol�1 (see Table s2 in the
Supporting Information).
To compare constant pH simulations performed with two

different force fields, the titration curve of Glu with neutral
termini was calculated also with OPLSA56 and TIP4P57 water
molecules, and the titration curves for a tripeptide Ala-Glu-Ala
were calculated with GROMOS9650 and OPLSA57 in SPC51

water. When OPLSA57 was used to describe the system, in
addition to the bonded terms, atom types also were mantained in
their protonated state.
The temperature of the λ degree of freedom was set to 300 K.

Unless indicated otherwise, each λ particle was coupled to a
separate heat bath via the Andersen thermostat42 with a coupling
parameter of 6 ps�1. A fixed barrier height of 3.0 kJ mol�1 was
used for the biasing potential.
The mass of λ was set to 20 u. With this value of the mass, the

calculations yielded suitable λ-trajectories (i.e., small ratio be-
tween transition time and residence time) for the simulated
systems (see the Results section). At the same time, the mass of λ
is in the same range as that for the other atoms in the system.
Finally, we note that during the change of the protonation

state in the constant pH simulations, the overall charge of the
system is (eventually) changed. In this situation, artifacts can
arise due to the use of Ewald and related methods to describe
electrostatic interactions. In particular, these artifacts are re-
lated to the periodic boundary conditions and the background
charge that is used to neutralize the system.58,59 However, for
small compounds in a high dielectric medium (water), such as
those investigated here, these effects are expected to be
negligible.28,58

3.3. Reference States and Reference Free-Energy Simula-
tions.Constant pH simulations require a reference state for each
of the simulated titratable sites. The measured and calculated
(force field) deprotonation free energies of this reference state
were used to include the effect of the pH bath, and the effect of
the breakage and formation of chemical bonds in the simulation
(see eq 13).
Table 1 lists the titratable sites and their reference states, as

well as themeasured pKa values obtained from the literature1,60�62

and force-field deprotonation free energies (ΔGref
FF). Note that two

measured pKa values and ΔGref
FF are reported for imidazole. These

correspond to the microscopic pKa values for the first and second
deprotonation reaction of imidazole, respectively (the second
microscopic pKa value is obtained using eq 40, with the second
macroscopic pKa value being approximated from histidine, for
which there are experimental data1). The first and second micro-
scopic pKa values of the Nδ and Nɛ sites are identical, because of
the symmetry of the imidazole molecule.
For the Ala-Glu-Ala tripeptide, which was added to the

compounds set to compare the GROMOS9650 and OPLSA57

force fields, the reference states were chosen as follows: acetyl-Glu-
methylamide (pKa,ref = 4.25,

60ΔGref
FF(GROMOS) =� 225.6 kJmol�1,
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ΔGref
FF(OPLSA) = � 370.5 kJ mol�1), di-Ala-methylamide (pKa,ref =

8.0,61 ΔGref
FF(GROMOS) = 331.7 kJ mol�1, ΔGref

FF(OPLSA) = 219.0
J mol�1), and acetyl-di-Ala (pKa,ref = 3.5,61 ΔGref

FF(GROMOS) =
�230.7 kJ mol�1,ΔGref

FF(OPLSA) =�338.2 kJ mol�1), for titratable
sites Glu, N-terminus, and C-terminus, respectively.
The force-field deprotonation free energies for the reference

states ΔGref
FF were determined via conventional thermodynamic

integration (see eq 14) as follows. Each reference compound was
placed in a dodecahedral box filled with SPC51 water molecules.
The reference free-energy simulations consisted of 5-ns MD,
during which λ was continuously increased from 0 to 1, thus
deprotonating the reference compound, as described above for
the constant pH simulations. The size and shape of the box in the
reference and constant pH simulations was identical. Using the
same simulation conditions in the reference and constant pH
simulations, differences due to approximations of the force field
and of the interaction potentials are minimized.28

Δ~Gref
FF(λ) (eq 15) was derived from a least-squares fit to ∂H/∂λ

obtained from the reference free-energy simulation. Since the
deprotonation reaction in explicit water showed a nonlinear
∂H/∂λ profile,28 a third-order polynomial was used. Coefficients
of these polynomials are given in Table s3 in the Supporting
Information.
The two titration coordinates λ1 and λ2 of imidazole (Figure 4)

are chemically coupled and, therefore, deserved particular atten-
tion. Here, the reference state changes as a function of the
protonation state of the respective other site. Thus, ΔGref

FF(λ1,
λ2), and, accordingly,Δ~Gref

FF(λ1, λ2), are a function of both, λ1 and
λ2 (see eq 31). For this reason, reference free-energy simulations
of one titratable site (e.g., the site described by λ1) were carried out
for λ2 = 0, 0.1, ..., 0.9, 1. For each of these 11 simulations, a third-
order polynomial in λ1 was fitted to its ∂H/∂λ1 profile, in amanner
similar to the case of chemically uncoupled sites. To describe the
dependency from λ2, third-order polynomials in λ2 were subse-
quently fitted to the coefficients of these polynomials, and vice
versa for the titratable site described by λ2. These two sets of
polynomials served to calculate continuous forces for the two
degrees of freedom λ1 and λ2.
3.3.1. Histidine Reference State. As the reference state for the

constant pH simulations of histidine, we chose imidazole, such
that contributions from the backbone to the proton affinities of
the side chain Nɛ and Nδ titratable sites were present in the
constant pH simulations, but not in the reference free-energy
simulations. Because the force-field parameters of imidazole and
histidine differed, imidazole was transformed to a modified
imidazole molecule described with histidine force-field para-
meters, using the thermodynamic cycle in Figure 3. The transfer
free energies along the thermodynamic cycle were then used to
redefine the reference state, according to eq 16. Since Nɛ and Nδ

are chemically coupled, the transfer potential Vtransf(λ1, λ2) was
defined according to eq 33, which accounts for the dependency
of the transfer free energies from the protonation state of the

respective other site. The transfer free energies were calculated
via free-energy simulations (thermodynamic integration, eq 1).
In a first step, the bond lengths and angles were changed from
their force-field values in imidazole to those in histidine. In
a second step, Lennard-Jones parameters, and, in a last step,
charges (see Table 1s in the Supporting Information) were
modified. Each free-energy simulation consisted of 18 indepen-
dent simulations with λ values between 0 and 1. At each λ value,
100 ps of equilibration were followed by 300 ps of data collection.
The integration was carried out numerically using the trapezoidal
method. The error in Æ∂H/∂λæλ was estimated using block
averaging.63,64

3.4. λ Probability Distribution and Free-Energy Profile. In
order to calculate the probability distribution p(λ) during the
constant pH simulation, the λ interval was divided in 10 bins
[λ1, .., λi, ..., λ10], and p(λ) at bin i was obtained as

pðλiÞ ¼ ni
N

ð41Þ

where ni is the time of the simulation during which λ visited bin i
and N is the total simulation time.
The probability distribution of λ, which is given by the

entropic term introduced by the use of the circular coordinate,
was calculated as

pðλiÞ ¼
Z λiþ1

λi

pðλÞ dλ ð42Þ

with

pðλÞ ¼ exp½�βAðλÞ�
Z

ð43Þ

and A(λ) and Z being obtained from eqs 11 and 12, respectively.
p(λi) was then used to obtain a free-energy profile as a function of
the λ titration coordinate, with the free energyG(λ) at bin i being
given by

GðλiÞ ¼ � RT ln pðλiÞ ð44Þ

4. RESULTS

To test the accuracy of the constant pH MD simulation
method described above, we have calculated the titration curves
of four compounds: glutamic acid, a Glu-Ala dipeptide, imida-
zole, and histidine. The effects of the choice of the barrier height
of the biasing potential, the temperature coupling scheme, and
the force field, on the simulation were also investigated.
4.1. Glutamic Acid. First, we asked if the constant pH MD

simulation method is able to accurately reproduce the titration
curve of glutamic acid. To this end, glutamic acid with neutral
amino and carboxyl termini (�NH2 and�COOH, respectively)
was solvated in water, and four constant pH simulations of 5 ns

Table 1. Reference States, Reference pKa Values, and ΔGref
FF Values

titratable site reference state reference pKa (ln 10)RT (pKa,ref) (kJ mol�1) ΔGref
FF (kJ mol�1)

Glu Glu (neutral termini) 4.2560 24.4 �220.8

N-terminus di-Ala (neutral C-terminus) 8.061 45.9 332.8

C-terminus di-Ala (neutral N-terminus) 3.561 20.1 �231.3

imidazole (Nδ)
a imidazole (Nδ) 7.28,62 14.41 41.8, 82.7 155.4, �211.7

a For imidazole, only Nδ is reported ; values for Nɛ are the same.
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each (0.5-ns equilibration time and 4.5-ns data collection time)
were carried out for 11 pH values between 1.0 and 7.0. Figure 5
shows the fractions of deprotonated acid (in equivalents) as a
function of pH (i.e., the titration curve) for each of the four sets of
simulations (colored dots), and their average (black dots), the
latter together with error bars, which were determined from the
statistics of the observed transitions, as described in the Methods
section and the Supporting Information. As can be seen, the scatter
of the four simulations agrees with the error estimate of the
average. Note that, at the end points of the titration curve, values
slightly below 0 or above 1 are observed, which is due to the use of
a radius of r = 0.55 for the circle covered by the angular coordinate
θ (see the Theory section). We chose r = 0.55 to get 0 and 1, on
average, at the protonated (λ < 0.1) and deprotonated states (λ >
0.9), respectively. Because of statistical fluctuations, however,
slightly negative values and values above 1 occur. However, this
is much better than averages of Æλæ = 0.05 or Æλæ = 0.95 for r = 0.5.
From a fit of the Henderson�Hasselbalch equation (eq 34) to

the average deprotonation (the dashed line in Figure 5), the pKa

value was estimated to be 4.21 ( 0.14, which is consistent with
the measured pKa value of 4.25.

60

For the chemists, we note that, in a titration experiment, the
pH is usually measured as a function of the volume of a strong
base (or acid) solution added to the analyte solution. In contrast,
in the constant pH simulations, pH is a fixed parameter, whereas
the equivalents of analyte (i.e., how much of the analyte supplies
or reacts with one mole of hydrogen ions) is the quantity to be
estimated. Therefore, the titration curves in Figure 5 are to be
read as inverted titration curves, with respect to a typical experi-
mental titration curve.
Figures 6A�C illustrate the effect of different barrier heights

of the biasing potential (see eq 9). As expected, an increase of the
barrier height by 1 kBT (∼ 2.5 kJ mol�1) reduces the number of
transitions by a factor of ∼2.5�3. Therefore, by adjusting the
biasing potential, the transition rate can be optimized to ensure
sufficient sampling of the physical end states. At the same time,
the fraction of intermediate states remains small (between 30%
with a barrier of 3 kJ mol�1, and 10% with a barrier of 7.5 kJ
mol�1). Overall, by adjusting the barrier, the statistical error of
the constant pH simulation can be minimized.
Note that the effective barrier between the protonated and

deprotonated states has a contribution from the entropic barrier

introduced by the use of an angular coordinate to perform the
actual λ-dynamics (see the Theory section, Figure 1 and eq 11).
This can be seen in Figure 7, which shows the free-energy profile
as a function of the titration coordinate λ from an 18-ns constant
pH simulation of glutamic acid in explicit solvent at pH 4.25 and
with the barrier height of the biasing potential 3 kJ mol�1

(continuous line). The free energy at λ = 0.5 is ∼7 kJ mol�1

more positive than that at λ = 0 and λ = 1. When the biasing
potential is subtracted from the simulation free-energy profile, we
obtain the dotted line in Figure 1, which shows a residual barrier
of ∼4 kJ mol�1. This compares with the entropic barrier term
introduced by the use of the angular coordinate θ (broken dotted
line in Figure 7).
To investigate the effect of the chosen temperature coupling

scheme on sampling of the protonation states during the con-
stant pH simulations, the following two variants were considered.
In variant (i), the λ particle was coupled to a separate heat bath
via the Andersen thermostat,42 and the rest of the system was
coupled to the Berendsen thermostat, whereas in variant (ii), all
degrees of freedom were coupled to a common heat bath via the
Berendsen thermostat.30 Figures 6A and 6D compare typical
λ-trajectories for the two variants. As can be seen, the number of
transitions for the Berendsen variant is ∼3�4 times larger than
that for the Andersen method. Accordingly, the average resi-
dence time is ∼3�4 times shorter for the Berendsen simulation
(∼60 ps), compared to that for the Andersen simulation (∼200
ps). The probability distributions of λwith the two variants of the
temperature coupling scheme are very similar (see right plot of
Figure 6D). Figure 6E shows typical short-time (50 ps) traces of
both simulations, with λ(t) shown in the top row, and respec-
tive velocities of the underlying angular coordinate (vθ) at the
bottom. As can be seen, the λ-trajectories are similar, with the
Berendsen variant showing somewhat larger oscillations at the
end states. The velocities, in contrast, look very different, with
a marked proportion of high-frequency fluctuations for the
Andersen thermostat, which are absent for the Berendsen
thermostat. Figure 6F quantifies this behavior, in terms of the
distribution of angular distances covered by the circular coordi-
nate θ between successive velocity reversals. These distances are,
on average, shorter for the Andersen thermostat (0.08 radians),
as compared to the Berendsen thermostat (0.57 radians). In
particular, the long tail for the Berendsen thermostat (up to 6
radians) shows that inertia-driven full circle motions do occur,
which implies correlated transitions. This effect reduces the
statistical accuracy and is not seen for the Andersen thermostat.
Overall, the Andersen temperature coupling scheme seems to

provide a better tradeoff between residence times and the
number of uncorrelated transitions. In particular, the λ-trajec-
tories obtained with the Andersen variant showed a sufficiently
long residence time at the physical end states, allowing the
system to respond to the new protonation state. Because these
features are crucial for constant pH simulations, the Andersen
temperature coupling scheme has been used for all subsequent
simulations.
4.2. Glu-Ala Dipeptide. The second system that we consid-

ered was the dipeptide Glu-Ala. This system has three inter-
acting titratable sites—glutamic acid (Glu), amino terminus
(N-terminus), and carboxyl terminus (C-terminus)—and, there-
fore, was chosen to test if our method is capable of describing pKa

shifts due to these interactions.
Constant pH simulations were carried out for 14 pH values

between 1.0 and 11.0. Each trajectory covered a 20-ns simulation

Figure 5. Calculated titration curve of glutamic acid with neutral
termini. The deprotonation of glutamic acid (in equivalents, eq) is
plotted as a function of pH. At each pH, four simulations of 4.5 ns each
were performed. Data from each of these simulations (colored dots),
and from the average of the four simulations (black filled dots), are
shown. Error bars denote estimates from the statistics of the observed
transitions. The dashed line is a Henderson�Hasselbalch fit to the
average data.
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timewith a 2-ns equilibration time and an 18-ns data collection time.
Figure 8 shows the obtained titration curve (left graph), inwhich the
cumulative deprotonation (in equivalents) of all three titratable
sites is plotted as a function of pH, together with the individual
contributions of the three sites (see right side of Figure 8).

Apparent pKa values were estimated from a fit of a sum of three
Henderson�Hasselbalch equations (eq 35) to the cumulative
titration curve (Table 2). Similarly, the pKa values of each of the
titratable sites (site-specific pKa values) were obtained by fitting
the Henderson�Hasselbalch equation to the individual titration
curves (see Table 2). Note that the apparent pKa values are listed in
Table 2, next to each titratable site, only for the sake of clarity, because
they are defined in terms of deprotonation of the entire dipeptide.
The apparent and site-specific pKa values are similar for the

N-terminus, whereas, for Glu and for the C-terminus, there is a
difference of 0.28 and �0.22 pKa units, respectively (see
Table 2). The Henderson�Hasselbalch curve fitted the calcu-
lated deprotonation equivalents of the N-terminus and Glu (see
top and center right of Figure 8) well, whereas the titration
curve of the C-terminus (see bottom right of Figure 8) deviated
slightly from the Henderson�Hasselbalch curve. In particular,
the slope of the titration curve is shallower, as is indicative of
interactions between titratable sites.48,49 Since the N-terminus
was constantly protonated below pH 7 (see top right in
Figure 8), the interacting titratable sites were the C-terminus
and Glu, which had similar pKa values (∼3). A fit of the Hill
equation (eq 36) to the C-terminus titration curve (dashed
magenta line in Figure 8, lower graph) recovers the pKa value of
2.98 already obtained for the Henderson�Hasselbalch fit, and

Figure 6. Dynamics of the deprotonation variable λ of glutamic acid for different barrier heights of the biasing potential and different temperature
coupling schemes of λ: (A, B, C) λ is plotted over time during constant pH simulations at pH 4.25 for three different barrier heights ((A) 3.0 kJ mol�1,
(B) 5.0 kJ mol�1, and (C) 7.5 kJ mol�1) of the biasing potential using the Andersen temperature coupling scheme. (D) In the left-hand side of the panel,
λ is shown during a constant pH simulation at pH 4.25 for a barrier height of 3.0 kJ mol�1, using Berendsen temperature coupling; on the right-hand side
of the panel, the λ-distributions of this simulation and of simulation (see panel A) are superimposed. (E) Variable λ and respective velocity
vθ (in radians/ps) during 50 ps of simulation with Andersen and Berendsen temperature coupling schemes. (F) Distributions of the angular distances
(in radians) covered between velocity reversals by the θ-variable, during the simulations depicted in panels A and D.

Figure 7. Relative free-energy profile as a function of the titration
coordinate λ from the 18-ns constant pH MD simulation of glutamic
acid in explicit solvent at pH 4.25 (continuous line). The biasing barrier
potential (barrier height = 3 kJ mol�1) is subtracted from the simulation
free-energy profile to yield the dotted line. The broken dotted line is
the relative free-energy profile that is due to the circle entropy (�TS(λ);
see text).
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it provides a better description of the titration behavior. The
obtained Hill coefficient of n = 0.82 indicates a certain degree of
anticooperativity in the binding/unbinding of the proton. This
is expected, as both the deprotonated C-terminus and Glu are
negatively charged, and the release of a proton from one site will
increase the affinity of the respective other site.
To quantify the interaction between the C-terminus and Glu

in terms of a free energy, we determined the shift in the pKa

values of these two groups, which is due to the change in the
protonation state of the respective other group. For that purpose,
we selected, for each titratable site from the trajectories, those
frames where the respective other site (C-terminus or Glu) was
protonated or deprotonated. In the former case (trajectories
where the opposite site was always protonated), we obtained the
titration curve for the deprotonation of a site given the respective
other was protonated (first microscopic titration curve), whereas
in the latter (trajectories where the opposite site was always
deprotonated), we obtained the titration curve given the other
site was deprotonated (secondmicroscopic titration curve). From
a fit of the Henderson�Hasselbalch equation to the first and
second microscopic titration curves, we obtained the microscopic
pKa values (pKa

0 and pKa
00, respectively). For the C-terminus,

pKa
0 = 2.89 and pKa

00 = 3.05, and for Glu, pKa
0 = 2.95 and

pKa
00 = 3.11, which show a difference of 0.16 pKa units between

the first and second microscopic pKa values for both the
C-terminus and the Glu. Thus, the affinity of the two titratable
sites for the proton increased upon deprotonation of the other
site by ∼1 kJ mol�1, which is of the same order as a simple
estimate of the interaction energy (at the average distance of
0.6 nm, see below) from the Coulombic law (∼3 kJ mol�1).
As the C-terminus and Glu became charged, the average

distance between these two groups increased. In particular, this
distance changed gradually from 0.55 nm to 0.60 nm between pH
1 (when both groups were protonated) and pH 6 (when both
groups were negatively charged), and then more markedly from
0.60 to 0.74 nm between pH 8 and pH 11, when the N-terminus
was mostly deprotonated, and the system had a net charge of�2.
As can be seen from Table 2 when comparing the site-specific

and reference pKa values, in all three cases, a shift in the pKa value
was observed, favoring the charged form of the titratable sites in
the dipeptide. In particular, the pKa of the N-terminus increased
by almost 1 pKa unit, whereas the pKa of the Glu and C-terminus
decreased by 1.2 and 0.5 pKa units, respectively. The more-
pronounced shifts in the pKa value of the N-terminus and Glu
suggest that these two groups interact favorably in their charged
states. The average distance between the nitrogen of the N-ter-
minus and the oxygens of the carboxyl group of Glu decreased
from 0.47 nm to 0.43 nm between pH 2 and pH 6 and, beyond
pH 8, increased again to 0.47 nm. The N-terminus and Glu were
at the closest distance of 0.43 nm between pH 6 and pH 8, when
both groups were mainly in their charged states. No significant
salt-bridge formation was observed between these two groups
(<15% of simulation time). On average, the distance between the
C-terminus and N-terminus was larger, and almost constant,
between pH 1 and pH 8 (between 0.58 nm and 0.59 nm).
4.3. Force-Field Comparison: GROMOS96 and OPLSA. To

assess the sensitivity of the constant pH MD approach to the
chosen force field, we calculated the titration curve and pKa value
of glutamic acid (with neutral termini) with a second force field.
In particular, theOPLSA56 and TIP4P57 explicit water model was
used. In addition, we calculated titration curves and pKa values
for a tripeptide of sequence Ala-Glu-Ala with GROMOS9650 and
OPLSA,56 both with an SPC51 explicit water model.
For glutamic acid with neutral termini, both force fields

yielded very similar titration curves, with pKa values very close
to the reference pKa value, as can be seen in Table 3 and in Figure
s1 in the Supporting Information. This is expected, because the
constant pH simulation is parametrized via the measured pKa

value of the reference state, which, in these simulations, was
glutamic acid, such that any possible force-field bias should cancel.
For the Ala-Glu-Ala tripeptide, at each of 15 pH values

between 1 and 11, four constant pH simulations were performed
for a total of 30 ns per pH value. Slight differences between the
titration curves obtained with the two force fields are seen. In
particular, the Glu and C-terminus titration curves differed most
significantly (see Figure s2 in the Supporting Information). As
can be seen in Table 3, the site-specific pKa of the C-terminus is
shifted by�0.4 pKa units, with respect to the reference pKa value
in the GROMOS96 simulations, whereas it is shifted slightly by
0.1 pKa unit in the OPLSA simulations. For Glu, the site-specific
pKa value is shifted by 0.2, with respect to the reference state, in
the GROMOS96 constant pH simulations, whereas it is shifted
by �0.2 pKa units in the OPLSA simulations. Overall, the force-
field sensitivity seems to be small.
4.4. Imidazole. The titratable sites considered above in the

dipeptide simulations interacted only via electrostatics. The

Table 2. Calculated pKa values of the Glu-Ala di-peptide

titratable site apparent pKa site-specific pKa reference pKa
a

N-terminus 8.66 ( 0.13 8.79 ( 0.10 8.061

Glu 3.33 ( 0.08 3.05 ( 0.08 4.2560

C-terminus 2.76 ( 0.07 2.98 ( 0.07 3.561

aMeasured pKa values of the isolated titratable sites (reference pKa

values) are listed for the sake of comparison.

Figure 8. Calculated titration curves of a Glu-Ala dipeptide: (left)
titration curve of the dipeptide and (right) site-specific titration curves of
the N-terminus, Glu, and C-terminus. The fitted Henderson�
Hasselbalch curve (dashed line) and, for the C-terminus, the fitted Hill
curve (dashed magenta line) are also shown. Error bars denote estimates
from the statistics of the observed transitions.
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chemical character of each site of the dipeptide (technically, its
force-field parameters) was independent of the protonation state
of the other sites, and the free energy of deprotonation of one site
was affected only via Coulombic interactions with the other sites.
Now, in contrast, we focus on two examples of “chemical
coupling”, where two titratable sites interact also via chemical
bonds. In this case, the chemical character, and, thus, the pKa

value of a site, is affected by any change in the protonation state of
the respective coupled site. As a first example, we consider the
two chemically coupled titratable sites Nɛ and Nδ of imidazole
(Figure 4). A second example, histidine, is discussed further below.
Constant pH simulations of imidazole were carried out for 22

pH values between pH4 and pH17. Each trajectory covered 20 ns,
with 2 ns of equilibration and 18 ns of data collection. At pH values
of 8�13, a barrier height of 0 kJ mol�1 was used, as discussed
further below. Figure 9 shows the titration curve of imidazole, in
which the cumulative deprotonation of both Nɛ and Nδ titratable
sites is plotted as a function of pH. The first and second appa-
rent pKa values of imidazole were estimated by a Henderson�
Hasselbalch fit as described above, and are listed as Im(Nɛþ Nδ)
in Table 4. The obtained apparent pKa values of 7.00( 0.12 and

14.78( 0.08 agree with the measured pKa values of 6.98 (from ref
62) and 14.7 (from ref 1). Note that the measured value for the
imidazole second apparent pKa value, which was also used for the
reference state, is replaced by the one of the chemically similar
histidine, for which there are experimental data.1

The microscopic pKa values of the Nɛ and Nδ sites (see
Table 4) were estimated from the microscopic titration curves.
These were obtained, similar to the C-terminus and Glu of the
dipeptide, by plotting the fraction of deprotonated acid at one
site, given that the other site was protonated (bottom inset in
Figure 9; black for Nɛ, gray for Nδ), or deprotonated (top inset in
Figure 9; black for Nɛ, gray for Nδ). The first and second
microscopic pKa values were similar for Nɛ (7.29 ( 0.08 and
14.51 ( 0.16) and Nδ (7.28 ( 0.18 and 14.46 ( 0.18). This is
expected, because the two titratable sites of imidazole are
equivalent by symmetry. Consistently, the difference between
the apparent and microscopic pKa values is approximately �
(log10 2) and þ(log10 2) for the first and second deprotonation
reaction, respectively (see eqs 38 and 40, for the case where
pKa,1 = pKa,2). This follows from the fact that the probability of
deprotonating either two of the sites is twice the probability of
deprotonating one of the sites.
Since the affinities of the Nɛ and Nδ titratable sites are identical,

one expects to observe, at every pH value, similar corresponding

Table 3. Calculated pKa Values of a Single Glutamic Amino Acid with Neutral Termini (NH2-Glu-COOH), and Ala-Glu-Ala
Tripeptide with GROMOS9650 and OPLSA,56 in Combination with TIP4P57 and SPC51 Water Molecules

NH2-Glu-COOH

GROMOS96 þ SPC OPLSA þ TIP4P

titratable site pKa pKa reference pKa
a

Glu 4.21 ( 0.14 4.14 ( 0.07 4.2560

Ala-Glu-Ala

GROMOS96 þ SPC OPLSA þ SPC

titratable site apparent pKa site-specific pKa apparent pKa site-specific pKa reference pKa
a

N-terminus 7.93 ( 0.08 8.05 ( 0.08 8.01 ( 0.10 8.15 ( 0.09 8.061

Glu 4.48 ( 0.13 4.46 ( 0.07 4.09 ( 0.18 4.04 ( 0.06 4.2560

C-terminus 3.14 ( 0.12 3.12 ( 0.11 3.55 ( 0.18 3.59 ( 0.07 3.561

aMeasured pKa values of the isolated titratable sites (reference pKa values) are listed for the sake of comparison.

Figure 9. Titration curve of imidazole. The cumulative deprotonation
(in equivalents, eq) of the two titratable sites (Nɛ and Nδ) is plotted as a
function of pH. The dashed line is a fitted Henderson�Hasselbalch
curve. The insets show themicroscopic titration curves of sites Nɛ (black
line) and Nδ (gray line) for the first (bottom graph) and second (top
graph) deprotonation reaction of imidazole. Error bars were determined
from the statistics of the observed transitions.

Table 4. Calculated and Measured pKa Values of Imidazole
(Im) and Histidine (His)

titratable site calculated pKa measured pKa

Imidazole

Im(Nɛ þ Nδ) 7.00 ( 0.12, 14.78 ( 0.08 6.98,62 14.71

Im(Nɛ) 7.29 ( 0.08, 14.51 ( 0.16 7.28,62 14.41

Im(Nδ) 7.28 ( 0.18, 14.46 ( 0.18 7.28,62 14.41

Histidinea

His(Nɛ þ Nδ) 6.56 ( 0.21 6.4262

His(Nɛ) 7.18 ( 0.23 6.9262

His(Nδ) 6.70 ( 0.23 6.5362

a For histidine, only the first deprotonation reaction was investigated.
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average deprotonation levels, which provides an independent test
of the statistical accuracy of the calculations. Accordingly, Figure 10
shows the average deprotonation Æλæ (top left), and the number of
transitions (bottom left) for Nɛ and Nδ, in black and gray,
respectively, as a function of pH. Three ranges can be distin-
guished: (i) pH values close to 5 and 16, with similar Æλæ of the two
sites, and few transitions; (ii) pH values close to 7 and 14, with Æλæ
of Nɛ and Nδ also similar, but many transitions; and (iii) pH
between 8 and 13, with marked differences for the average
deprotonation between the two sites, and again few transitions.
To enhance sampling in this last regime, and, thus, statistical
accuracy, we lowered the barrier height of the biasing potential
from 3 kJ mol�1 to 0 kJ mol�1, which is expected to increase the
observed transitions, and repeated the calculations. As can be seen
in the right side of Figure 10, the difference in average deprotona-
tion is now significantly smaller, as, indeed, more transitions are
observed. This example demonstrates how, by adjusting the barrier
height, the transition frequency can be controlled and, thus, the
accuracy can be enhanced.
Note that, in range (i), close to pH 5 and 16, also few

transitions occur, but the accuracy is much higher than for range
(iii) at pH 8�13. This is due to the fact that, in range (iii),
statistical fluctuations can favor one of the singly deprotonated
forms over the other, whereas in range (i), only one form of
imidazole is (mainly) sampled, fully protonated at pH close to 5,
and fully deprotonated at pH close to 16. Therefore, insufficient
sampling can result in a large inaccuracy in range (iii), as
compared to the more straightforward case of range (i), where
only one form is sampled.
Similar to range (iii), in range (ii), more than one form of

imidazole is significantly sampled (fully protonated and neutral
forms, and fully deprotonated and neutral forms, at pH close to 7
and 14, respectively). In this range, the inaccuracy is also larger
than that observed in range (i). However, in contrast to range
(iii), many more transitions are observed and, thus, sampling is

enhanced. This is due to the fact that the free-energy difference
between the protonated and deprotonated states of λ is small at
pH values close to the pKa value, and the transition barrier is
lower, implying more-frequent transitions.
4.4.1. Histidine. As a second example of chemical coupling, we

considered histidine, which plays a crucial role in many biological
processes, because its pKa value is close to the physiological pH.
Accordingly, its protonation state changes with its local electro-
static environment. Here, we considered only biologically rele-
vant pH values (pH <10), because no accurate force-field
parameters for the negatively charged, fully deprotonated form
of histidine at pH >10 are available.47

In the previous section, we have studied imidazole, which is the
chemical moiety of the histidine side chain. The difference in the
measured pKa values of histidine and imidazole is ∼0.5 pKa

units,62 with histidine having lower affinity for the proton (see
Table 4). Moreover, in histidine, the affinities of the two sites are
not identical, as in imidazole, but differ with respect to each other,
also by∼0.5 pKa units.

62 This situation enabled us to address the
question of whether the constant pH simulation method is
capable of quantitatively describing these differences (i.e., the
effect of the presence of the backbone on the affinities for the
proton of Nɛ and Nδ).
For this purpose, we parametrized the constant pH simulation,

such that contributions to the proton affinities from the histidine
backbone were not present in the reference state simulation, for
which we used imidazole. Because of these contributions, the
calculated pKa value is expected to be equal to the measured pKa

value of histidine, and is expected to differ from themeasured pKa

value of the reference imidazole compound. Prior to starting the
constant pH simulations, however, the contribution to the
affinities from the different force-field parameters of imidazole
and histidine were calculated. The thermodynamic cycle in
Figure 3 served this purpose (i.e., to compute the free energies
of transferring imidazole parameters to histidine parameters for
each of the protonation states). Table 5 shows the free energies
that have been obtained. As can be seen, these are similar to each
other (between�12.59 kJ mol�1 and �14.36 kJ mol�1), except
for the neutral form (01). In this form, Nɛ is protonated, whereas
Nδ, which is two bonds away from the backbone Cβ, is
deprotonated. The free energies in Table 5 were then used to
redefine the reference state (see eq 33) prior to starting the
simulations.
Constant pH simulations of histidine were carried out for 15

pH values between pH 4 and pH 10. Each trajectory covered 20
ns of simulation time with 2 ns of equilibration time and 18 ns of
data collection time. Similar to imidazole, for pH values between
8 and 10, a barrier height of 0 kJ mol�1 was used. Figure 11 shows
the obtained titration curve. The calculated pKa value of 6.56 (
0.21, estimated via a Henderson�Hasselbalch fit (dashed line),
agrees with the measured pKa value of 6.42 (see Table 4). Thus,

Figure 10. Average values (top) and number of transitions (bottom) of
imidazole titration coordinates λN

ɛ
(for site Nɛ, black) and λNδ

(for site
Nδ, gray). Constant pH simulations (of 20 ns) were carried out at each
pH at barrier heights as indicated. Error bars denote estimates from the
statistics of the observed transitions. Ranges (i), (ii), and (iii) are as
referenced in the main text.

Table 5. Free Energies of Transfer (ΔGtransf) of Each
Imidazole Protonation State (see Figure 4) to the
Corresponding Histidine State

protonation state ΔGtransf (kJ mol �1)

00 (þ) �12.59( 0.54

10 (Nδþ) �0.04( 0.61

01 (Nɛþ) �13.68( 0.55

11 (�) �14.36( 0.59
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the ∼0.5 pKa units downward shift in the pKa value of histidine,
with respect to the reference compound (imidazole), was
calculated within the statistical error (see Table 4).
The inset of Figure 11 shows the microscopic titration curves,

which were obtained as described above for imidazole and Glu-
Ala. Henderson�Hasselbalch fits to these curves yielded micro-
scopic pKa curves of 7.18 ( 0.23 for Nɛ and 6.70( 0.23 for Nδ,
which is consistent with a macroscopic pKa value of 6.56 (see
eq 38). The difference of 0.48 pKa units between the two
microscopic pKa values agrees with the measured value of 0.39
pKa units (see Table 4). Thus, in addition to decreasing the
affinity of the two sites, the effect of the histidine backbone
manifests itself with a shift in the pKa of the two titratable sites
with respect to each other, withNɛ having a higher affinity thanNδ.

5. DISCUSSION AND CONCLUSIONS

We have developed a framework to describe changes in
protonation states at constant pH, where the requirements of
(i) sampling of the relevant λ configurational space, with con-
formations being the protonated (λ= 0) and deprotonated (λ= 1)
states, (ii) control of the rate of transition between the two
states, and (iii) fully atomistic description of the system are
fulfilled. The method, which was implemented within the
molecular dynamics (MD) package GROMACS,37�39 is based
on the λ-dynamics approach of Kong and Brooks,32 and it
follows, in the main lines, the constant pH simulation method
by Brooks and co-workers.32,34,35 A new general approach was
developed to treat chemically coupled sites, and it was applied to
describe the proton tautomerism of imidazole and histidine. In
proteins, other examples of chemical coupling are coordinating
residues around metal ions, such as that observed in copper
binding sites65 or zinc binding sites.66

In order to test whether, and under which conditions ,the
above-mentioned requirements are actually fulfilled by our
method, constant pH simulations of four systems, glutamic acid,
Glu-Ala dipeptide, imidazole, and histidine, were carried out. In
the following, we will briefly discuss these results in light of the
aforementioned requirements, and then we will address the
questions of how accurately the calculated average protonation
agreed with the measured pKa values, and whether the method is
capable of describing interacting titratable sites. In particular, two
types of interactions were considered: those between chemically
uncoupled sites, which interact only via electrostatics, and those

between chemically coupled sites, for which a new coupling
scheme was developed.

During the constant pH simulations, the average λ in the
protonated and deprotonated states was found to be very close to
values of 0 or 1, respectively, as required to describe the system in
a physically realistic way. This was achieved by appropriately
increasing the radius that defines the circular degree of freedom
that is used. Similarly, sampling of the intermediate unphysical
states was minimized by introducing suitable biasing potentials,
in addition to the entropic barrier (of a few kJ mol�1) implied by
the angular degree of freedom. It was shown that, for a 3 kJ mol�1

biasing potential barrier height, more than 70% of the simulation
time was spent close to physical states (λ < 0.1 and λ > 0.9).

Adjusting the barrier of the biasing potential also allowed us to
control the transition rate, as demonstrated for glutamic acid and
imidazole. In particular, for imidazole, it was shown how the
accuracy of the calculations at pH values between 8 and 13 was
significantly enhanced by increasing the transition rate, thus
achieving fast sampling of different protonation states.

In all systems investigated, a fully atomistic description was
used, including an explicit solvent. Interestingly, we found that
the average residence time at the protonated and deprotonated
states is more than 2 orders of magnitude larger than that for
comparable systems simulated with the λ-dynamics constant pH
approach developed by Brooks and co-workers34,35 with an
implicit solvent. The choice of the thermostat is critical, as shown
in Figure 6, where the average residence time is three times larger
for the Andersen thermostat, compared to the Berendsen
thermostat. Note that the transitions observed in the simulations
with the Berendsen thermostat were partially correlated, which
reduced the statistical accuracy. However, the thermostat alone
does not seem to explain the differences between simulations in
implicit and explicit solvents. Thus, the explicit description of
water is likely to be crucial as well. We note that the fluctuations
in the effective barrier for a transition are quite large due to the
water dipoles. These effects, which are important for the kinetics
of proton transfer, are not described in implicit water. It would
certainly be interesting to study these in more detail.

For the first test system (glutamic acid), the calculated
titration curve agreed very well with the measured one. Although
this result may seem trivial, as the constant pH simulation was
parametrized via the measured pKa value of glutamic acid (the
reference state), it nevertheless shows that the effect of pH is
taken into account correctly. As expected, an increase of the total
simulation time from 4.5 ns to 18 ns significantly improved
accuracy. By increasing the length of the simulation, on one hand,
the number of transitions increases, and, on the other hand, a
more extensive sampling of the configurational space of the side
chain at a certain protonation state is achieved. Both factors
enhanced the accuracy of the simulation. Note that adjusting the
barrier height of the biasing potential allows one to study the
relaxation effects that are due to the change in protonation state.

To study the interaction between titratable sites, we further
considered the dipeptide Glu-Ala as a test case. Here, we
expected the interactions in the dipeptide to shift the calculated
pKa values, with respect to the values of the individual titratable
sites (the reference states). Indeed, the calculated pKa values
were all shifted to favor the charge states of the titratable sites.
This was more evident for Glu and N-terminus, which moved
closer to each other in the pH range at which they were mainly in
their charged states. The C-terminus and Glu had rather similar
pKa values (∼3), and the individual contributions of these two

Figure 11. Titration curve of histidine. The cumulative deprotonation
(in equivalents, eq) of the two titratable sites (Nɛ and Nδ) is plotted as a
function of pH. The dashed line is the fitted Henderson�Hasselbalch
curve. The inset shows the microscopic titration curves of the Nɛ andNδ

(in black and gray, respectively). Error bars were determined from the
statistics of the observed transitions.



1977 dx.doi.org/10.1021/ct200061r |J. Chem. Theory Comput. 2011, 7, 1962–1978

Journal of Chemical Theory and Computation ARTICLE

groups to the deprotonation of the dipeptide were distinguish-
able only in the site-specific titration curves. By analyzing the
microscopic pKa values, the interaction between these two
titratable sites was estimated as∼1 kJ mol�1. The Hill coefficient
of 0.82 for the titration curve of the C-terminus indicated
anticooperativity in the system, in agreement with the micro-
scopic pKa values. We note that, by calculating the microscopic
pKa values, this anticooperativity was quantified here, in terms of
free energy.

For Glu-Ala, the titratable sites interacted only via electro-
statics. In contrast, in imidazole, which was the third system
considered, the titratable sites Nɛ and Nδ interacted chemically,
because the affinity for the proton of one site is a function of the
protonation state of the respective other site. To describe this
type of interaction, a general approach was developed, in which
each site is described by a titration coordinate λ, and coupling
between the sites is explicitly taken into account. Note that this
approach was applied here to describe the tautomerism of
imidazole and histidine, but it can be used to describe chemical
coupling between any two or more sites. Moreover, we showed
that our general approach simplifies to the case of chemically
uncoupled sites when interactions occur only via electrostatics.
The approach of describing each site of a tautomer as a separate
titratable site (or pseudo-site) is not new.67 However, to avoid
the occurrence of the double deprotonated state at pH 7, we do
not introduce an arbitrary energy penalty.67 Instead, the refer-
ence states of the pseudo-sites are coupled, such that they are a
function of the protonation state of the titratable site. For
example, in histidine, the reference pKa value of one of the sites
on the side chain increases from ∼6 to ∼14 as the respective
other site deprotonates. Therefore, at pH 7, a second deprotona-
tion is highly improbable. Alternatively, in the constant pH
approach of Khandogin and Brooks,35 tautomerism of titratable
amino acids is described by considering three states only. In
practice, only one titration coordinate is used, whereas an
additional continuous coordinate controls the interconversion
between the two tautomeric forms.35 We note that, by appro-
priately choosing the protonation states, a three-state description
also is obtained within our approach.

We did not use a tautomeric model for Glu in this work.
However, it is straightforward to apply such a model to Glu as
well, to allow for deprotonation/protonation of both oxygens on
the carboxylic group. In particular, such a description is required
in protein simulations, in which specific intramolecular interac-
tions can significantly increase the barrier for rotation of the
carboxylic group.

The obtained titration curve of imidazole agreed well with the
measured one. To test the model, we simulated over a large pH
range, to also observe the doubly deprotonated state. Although,
at physiological pH, this form is quite unlikely to occur, it cannot
be excluded that, in the presence of particular interactions, it
plays a role as well.

Histidine was considered as a second example of chemically
interacting sites. Here, we investigated the shift of the calculated
proton affinity, with respect to the reference one, because of the
presence of the backbone. For these simulations, the reference
state was transformed to a similar one by means of the thermo-
dynamic cycle shown in Figure 3. In general, the reference state is
chosen such that the chemical character of the titratable site is
similar in the reference and simulated states28 (i.e., that all
differences are described via electrostatics). This implies that
one is restricted to those states for which experimental data are

available. Now we have proposed an approach that allows one
to use a less similar state, therefore, broadening the range of
accessible systems.

Finally, we would like to note that our constant pH approach
will also be useful for determining protonation states from X-ray
structures. A constant pH MD simulation is performed before
the production run is started. During this equilibration phase,
position restraints can be applied to the protein backbone, or
heavy atoms, to keep the atomic coordinates close to the X-ray
data. This procedure might be particularly useful for proteins, in
which internal water molecules play a role in stabilizing proton-
ation states.68
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histidine and imidazole, the contribution of bonded terms to the
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average protonation state via bayesian approach is also presented.
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ABSTRACT: For simulating proteins at work in millisecond time scale or longer, we develop a coarse-grained (CG) molecular
dynamics (MD) method and software, CafeMol. At the resolution of one-particle-per-residue, CafeMol equips four structure-based
protein models: (1) the off-lattice Go model, (2) the atomic interaction based CG model for native state and folding dynamics, (3)
the multiple-basin model for conformational change dynamics, and (4) the elastic network model for quasiharmonic fluctuations
around the native structure. Ligands can be treated either explicitly or implicitly. For mimicking functional motions of proteins
driven by some external force, CafeMol has various and flexible means to “switch” the energy functions that induce active motions of
the proteins. CafeMol can do parallel computation with modest sized PC clusters. We describe CafeMol methods and illustrate it
with several examples, such as rotary motions of F1-ATPase and drug exports from a transporter. The CafeMol source code is
available at www.cafemol.org.

1. INTRODUCTION

Proteins work with their characteristic sequences, structures,
and dynamics. For example, enzymatic activity relies on well-
designed structural arrangement of several key residues at
catalytic sites, and the enzymatic activity is often allosterically
regulated by structural change dynamics upon binding to their
regulatory molecules. Thus, interplay among sequences, struc-
tures, dynamics, and functions is the focus of our studies.
Unfortunately, however, no single experiment is powerful to
simultaneously address all these aspects. Structural biology
methods, such as X-ray crystallography, are the most powerful
for addressing sequence�structure relation in high spatial reso-
lution, but their primacy is on static structure, and the dynamic
information is limited. A broad range of biochemical experiments
is the most useful for addressing overall functions and their
relations to sequences. They, however, do not provide direct
evidence in structure and dynamics. Single-molecule observa-
tions and laser chemistry experiments are the most direct to see
protein motions and dynamics, but their spatial resolution is
unavoidably low.

In this context, molecular dynamics (MD) simulations are
candidates to fill the gap among these and other various experi-
ments providing much of the time-dependent structural infor-
mation. The conventional fully atomistic MD simulations1�4

have high spatial and temporal resolution, but currently they
suffer from the time-range problem: Time scales reachable by
these MD simulations are typically on the order of microse-
conds, which is orders of magnitude shorter than the typical time
scales of most biological processes. Thus, as a complementary
approach, coarse-grained (CG) molecular models have been

used for simulating much longer time scales of biomolecular
systems. Naturally, CG MDs are popular in studying long time
behaviors,5�10 such as folding of proteins,11�13 work of protein
machines,10,14�18 and lipid membrane self-assembly and mor-
phology change.19�22 We have recently been developing such
CG models of proteins and applying them to various protein
systems.13�15,18,23�25 In doing so, we developed a software,
CafeMol. This paper presents the CafeMol methods and the
software for simulating proteins at work with various CG
models.

2. METHODS

2.1. CG Strategy.Coarse-graining is not a unique procedure at
all, and each CG model is, to some extent, based on the
developers’ own perspectives. CafeMol is based on the energy
landscape theory developed in protein folding study,26,27

although the range of its applicability is not limited to the folding.
Proteins have evolved to have ability of folding to their own
native structures. At the native structures of proteins, overall,
most side-chains are extremely well-packed in their cores.
Whenever one finds a charge in the core, it is either paired with
its counter charge or it is functionally essential. Thus, except for
functional reasons, the interactions at the native structures are
highly consistent, as pointed out many years ago by Go.28

Proteins gained through evolution, the foldability by minimizing
the frustration at their native structures, which was termed

Received: February 13, 2011
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“principle of the minimum frustration” by Bryngelson and
Wolynes.26 The effective energy takes the minimal value at the
native, and as the conformation deviates from the native, the
effective energy, on average, increases, which leads to an overall
funnel-like energy landscape, first coined by Onuchic et al.29

Completeness of the side-chains packing at the native structure
may resemble to the high-density packing in crystal. On the
other hand, the denatured state is characterized with low-level
side-chain packing and larger fluctuation, and thus it resembles
fluid.
Coarse-graining is relatively easy for the fluid-like denatured

state because we primarily need to approximate the statistical
average over the ensemble. Conversely, the native state is more
difficult to be described by CG models because of the high level
of side-chain packing, which is a very specific and a non-self-
averaging property. If the side-chain architecture is lost by
coarse-graining, then very surely we lose those specific interac-
tions, to some extent.30 Thus purely physicochemical coarse-
graining is not effective for approximating the native state.
Instead, an evolutionary perspective in the minimal frustration
principle can be used as a guiding principle for coarse-graining.
Namely, we assume, as an extreme, that all the interactions
found at the native structure are attractive. Simultaneously, we
require that the protein can take nearly random coil at suffi-
ciently high temperature. These two requirements led to the so-
called Go model, first developed in the lattice representation of
proteins.31 However, of course, protein dynamics near the
native is not well approximated by the lattice representation
but is well-approximated by a quasiharmonic potential, such as
the elastic network model (ENM).32,33 The ENM model is
good only near the native. A model that is similar to the ENM
near the native structure and simultaneously that shares the
concept of the lattice Go model was developed and called the
off-lattice Go model or the perfect funnel model.12 The off-
lattice Go model represents quasiharmonic fluctuations near
the native structure and simultaneously realizes the perfect
funnel energy landscape in global conformational space. Cafe-
Mol employs the off-lattice Go model developed by Clementi,
Nyemyer, and Onuchic12,13 and its derivative as a basic CG
model of proteins.
For applying CG MD to protein functional dynamics, how-

ever, the standard Go model is not sufficient because we often
need to simulate conformational change of proteins, which is
beyond the range of standard Go model. To simulate conforma-
tional change, many extensions of the Go model to multiple-
basin cases have been proposed.18,23,34,35 CafeMol equips
Okazaki et al’s version of the multiple-basin potential,23 which
is an important feature of CafeMol since the multiple-basin
model simulation is not easily fit with standard MD codes.
We note that the Gomodel and its derivative, as well as ENM,

explicitly depend on the native structure. Thus, these models
are often called the structure-based model or the native-centric
model. The “structure-based MD” is quite different in concept
from the conventional fully atomistic MD because the latter
uses a physicochemically derived force field and thus the
Hamiltonian does not explicitly depend on the native structure.
Structure-based model, by design, says that the native structure
is the most stable state, and this design implicitly and indirectly
takes into account chemical interactions in a very crude sense.
In addition, CafeMol has a new model that combines the
structure-based Go model and the fully atomistic force field
by using a multiscale protocol, which we term the atomic

interaction based CG (AICG) model.36 In the AICG model,
we can take into account chemical feature of interactions
observed at the native state, without significant increase in
computational time.
By CG MD, we can easily simulate protein dynamics in time

scales comparable to milliseconds or longer, but the long-time
simulation alone is not sufficient to simulate “proteins at work”.
In cells, many proteins work as “machines”. For the machines to
work lively, some free energy source is necessary. Many protein
machines use chemical energy as the free energy source, such as
energy from ATP hydrolysis and that by ion passage through
membrane. These chemical events cannot be well represented
by CG models, and thus we need to mimic them in some ways.
For the purpose, we proposed to “switch” the energy function at
a certain time.14 By switching, we put some energy into the
protein systems, and proteins start to “work” as machines.
Switching MD has some similarity, in concept, to the Brownian
ratchet model studied in modeling molecular motors.37 One of
the key advantages of CafeMol, in comparison with other MD
packages, is to equip various means to conduct dynamic “switch-
ing” simulations, which try to mimic roles of the energy source
given to the system and turn on the activemotion of themachines.
Simulations of molecular motors, such as F1-ATPase,

14

AAAþ motor,24 kinesin (Kanada et al unpublished), and a
multidrug transporter25 are examples of these functions.
The CafeMol employs a simplified representation of pro-

teins where one particle is assigned to each amino acid most
often placed at CR atoms (can be at Cβ or at the geometric
center of amino acids, though). Four models are included: (1)
the off-lattice Go model,12 (2) the AICG model,36 which is a
chemically tuned extension to the Go model in which resi-
due�pairwise interactions are modeled by their atom-based
interaction derived from an all-atom force field, (3) the multi-
ple-basin model,23 which is a minimal model that represents
energy landscape with more than one basins, and (4) the
ENM.32 The Go model and the AICG model can simulate
global and local folding/unfolding of proteins as well as native-
state fluctuations. The multiple-basin model can be used to
simulate conformational change dynamics. As such, the model
assumes knowledge of (at-least) two structures corresponding
to end-points of the conformational change. The ENM is to
represent quasiharmonic fluctuation around the native struc-
ture. In addition, one can optionally turn on ligand models,
generic electrostatic interactions, and empirical forms of hy-
drophobic interactions. The CafeMol implements various
simulation protocols: (1) The constant temperature MD by
Newtonian dynamics with Berendsen thermostat38 and by
Langevin dynamics. Based on the constant temperature MD,
many higher order protocols are available. (2) One can auto-
matically estimate the folding transition temperature by itera-
tive folding/unfolding simulations in different temperatures.
(3) Simulated annealing simulations can be done. (4) The one-
and two-dimensional replica exchange MD can be run. (5)
During MD simulations, one can switch (suddenly change) the
native structure information. This is a simple way to mimic
proteins at work driven by some external forces, such as ATP
hydrolysis free energy or proton motive force. (6) During MD
simulations, one can switch the relative stability in the multiple-
basin model. This is another and somewhat more sophisticated
way to mimic activation by some driving force. The protocols 5
and 6 are the major advantages of CafeMol over other methods
and packages.
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It may be convenient to compare CafeMol software with other
publicly available means for CG MDs of proteins. Standard and
some extended Go models can be run by GROMACS with the
SMOG tool39 and by Charmmwith the Go-model-builder tool.40

They are convenient since they can run on common MD
packages, which are familiar to many people, although some
extensions, such as multiple-basin potentials, may be more
difficult because of the framework given by the packages. The
ENM and its extensions are simpler models and thus can be run
conveniently by many ways including a software RedMD,10

another software REACH,41 and web servers iGNM/oGNM/
oANM.42 These tools, by themselves, cannot handle large-scale
deviations from the native structure that include complete or
partial unfolding. More flexible ways to realize CGMDmay be to
use general tools, such as a CG-builder of VMD/NAMD
packages3,43 and some modules of LAMMPS.44 They are flexible
and thus may require more adaptation to particular applications.
No publicly available method, other than CafeMol, can run
conformational change dynamics between two (or more than
two) given structures, to our knowledge. Also, internal frame-
work for switching the potential is a unique feature of CafeMol.
CafeMol is a standalone software written in Fortran90 with

MPI and C preprocessing directives. Thus, it can run in virtually
any computer that has a Fortran90 compiler. The CafeMol
source code, together with the parameter set and sample input
files, is freely available to anyone at the web page, http://www.
cafemol.org. A summary on the structure of the code and used file
formats are given in Supporting Information.
2.2. Models and Energy Functions. 2.2.1. Off-Lattice Go

Model. CafeMol implements the off-lattice Go model developed
by Clementi, Nyemyer, and Onuchic.12 For a protein with the
number of amino acids naa, the Go model potential VGo(R|R0) is
defined by

VGoðRjR0Þ ¼ ∑
i
Kbðbi � bi, 0Þ2 þ ∑

i
Kθðθi � θi, 0Þ2

þ ∑
i
fKð1Þ

j ½1� cosðji � ji, 0Þ� þ Kð3Þ
j ½1� cos 3ðji � ji, 0Þ�g

þ ∑
nat contact

i < j � 3
εgo 5

rij0
rij

 !12

� 6
rij0
rij

 !10
2
4

3
5þ ∑

non-native

i < j � 3
εev

d
rij

 !12

ð1Þ
Here, R is the Cartesian coordinates of the simulated protein as
a 3naa-dimensional vector, bi is the i-th virtual bond length
defined as |riþ1 � ri| (1 e i e naa � 1), where ri stands for the
Cartesian coordinate of the i-th amino acid (= CG particle), θi is
the i-th bond angle between two consecutive virtual bond
vectors, riþ1 � ri and riþ2 � riþ1 (1 e i e naa � 2), φi is the
i-th dihedral angle around the i þ 1-th virtual bond riþ2 � riþ1

(1 e i e naa � 3), and rij is the distance between i-th and j-th
amino acids. All parameters with the subscript 0 are the
constants which have the values of the corresponding variables
at the native structure R0, which corresponds to the structure at
the bottom of the folding funnel. Kb, Kθ, Kφ

(1), Kφ
(3), εgo, εev, and

d are the parameters. For the former six parameters, Clementi
et al’s original model uses homogeneous setting, i.e., for each
parameter, the same value is used for the entire systems. In
CafeMol one can optionally use site-specific parameters, i.e.,
the parameter values that depend on residues, which allow one
tomodel flexible loops, for example. The summation∑i < j� 3

nat contact

is over the “native contact pairs”, pairs of amino acids that are
physically close to each other at the native (or the reference)
structure. If one of the nonhydrogen atoms in the i-th amino
acid is within a threshold distance (which is 6.5 Å by default)
from a nonhydrogen atom in the j-th amino acid, then we define
the pair of the i-th and the j-th amino acids as being the native
contact. Only nonlocal pairs with i < j � 3 are taken into
account. We note that, even though CafeMol uses one bead
(most often located at CR atom) per amino acid as the dynamic
variable in MD simulations, the native contacts are defined by
using all-atom information at the native (reference) structure.
Thus, the PDB structure given for the native structure must
contain all-atomcoordinates. The summation∑i < j� 3

non-native is over
pairs that are not in the native contact pair set. Only nonlocal
pairs with i < j � 3 are taken into account.
2.2.2. Atomic Interaction Based CG Model. In the Go model,

by default, the parameters Kb, Kθ, Kφ
(1), Kφ

(3), and εgo are
independent of the residue number i and of secondary struc-
tures, which implies that all the information coded by amino
acid sequence of a protein is represented by the protein native
structure. For better chemical specificity, one may want to use
sequence-dependent parameters. Indeed, it was found that in
some cases, such a chemical specificity can be crucial for the
protein folding and other functional dynamics. Undoubtedly,
appropriately implementing the interaction specificity into the
Go model can improve the description of the protein dy-
namics. In CafeMol, based on the work of Li, Wolynes, and
Takada,36 we provide a way to implement such a kind of Go
model with sequence-specific interactions, of which para-
meters were determined based on all-atom AMBER energy
with an implicit solvent model by using a multiscale approach.
This new model is called atomic interaction based CG
(AICG) model.
In the AICG model, the interaction strength between the

natively interacting residues i and j depends on i and j and is
written as εgo,ij = εgowij, with wij and εgo being the relative weight
of the interactions for each pair of contacting residues and the
average of the nonlocal native interactions, respectively. The wij
controls the heterogeneity of the nonlocal native interactions. In
a simple version of AICG models, CafeMol provides an auto-
matic estimate of wij via a linear regression to AMBER energy in
terms of some atomic details of the residue contacts (see the
Supporting Information of ref 36). Alternatively, CafeMol allows
the user to provide AMBER-based residue-contact energy pre-
calculated by the user.
In the AICG model, the residues with different secondary

structures have different interaction parameters for bond and
dihedral angles. Residues are assigned to one of the four major
secondary structures, i.e., R-helix, β-strand, turn, and random
coil, by the define secondary structure of protein (DSSP)
method.45 We also assign an independent parameter for the
bond and dihedral angels which contain glycine. The nonlocal
parameter εgo and all the local parameters are generic and
optimized by using the fluctuation matching method for a set
of proteins.
2.2.3. Multiple-Basin Model. CafeMol employs the multiple-

basin potential of Okazaki et al,23 which, based on the Clementi
et al’ s off-lattice Go model, represents the energy landscape that
has more than one energy basin. We here write the equation of
the potential for the two-basin case since this is most often used
in real application, although CafeMol can treat the cases with
more than two basins.
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The multiple-basin potential energy function VMB is defined
by the (smaller) eigenvalue of the characteristic equation:

VGoþðRjR1Þ Δ

Δ VGoþðRjR2Þ þΔV

 !
c1
c2

 !
¼ VMB

c1
c2

 !
ð2Þ

where VGoþ (R|Rν) is essentially the Clementi’s off-lattice Go
potentialVGo(R|Rν) but is modified in two respects, as described
later. The condition that a nontrivial solution exists leads to a
secular equation of which the explicit solution is given as

VMBðRjR1R2Þ ¼ 1
2
½VGoþðRjR1Þ þ VGoþðRjR2Þ þΔV �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VGoþðRjR1Þ � VGoþðRjR2Þ �ΔV

2

� �2

þΔ2

s
ð3Þ

Here, Δ is a coupling constant, which smoothed the connection
between two Go models (the larger Δ leads to smaller barrier
height between two basins), and ΔV is to modulate the relative
energies of the two basins. A convenient reaction coordinate that
monitors the conformational change is χ = ln(c2/c1), where (c1,c2)
are the eigenvector corresponding to VMB.
VGoþ (R|Rν) is, as was noted, conceptually the same as

VGo(R|Rν) of Clementi et al. Purely for technical reasons, we
need to introduce two modifications. We write the VGoþ (R|Rν)
in the sum of three terms:

VGoþðRjRνÞ ¼ VlocalðRjRνÞ þ Vnative-attrðRjRνÞ
þ VrepulðRjRνÞ ð4Þ

where the first term is

VlocalðRjRνÞ ¼ ∑
i
Kb, iðbi � bi, νÞ2 þ ∑

i
Kθ, iðθi � θi, νÞ2

þ ∑
i
fKð1Þ

j, i½1� cosðji � ji, νÞ� þ Kð3Þ
j, i½1� cos 3ðji � ji, νÞ�g

ð5Þ
This local potential is slightly different from that of VGo(R|Rν):
Namely, all of the K’s are now dependent on i in the following
ways:

Kbi=Kb ¼ min 1,
εb, max

Kbðbi1 � bi2Þ2
" #

ð6Þ

Kθi=Kθ ¼ min 1,
εθ, max

Kθðθi1 � θi2Þ2
" #

ð7Þ

and

Kð1Þ
ji =K

ð1Þ
j ¼ Kð3Þ

ji =K
ð3Þ
j ð8Þ

¼ min 1,
εj, max

Kð1Þ
j ½1� cosðji, 1 � ji, 2Þ� þ Kð3Þ

j ½1� cos 3ðji, 1 � ji, 2Þ�

2
4

3
5

ð9Þ
This is introduced so that the spring constant is weakened where
too large local changes are observed between the two reference
structures. The thresholds εb,max, εθ,max, and εφ,max define the
“large local change”. We note that because of this,Vlocal(R|{Rν})

is not just a function of the reference structure Rν, but it also
depends on other reference structures.
Nonlocal potentials are divided into attractive terms Vnative-attr

and repulsive terms Vrepul, and the former is given as

Vnative-attrðRjRνÞ ¼ εgo ∑
nat contact

i < j � 3
min 1, 5

rij, ν
rij

 !12

� 6
rij, ν
rij

 !10

þ 1

2
4

3
5

ð10Þ
where the summation is over the native contact pairs in the same
way as that of the single Go model. The repulsive part Vrepul is
further divided into two terms Vrepul-1(R|Rν) and Vrepul-2(R):

VrepulðRjRνÞ ¼ Vrepul-1ðRjRνÞ þ Vrepul-2ðRÞ ð11Þ

where

Vrepul-1ðRjRνÞ ¼ εgo ∑
nat-related

i < j � 3
max 0, 5

rminij, ν
rij

 !12

� 6
rminij, ν
rij

 !10
2
4

3
5

ð12Þ
and

Vrepul-2ðRÞ ¼ εev ∑
purely non-nat

i < j � 3

d
rij

 !12

ð13Þ

where

rminij, ν ¼ min
nat contact

ν
½rij, ν� ð14Þ

Here, the repulsive-1 term is used for the pairs for which the
native contact is formed at least in one of the reference structures
(“type 1” and “type 2” pairs in the original paper of Okazaki
et al). We termed it as “native-related pairs”. For a particular pair
ij, if the pair is in native contact in the state ν (state corresponds
to basin), then this is a (true) native contact for this state. If the
pair is not in the native contact in the state ν, but it makes
contact in another state, then we call this pair in the “dummy
contact” in the state ν. For the state ν, the “native-related pairs”
include both the true native and the dummy contact sets. The
repulsive-2 term is for the pairs for which native contact is never
formed in any of the reference structures (“type 3” pairs in the
original paper). Vrepul-2(R) is the same form as that of Clementi
et al’s Go model.
We note that the attractive part has the same shape as that

of Clementi et al but the repulsive part of the Lennard-Jones-
like potential is modified for the native-related pairs. Between
the two (or all the) states, the repulsive part is identical. The
ri,j,v
min is the smallest distance between i and j among all the
states ν for which this pair ij is in native contact. We note that
because of this, Vrepul-1(R|Rν) is not just a function of the
reference structure Rν but also depends on other reference
structures.
2.2.4. Elastic Network Model.The ENMwas first proposed by

Tirion in all-atom representation.32 CafeMol uses it in one-
bead-per-amino-acid CG level. Simply, all the native contact
pairs are connected by elastic bonds with their natural lengths
rij,0 being equal to those at the native structure. The spring
constant K is the same for all the elastic bonds. The same
definition of the native contact as that of the off-lattice Gomodel
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is used here:

VENM ¼ K ∑
nat contact

i < j
ðrij � rij, 0Þ2 ð15Þ

2.2.5. Electrostatic and Hydrophobic Interactions. In addition
to the above four models, we can optionally turn on other
interactions that include the electrostatic interaction, a hydro-
phobic interaction, a pulling force for steering, and others. The
electrostatic interaction is expressed as the Debye�H€uckel form.
The hydrophobic interaction defined below is an empirical form
and is qualitatively similar to the accessible surface area model.
The hydrophobic (HP) interaction is modeled by a many-

body energy function,25 which has a similar functional form to
that was used in Fujitsuka et al.:46,47

VHP ¼ � cHP ∑
i ∈ HP

εHP,AðiÞSHPðFiÞ ð16Þ

Here, the coefficient cHP is to scale the overall strength of the
hydrophobic interactions. A(i) stands for the type of the particle
i; 21 types are considered: A(i) = 1,2, ..., 20 means the 20 types of
amino acids and A(i) = 21 simply represents all nonamino acid
particles. The particle-type-specific parameter that reflects the
hydrophobicity of particles is εHP,A. The “buriedness” SHP(Fi) of
the particle i is defined by

SHPðFÞ ¼

clinearF F e Fmin

clinearFþ 0:5ð1� clinearÞ 1þ cos
πð1� FÞ
1� Fmin

� �
Fmin < F < 1

1 F g 1

8>>>>><
>>>>>:

ð17Þ
Here, clinear defines the contribution of the linear term, and Fminis
the threshold to introduce nonlinear form. The local density Fi
for particle i is calculated by

Fi ¼
∑

j ∈ HP, j 6¼i

nAðjÞuHPðrij, rmin ,AðiÞ,AðjÞ, rmax ,AðiÞ,AðjÞÞ

nmax ,AðiÞ
ð18Þ

where nA is the number of atoms that the particle type A
represents, and nmax,A is the maximum coordination number
for particle type A. The function uHP represents the degree of the
contact between particles i and j and is defined as

uHPðr, rmin, rmaxÞ ¼

1 r e rmin

0:5 1þ cos
πðr� rminÞ
rmax � rmin

� �
rmin < r < rmax

0 r g rmax

8>>>><
>>>>:

ð19Þ
where rmin (rmax) is to define the cutoff for the minimal
(maximal) distance, which depends on the particle types A(i)
and A(j).
In real applications, the target system may contain more than

one protein molecule. In such a case, the total energy function is
the sum of intrachain and interchain interactions. For the former,
CafeMol allows us to mix the models; it is possible, for example,
that one chain is represented by the Gomodel, and another chain
by the multiple-basin model. Interactions between chains may be
modeled by a combination of the few interactions, such as the

contact energy (the same way as the Go model), the electrostatic
interaction, the hydrophobic interaction, and the simple
repulsion.
We alsomention that we can realize a frustrated system even in

the framework of the Go model. For example, in modeling a
flexible docking of two proteins, one can represent the intrachain
interactions of two individual proteins by the Go model using
their unbound structures as references, while the interactions
between two proteins may be modeled by the native contact
taken from the bound complex structure. Even though all the
interactions are of Go-type, their reference structures are not the
same, thus introducing frustrations. CafeMol has flexible inter-
faces which allow one to realize such a mixed-reference simula-
tion very easily.
2.2.6. Explicit and Implicit Ligand Models. Protein conforma-

tional change is coupled with a ligand binding, and one may want
to take into account the ligand binding dynamics into CG
simulations. CafeMol has twoways to include ligands: the explicit
and implicit ligand models. Explicitly including CG ligands is a
straightforward method, whereas the implicit ligand model is a
computationally faster alternative proposed in Okazaki and
Takada, 2008.18

In the explicit ligand model, small ligand molecules are
modeled as a rigid linear chain, in which the sequence of ligand
beads is defined in the input PDB file of the ligand. The energy
function for explicit ligands is essentially the same as the local
potential term in the Gomodel, in which the spring constants are
set as sufficiently large values to make the ligand rigid. Between
the ligand and proteins, we can use the same interactions as those
for interprotein interactions.
On the other hand, in the implicit ligand model, we describe

that ligand binding in the “two-state”manner. Namely, the ligand
is either bound (B) or unbound (U) to a protein. In the unbound
state, the protein has just its intraenergy, represented typically by
the multiple-basin model, whereas the protein in the bound state
has the energy which is the sum of its intraenergy and the ligand
binding energy, Vimp-lig. This ligand binding energy Vimp-lig does
not contain the explicit coordinates of the ligand atoms but is a
function of the Cartesian coordinates of ligand-mediated sites of
the protein. It takes the negative and large absolute value when
the local environment around the binding pocket is close to that
of the reference conformation. Concretely, the Vimp-lig is nor-
mally defined as

Vimp-lig ¼ � ∑
ligand-mediated

contact pairs

cligεgoexp �ðrij=r0ij � 1Þ2
2ðσ=r0ijÞ2

" #

where the “ligand-mediated contact pairs”means the amino acid
pairs that satisfy the following three conditions: (a) Both of
amino acids in the pair are involved in the binding-sites, which are
provided in the input file. (b)The pair is not involved in the
native contact. (c) At least one non-hydrogen atom in one amino
acid is within 10 Å from at least one non-hydrogen atom in the
other amino acid. In time propagation, the protein conformation
is moved by the standard MD simulation (described below),
whereas the ligand binding state (B or U) is stochastically
changed by the rates kb(binding) and ku(unbinding) implemen-
ted as the metropolis Monte Carlo (MC) scheme in the
following way.While in the unbound (U) state, a ligandmolecule
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reaches the binding pocket at every Δtb time with probability
p= kbΔtb.With this probability, the state changes to the bound (B)
one. Here kb is the apparent first-order rate for binding and thus is
proportional to the ligand concentration.While in the bound state,
at every Δtu time, the bound ligand has chance to dissociate at a
probability exp(�|Vimp-lig|/kBT). The mixed MD�MC scheme
thus described here is a convenient way of simulating protein
conformational dynamics coupled with ligand binding.
2.3. SimulationMethods. 2.3.1. Units.CafeMol uses a specific

unit. The length unit is Å. The energy unit is kcal/mol. For
temperature, we use Kelvin, 1 K = 1.987 � 10 �3kcal/mol. The
mass unit is our own one. We set that each amino acid has the
mass of 10, which we call 10 cafe-mu (cafemol mass unit).
Since average mass of 20 amino acids is 137 amu (atomic mass
unit), we thus define 1 cafe-mu = 13.7 amu. From these, we
can directly obtain the unit time of CafeMol to be 1 cafe-time =
1.809� 10 �13 s∼ 200 fs. We need to be cautious in interpreting
this time scale. Since intrinsic dynamics is accelerated by coarse
graining the energy landscape, this apparentmapping in time scale
does not necessarily give a good estimate of the real time.
2.3.2. Constant Temperature MD. The constant temperature

MD is the most basic simulation protocol in CafeMol. Currently,
one can use either constant-temperature “Newtonian” or Lange-
vin dynamics. The underdamped Langevin dynamics is inte-
grated by the scheme developed by Honeycutt, Guo, and
Thirumalai.48,49 For the constant-temperature Newtonian dy-
namics, we employed the velocity-type Verlet algorithm for
updating protein structure with the Berendsen thermostat for
controlling temperature.38

2.3.3. Searching TF. CafeMol can automatically estimate TF, at
which the protein is folded (or denatured) with 50% probability,
by using the bisection method. Namely, we first specify, in the
input file, the lower and the upper bounds of TF. CafeMol first
simulates the protein at the midpoint temperature of the two
bounds and sees if the protein is near native conformation for
more than half of the simulation time. If yes, then this tempera-
ture is set as the new lower bound ofTF. Otherwise, the simulated
temperature was set as the new upper bound of TF. With the new
set of the lower and the upper bounds, CafeMol repeats the
simulation at their midpoint. This iteration lasts for the required
times to narrow the temperature range. For an accurate estimate
of TF, the MD step number needs to be much larger than the
folding and unfolding time scale nearTF. Typically, the condition
is easily satisfied for proteins with less than 100 amino acids but
for proteins with more than 200 residues
2.3.4. Simulated Annealing. The simulated annealing is to

search lower (possibly the lowest) energy structure in the
simulated system. It uses the constant-temperature MD routine,
and the temperature in the routine is decreased at a certain rate.
2.3.5. Replica Exchange Method. CafeMol can run one- and

two-dimensional replica exchange method (REM).50�52 The
standard replica-specifying parameters are the temperature and
the ionic strength, although one can easily adapt it for other
replica-specifying parameters. In addition, CafeMol equips the
feedback-optimized REM,53 by which the replica temperatures
can automatically be optimized.
2.3.6. Switching Go Model. Many proteins work by changing

their conformations depending on their interactions with their
partner molecules. For example, proteins change their conforma-
tion upon binding to ligands. How binding and conformational
change are coupled in proteins is in itself a subject to be studied.
However, for studying more complex biological phenomena, we

may want to enforce such a conformational change by design.
The switching Gomodel is proposed for this type of simulations.
In the switching Go model, we first simulate a protein by the

Gomodel VGo(R|RA) with a structure A being the reference (i.e.,
native) structure. At room temperature, the protein usually
resides nearby the structure A, R∼RA. At a certain time, we
suddenly change the reference structure of the Go model to
another structure B, resulting in a new Go potential VGo(R|RB).
The protein jumps from the bottom of the Gomodel VGo(R|RA)
to the downhill slope of the new Go potential VGo(R|RB). Note
that the simulated structure R does not change suddenly but
changes continuously. Right after the switch, the protein starts to
relax its conformation from R∼ RA to R∼ RB. This mimics the
conformational change from the structure A to the structure B, in
a simple and crude way. CafeMol is ready to switch Gomodels in
any fixed times.
2.3.7. Switching Bias in Multiple-Basin Potential. The switch-

ing Go model is perhaps the simplest way to realize some large-
scale conformational change in biomolecules. However, in
switching Go models, the protein is “excited” to the new
potential, and the resulting procedure is nothing but the relaxa-
tion on the new Go potential surface. This resembles to the
photoactivated process. Biologically, however, many events are
thermally activated, and thus overcoming the energy barrier by
thermal fluctuation may be of essential importance, in some
cases. To realize this thermally activated conformational transi-
tion, CafeMol uses the multiple-basin model. We first simulate a
protein with the multiple-basin model setting the structures A and
B as reference structures of the two basins, i.e.,VMB(R|RARB,ΔV),
where ΔV is positive and sufficiently large so that the basin A
is more stable. The protein mostly resides in the basin A, i.e.,
R ∼ RA. At a certain time, we suddenly change the bias ΔV to a
negative and sufficiently large absolute value so that the basin B is
now more stable. Soon after the switch, the protein would still
fluctuate in the basin A, but after a while, it overcomes the barrier
to reach the more stable basin B, through thermal fluctuations.
We can also couple the switch bias in multiple-basin potential
and switch the reference structure as in the case of switching
Go model.

3. RESULTS

Here, after investigating parallel performance we illustrate
prototypical simulations by CafeMol. Six basic examples are
followed by simulations of two protein machines at work.
Technical details on how to write input files are described in
the Supporting Information and in Tables S1�S4.
3.1. Parallel Performance. The CafeMol code is parallelized

byMPI andOpenMP commands. The parallel efficiency strongly
depends on the simulated system. As in all otherMD simulations,
the bottleneck in computation is the force calculation and thus
parallelization in the force calculations determines the overall
parallel performance. For simple Go model simulations without
additional interactions, forces from the native contact and
excluded volume interactions are dominant. When the electro-
static interaction is turned on, the computational bottleneck
shifts to the force calculation of the electrostatic interaction, as in
normal MD simulations. This is because the native contact is
relatively short ranged, while the electrostatic interactions are
long ranged.
Here, we show benchmark tests of parallel efficiency up to 64

cores for 2 viral capsid protein complexes using the Go model
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with and without electrostatic interactions. We used a standard
PC cluster with infiniband networks. OpenMP is used up to four
cores, whereas the MPI/OpenMP hybrid is employed beyond
four cores, in which OpenMP always deals with four cores. A
smaller system, satellite tobacco mosaic virus (STMV) capsid
protein complex (the pdb code 1A34), is made of 60 identical
proteins of 147 amino acids (excluding unstructured terminus),
containing 8820 CG particles. A larger system, capsid protein
complex of Norwalk virus (the pdb code 1ihm), contains 180
subunits of about 500 residue proteins which results in 89700CG
particles (about 10 times as large as STMV). For each of the two
protein complexes, we measured the parallel performance of

constant temperature MD simulations of the Go model with and
without the electrostatic interactions (Figure 1). Without elec-
trostatic interactions, the parallel performance saturated at
around 8 cores and the asymptotic speed-up was about 6- and
7- fold for STMV and for the Norwalk virus, respectively (dashed
curves). When the electrostatic interactions were turned on,
parallel efficiency was markedly improved (solid curves); 24- and
40- fold speeds-up for STMV and for the Norwalk virus,
respectively, with 64 cores. Thus, as expected, for larger molec-
ular systems with electrostatic interactions, the parallel perfor-
mance is more pronounced.
In addition, the replica exchangeMD is parallelized naturally by

MPI. Namely, different replicas are dealt with different nodes.
One can combine the force parallelization and the parallel
treatment of replicas, resulting in two-dimensional parallelization.
3.2. Near-Native Dynamics. We start with the constant

temperature MD simulation of src SH3 domain protein by the
Go model to calculate fluctuations in the native state. We
perform a 1 � 106 step MD simulation with the time step
0.2 cafe-time. See Supporting Information, Table S1 for technical
details.
Figure 2 represents the root-mean-square fluctuation (RMSF)

of every amino acids in src SH3 domain protein calculated by the
Gomodel together with the results obtained by some standard all-
atomMD simulations. They contained the 10 nsMD result by all-
atom protein model of the AMBER ff99SB54 with the modified
generalized Born implicit solvent model55 as well as those by the
same all-atom model with explicit water molecules of TIP3P.56

Apparently in Figure 2, the agreement among the three methods
is overall quite good. Not surprisingly, both N- and C-termini
residues are intrinsically flexible with quite a large RMSF, and they
can differ, tomore extent, among three results. Ignoring 3 residues
in each terminus, we obtained the correlation coefficient between
the RMSFs by the Go model and those by the all-atom MD
(explicit water) to be 0.88. In contrast, the correlation coefficient
between the RMSFs by all-atom MD with explicit waters and
those with the implicit water model was 0.65 for this protein.
3.3. Protein Folding. The second example is a folding

simulation of src SH3 domain protein by the Go model at 300 K.

Figure 1. Performance of parallel computation of Go model simula-
tions with (solid curves) and without (dashed curves) electrostatic
interactions. (A) STMV capsid proteins containing 8820 residues.
(B) Norwalk viral capsid proteins containing 89 700 residues. The
acceleration rate is plotted against core numbers in the log�log scale.
The dotted line indicates the ideal linear scaling.

Figure 2. The RMSF of src SH3 domain in its native state at 300 K.
Results by Go model (the red solid line), by all-atom MD with an
implicit solvent model (the green long-dashed line), and by all atomMD
with explicit water solvent (the blue short-dashed line) together with the
estimate from the X-ray B-factors (the pink dotted line) are compared.
All the curves are scaled so that their averages become unity.

Figure 3. Time course of src SH3 domain folding simulated by the Go
model. The nativeness is quantified by the Q score, the fraction of the
formed native contacts. Some representative snapshot structures are
illustrated. The molecular images in this article were created with
PyMOL58 and VMD.43
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Figure 3 shows time series of an overall folding reaction co-
ordinate, i.e., Q-score, the fraction of the formed native contacts.
We see that the folding occurs quite cooperatively, and the
folding nucleus is found in the so-called distal β-hairpin (light-
green to orange segments in the cartoon of Figure 4), which
agrees quite well with the results of experimental φ-value
analysis.57

3.4. Automatic TF Search. As described above, CafeMol has a
function to automatically estimate TF for modest size proteins.
Here, we exemplify it for src SH3 domain protein. Figure 4 shows
the result. Since the upper and the lower temperature bounds are
500 and 100 K, the initial midpoint temperature is 300 K where
the first MD simulation is conducted for 2� 107 cafe-time. This
results in the native state for almost the entire time. Then, 300 K
is set as the lower bound. In the second round, the new midpoint
temperature is 400 K. The same procedure continues nine times.
The employed temperatures in every step are shown at the top of
the figure. See Supporting Information, Table S2, for technical
details.
3.5. Conformational Change by Multiple-Basin Potential.

We then illustrate a conformational change simulation of the
glutamine binding protein by the multiple-basin potential. The
glutamine binding protein is a typical molecule that exhibits
close/open conformational changes upon ligand binding/disso-
ciation, and both the open and the closed structures are available.
The multiple-basin potential has two empirical and important
parameters, ΔV and Δ,which we tuned by a trial-and-error
approach so that the resulting MD produces reversible transitions
between the open and the closed structures and that the residential
time in each state is nearly 0.5. Here, we chose ΔV = �8
and Δ = 55. The result of a MD simulation is shown in Figure 5
where the reaction coordinate χ (defined above) is plotted as a
function of time. The χ is negative (positive) when the protein is
in the basin of open (closed) state. Here, we observed quite
abrupt and reversible conformational transitions between the
two states, thus showing that the two states separated by a low
free energy barrier are in near equilibrium. See Supporting
Information, Table S3, for technical details.
3.6. Conformational Change by Switching Go Model.

Although we can realize reversible conformational transitions
between two structures for small proteins by the multiple-basin
model, as was described in the previous subsection, this may not
easily be realized for a very large-amplitude conformational
change in very large proteins. For such cases, we can induce

such large-scale conformational changes by switching the Go
model, although this is less sophisticated than the multiple-basin
model. Here, we exemplify it for the glutamine binding protein.
First, the protein is simulated with the Go model with the
reference structure being the open structure. At t = 2 � 103,
we switch the reference structure of the Go model to the closed
structure, which immediately initiates a closing motion. Later, we
switch the native structure back to the open structure inducing
the opening conformational change. See Supporting Informa-
tion, Table S4, for technical details.
Figure 6 depicts the result, where the y-axis monitors the root-

mean-square deviation (rmsd) from two reference structures.We
clearly observe here that, after switching, the protein gradually
makes conformational change to the new native structures
3.7. Replica Exchange MD. The next example is a simple

folding and unfolding simulation of protein G (61 residue small

Figure 5. Reversible conformational transitions of glutamine binding
protein by the multiple-basin model. The parameters are tuned so that
the open and closed states are almost equally stable and the conforma-
tional changes are sufficiently frequent. The χ monitors the conforma-
tional change and takes the positive (negative) value when it is in the
closed (open) state. The representative snapshots are drawn where the
binding site residues are in red.

Figure 6. Conformational changes of glutamine binding protein by the
switching Go model. The y-axis is the rmsd from the open (solid) and
the closed (dashed) states. The potential is switched every 2� 103 time.

Figure 4. The automatic TF search by the bisection method for src SH3
domain. The constant temperature MD is performed at each tempera-
ture (specified at the top of the figure) for 2 � 107 cafe-time, and the
time series of the Q score is plotted.
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protein, pdb id 2igd) by the REM. Although the automatic TF

search work well for this small protein, the REM is the only one
available method in CafeMol one can use to determine the
transition temperature TF for larger proteins. Here, we use 8
replicas of which temperatures are distributed exponentially with
the lower and the upper bound temperatures being 300 and
380 K, respectively.
Figure 7 shows temperature id itinerancy of the replica 1 showing

that the replica travels all the temperature id’s in quite high
frequency. Some representative structures are shown in the figure.
3.8. Molecular Motor at Work. The last two examples are

simulations of protein machines at work. Here, we illustrate a
simulation of a rotary motor F1-ATPase. F1-ATPase, a half
portion of ATP synthase, hydrolyzes ATP to rotate its central
stalk. The X-ray structure of the minimal catalytic complex,
R3β3γ was first solved by Walker’s group.59 In the complex, the
central stalk, γ-subunit, is surrounded by the hexameric ringR3β3
where the R- and β-subunits are arranged alternatively. The ATP
hydrolysis reaction is catalyzed at each interface between the
R- and β-subunits, with the catalytic residues primarily in β-sub-
units. In the Walker’s structure, three Rβ’s differ in their
nucleotide-bound states as well as their structures: one Rβ binds
ATP (called RβTP), another Rβ binds ADP (called RβDP), and
the last Rβ does not bind any nucleotide (called RβE, where E
stands for “empty”). Sequential and coordinated chemical and
structural changes in three Rβ’s suggested a 120� rotation of the
central γ-subunit. This rotary mechanism, first proposed by
Boyer,60was finally proved by the direct observation of the γ
rotation by a single-molecule experiment.61Based on the struc-
tural and single-molecule experiments, we have previously con-
ducted CG MD simulations of the rotary motion using an
ancestor program of CafeMol.14 Our trial-and-error computer
experiments ended up with a prediction of a particular mechan-
ochemical coupling scheme, the always bisite model, which is
consistent with several experimental results published before-
hand as well as afterward.62�64

Here, we present a simple simulation of the rotation of γ in
R3β3γ complex by the switching Go model (Figure 8) (We note

that the simulation here is much simpler one than in ref 14, and it
is only for illustration of the utility of CafeMol). We start the CG
MD with the Walker’s complex structure, where both intrasubu-
nit and intersubunit interactions inR3β3 rings aremodeled by the
Go model, the central stalk γ is also represented by the Go
model, and the interactions between R3β3 and γ are modeled by
the simple repulsion. At t = 2 � 105, we switch the reference
structures of the R3β3 ring so that each Rβ changes its structure
one step ahead, i.e., in a site RβTP is induced to change to RβDP,
in another siteRβDP is changed toRβE, and in the third site, RβE
is changed to RβTP. After the switch, the three Rβ’s indeed made
the corresponding conformational changes, which further in-
duced rotary motion of γ by 120� (Figure 8). At t = 4� 105 and
6� 105, we further switched the reference structures in the same
way, observing totally the 360� rotation of γ-subunit.
3.9. Transporter at Work. As the final example, we show a

simulation of a transporter at work. Here, we use a multidrug
transporter that exports a drug molecule. Specifically, the simu-
lated system is the bacterial multidrug transporter AcrB together
with an antibiotic, minocycline. We note that the simulation here
is based on, but is not identical to, our earlier work.25

AcrB is a bacterial multidrug transporter that exports a broad
range of hydrophobic drug molecules from cytoplasmic side to
the cell outside driven by the proton motive force across the
inner membrane. It was experimentally clarified that AcrB forms
a homotrimer, and the trimeric complex takes asymmetric
structures, where each subunit has different conformation:65

one subunit takes the state B as the drug-bound state, another
subunit takes the state E as the drug extrusion state, and the third
subunit takes the state A as the drug access state. It has been
postulated that the cyclic conformational change from state A, to

Figure 8. Rotary motion of F1-ATPase studied by the switching Go
model. The rotation angle of γ-subunit is plotted as a function of
time. The potential is switched every 2 � 105 cafe-time when the
reference structures of all three Rβ’s are cyclically changed. The rep-
resentative snapshots are shown where the three β’s are drawn in dark
gray, the three R’s are in light gray, the central γ is in orange. The yellow
arrow is the vector that monitors the rotary angle of γ. In β’s, segments
that make large conformational changes are marked in red.

Figure 7. Itinerancy of replica 1 in the replica MD simulations of
protein G with 8 replicas. The temperature ID of the replica 1 is plotted
as a function of time. Some representative snapshot structures are
illustrated.
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state B, and to state E in each subunit can transport one drug
molecule from the cytoplasmic side of the membrane to the cell
outside per subunit and that, as the homotrimer, it proceeds from
the asymmetric complex ABE to BEA, to EAB, and to ABE, which
is called the functional rotation mechanism. This is analogous to
the rotary motion of the R3β3 ring in F1-ATPase.
Here, only for an illustration of a simulation with a small

explicit ligand, we use one subunit of the drug binding domain,
called the porter domain, of AcrB (see cartoon in Figure 9). We
use the multiple-basin model with three states for AcrB and the
hydrophobic interaction and the excluded volume terms for the
interactions between AcrB and the drug. The simulation starts
with the B state, and the drug (shown by the stick representation in
Figure 9) is bound near the binding pocket (the left cartoon in
Figure 9). Initially, the parameters are set so that the three states
are equally probable. The energy function is switched at t= 4� 104

to stabilize the E state. Somewhat after the switching, AcrBmakes
the transition from the B to E state at around t = 5.4 � 104

(monitored by the Q score shown in the green curve), which
soon induces the drug export toward the outside of the cell at
t = 5.5 � 5.6 � 104 (the black curve).

4. DISCUSSIONS AND CONCLUSION

We have described the CafeMol method and software, which
is characteristic, among many existing MD packages, in several
aspects. First, it provides the MD code specific to the structure-
based CG MD. In particular, the multiple-basin model is able to
simulate conformational change of proteins when the two end
structures are given, which is not easily realized by standard MD
packages. Second, CafeMol provides various flexible and con-
venient means to mimic protein motions driven by external

energy source. Third, CafeMol equips the AICGmodel that takes
into account atomic interactions in the framework of CGmodels,
thus making it much more accurate without much of extra
computational cost.

Yet, in the current version, some parameters in the energy
functions were determined in a heuristic way. In particular, the
parameters in the multiple-basin models are quite heuristic. It is
highly desired that these parameters are derived systematically,
for example, based on all-atom simulations.

Many more functions are currently under development in
CafeMol. First, we are implementing CG models of DNA, RNA,
and lipid membrane. Once realized, we can simulate all the
macromolecular components of the cell in an integrated way. For
better description of rotation and translation of macromolecules,
the hydrodynamic interaction is crucial. We are working on
implementing methods that take into account it.
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ABSTRACT:We have introduced a new algorithm in the parallel processing PMEMDmodule of the AMBER suite that allowsMD
simulations with a potential involving two coupled torsions. We have used this modified module to study the green fluorescent
protein. A coupled torsional potential was adjusted on high accuracy quantum chemical calculations of the anionic chromophore in
the first excited state, and several 15-ns-long MD simulations were performed. We have obtained an estimate of the fluorescence
lifetime (2.2 ns) to be compared to the experimental value (3 ns), which is, to the best of our knowledge, the first theoretical estimate
of that lifetime.

1. INTRODUCTION

Fluorescent proteins (FPs) of the green fluorescent protein
(GFP) family are invaluable fluorescentmarkers in cell biology.1�5

There is a huge number of mutants and homologues which all
share the same overall structure (Figure 1) and general photo-
physical characteristics. Most of the brightly fluorescent FPs
exhibit fluorescence emission on the nanosecond time scale while
in solution or in denaturated (unfolded) proteins; the quantum
yield of the chromophore is low (103 times smaller than in folded
protein) and the fluorescence decay very fast (0.2�1.1 ps for the
GFP anionic chromophore in water6). Besides, the diversity of
fluorescence quantum yields exhibited by proteins carrying iden-
tical chromophores in the GFP superfamily7 points to the decisive
role of the protein architecture in controlling the chromophore
radiationless decay.

Classical dynamics simulations based on a semiempirical
Hamiltonian8 or quantum dynamics studies9,10 of the GFP
excited S1 chromophore in vacuo have established that fluores-
cence quenching occurs through torsion around the two central
bonds linking the methylene group to each aromatic ring (τ and
j angles, see Figure 1) and that these torsions take place within a
few picoseconds after excitation. It implies that the order of
magnitude of the fluorescence lifetime (ns) observed in the
folded proteins results from a hindrance of the torsion motions
by the protein matrix. Obviously, this hindrance is not a massive
steric locking of the motions since in most FPs the volume of
the cavity around the chromophore may accommodate twisted
geometries.11,12 In fact, the constraints exerted by the protein
have been scarcely studied.9,11�14

A thorough description of the chromophore�protein inter-
action is challenging because
(i) It requires a molecular dynamics (MD) calculation signifi-

cantly longer than a nanosecond with the chromophore
in the excited state. Quantum-mechanics/molecular-
dynamics (QM/MD) methods would be ideal for such

studies, and they have already been used to study the
radiationless decay of dark states in photoswitchable
proteins like asFP59515 or Dronpa,16 for which a much
smaller simulation time is needed (1 and 20 ps). However,
these methods are heavily computer-time-demanding and
cannot be used presently to run simulations on the
nanosecond time scale.

(ii) If one turns to classical force field MD simulations,
nanosecond simulations become feasible, but one is then
faced with a difficulty related to the interplay between the
τ andj torsions. StandardMD programs assume additive
potentials, which, in that case, imply an energy minimum
in the geometry where the two angles are twisted (the so-
called “hula twist” geometry17) in complete contradiction
with ab initio calculations.18

The aim of this work is to enable nanosecond-long MD
simulations with a force field accounting for the interaction
between the two torsions (2D force field). To that end, we need
an analytical 2D potential. Such a potential has already been
proposed,19 but it is based on only a few ab initio energy values.
Thus, we have first performed accurate ab initio calculations of
the first excited state of the GFP chromophore on a tight grid of
geometries. We have then fitted the energies using an algebraic
expression depending on τ andj, and finally we have introduced
a new algorithm in the parallel processing PMEMD module in
the AMBER suite20 that allows MD simulations using a 2D force
field. In section 2, we first describe the development of the
coupled torsional potential V(τ,j) (ab initio calculations, fitting
procedure, and implementation in the AMBER suite); we then
discuss the resulting 2D potential energy surface (PES) and the
results obtained by MD simulations in vacuo using the 2D
potential and finally analyze the accuracy and sensibility of this
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potential. In section 3, we report results from several 15-ns-long
MD simulations of GFP and present a theoretical estimate of
the fluorescence lifetime. All calculations were performed on the
anionic chromophore—the species responsible for the green
fluorescence.

2. COUPLED TORSIONAL POTENTIAL V(τ,u)

2.1. Quantum Chemical Method. We have determined the
energy of the S1 excited state of the anionic chromophore in
different geometries at the SA2-CAS(4,3) (two state average-
complete active space multiconfiguration self-consistent field21

with a four electrons-three orbitals active space) level of theory
with the 6-31G* basis set for geometry optimizations, followed by
a single point PT2 (second-order perturbation theory) computa-
tion. TheCASSCF andCASPT2 calculations have been performed
here using the Gaussian22 and Molpro23 program packages, res-
pectively. The anionic chromophore has been represented by the
p-hydroxybenzylidene�imidazolinone (HBI) motif (Figure 1).
The CASSCFmethod is today a common choice for determin-

ing excited-state geometries of biological chromophores,8,18,25,26

but some comments seem necessary on the specific choices of an
active space with three orbitals and four electrons and of a two
state average. In fact, it has been demonstrated19 that an appro-
priate mesomeric description of the electronic wave function of
molecules like the anionic GFP chromophore involves at least
three structures: two structures P and I with a double bond either
on CA2�CB2 or on CB2�CG2 (see Figure 6 in Appendix A for
atom names) and a third structure B with an unpaired electron on
CA2 and a second unpaired electron on CG2. Such mesomeric
structures are found in systems with three orbitals and four
electrons27 or in bigger compounds like Brooker dyes.28 Unless
one of the bonds is lengthened,27 the third structure B has a lower
weight in the first two electronic states S0 and S1 compared to the
weights of structures P and I (ref 19, Tables V, VI, VII); yet,
structure B is required in order to couple P and I.
These three structures are properly taken into account in a CI

with four electrons and three orbitals. Now, if one is interested in
the first excited state S1, one cannot just minimize the second
root of the CI because then the energy of the ground state S0,

constructed with the same orbitals as S1, increases, giving rise to
a flip-flop between the two states. A more efficient approach
consists of first minimizing the average of the energies of the two
states and then performing a PT2 calculation in order to (partly)
recover the effect of not using the actual optimal orbitals of each
state. The PT2 step also provides an estimate of the dynamical
correlation. In fact, it has been shown that the PT2 step provides
torsional profiles for the excited state GFP chromophore that
differ significantly from those obtained when it is discarded.8,18,24

On the other hand, using a three states average (between S0,
S1, and a third state S2 involving mainly structure B and, possibly,
some Rydberg orbitals) would not be an improvement because
the orbitals giving a proper coupling of P and I are not necessarily
the same as the orbitals minimizing the energy of S2. Therefore,
the SA2-CAS(4,3)-PT2 method is the best minimal approach.
Energy values from the present quantum calculations

(CASSCF and CASPT2 levels) and from other works are given
in Table 1 for three critical geometries: TwP, twisted 90� around
the phenolic bridge bond (Figure 1); TwI, twisted 90� around
the imidazolinone bridge bond; and the hula-twist geometry,
twisted 90� around both bonds. Our CASPT2 results are in good
agreement with other results at the same level of theory8,18

(difference smaller than 1 kcal/mol from the highest accuracy
results) and differ strongly from our CASSCF results (up to 14
kcal/mol).
2.2. Fitting Procedure. In the first step of the fitting proce-

dure, before carrying out any parameter optimization, one has to
choose a precise definition of the τ and j variables and their
connection with the remaining geometrical variables. It requires
to consider several details, and it is presented in Appendix A.
Furthermore, one has to take account of the fact that the τ/j

dependence of the energy in the MD program comes not only
from specific dihedral terms but also from van der Waals and
electrostatic interactions. We have chosen to adjust the fitting
function directly on the CASPT2 energies and to remove the van
der Waals and electrostatic interactions that depend on τ and j
when running the MD program (see section 2.3).
In the second step, one has to define a grid of geometries

where ab initio calculations will be performed. Here, we have
used a grid that explores the PES along the two bridge torsion

Figure 1. Left: GFP with the chromophore covalently bound to the
centralR-helix. Right: the anionic GFP cis chromophore model p-hydro-
xybenzylidene-imidazolinone (HBI) in three different geometries:
the planar fluorescent state (FS) minimum (τ = j = 0�), the TwP
geometry— twisted 90� around the phenol bridge bond— and the TwI
geometry — twisted 90� around the imidazolinone bridge bond.

Table 1. Energy Differences (in kcal/mol) between Critical
Geometries on the S1 Potential Energy Surface of the Anionic
Chromophore (HBI or the Dimethyl Derivative (HBDI)
Depending of the Reference) and the Planar cis Fluorescent
State (FS) Minimuma

TwP barrier

to TwP

TwI barrier

to TwI

hula-twist

SA2-CAS(4,3)b �14.7 �18.9 �9.2

SA2-CAS(4,3)-PT2b �6.0 �9.7 4.8

Fit V(τ,j)b �6.1 0 �9.8 1 4.8

SA2-CAS(12,11)c �8.6 0 �11.3 0 0.1

SA2-CAS(12,11)-PT2c �7 0 �9 2 4.9

SA2-CAS(2,2)-PT2d �8.8 �5.5

SA3-CAS(4,3)e �21.5 �28.2

SA3-CAS(4,3)-PT2e 0 �7.2

SA2-CAS(12,11)f �7 <2 �13 <2
aDefinitions of TwP and TwI can be found in Figure 1. V(τ,j) is the
fitting function described in section 2.1. bThis work. cMartin et al.18
dToniolo et al.8 eOlsen et al.24 f Polyakov et al.25
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coordinates with τ and j frozen at regularly increasing values.
Steps of 30� were first used to create a two-dimensional grid of
72 points that covers the complete periods of τ (360�) and
j (180�), and thus the two isomers cis (τ = 0�) and trans
(τ = 180�). We then improved the description of the PES around
the planar geometries with a tighter grid of 46 additional
calculations for each isomer. Finally, we developed two separate
potentials that both cover the complete 2D surface but that have
a higher precision for the planar geometry in either the cis or
the trans conformation. In this work, we discuss the dynamics of
the cis chromophore in GFP and will only detail the cis potential.
The 2D grid of CASPT2 energies was interpolated by a sum of

products of sine and cosine functions ofmultiples of τ andj. The
periodicity of 180� for j was ensured by taking exclusively even
multiples of this coordinate (2j, 4j, ...). The analytical expres-
sion was developed using an iterative procedure that starts with
an initial sum of two terms, cos(2j) and cos(2j).cos(τ), and
progressively adds new terms that improve the fit. The new terms
are taken from a list of 200 different terms with multiples of τ and
j ranging from 1 to 10. At each iteration, the new terms are
tested in order to find the best candidate to add; the relative root-
mean-square deviation (rrmsd) of each possible addition is
calculated, and the candidate term giving the best improvement
of the fit, i.e., resulting in the smallest rrmsd, gets added to the
fitting expression. When several terms result in nearly the same
value, the term causing the least surface oscillation (evaluated
numerically on a tight grid of points) gets selected.
The resulting fitting function V(τ,j) comprises 30 terms (see

the Supporting Information) and reproduces our CASPT2
energy values of the specific geometries, TwI, TwP, and hula-
twist, with very good accuracy (differences within 0.1 kcal/mol;
Table 1). Heights of the barriers to TwI and TwP are in good
agreement with those of other works (differences within 1 kcal/
mol). The rrmsd of the fit is 7%.
2.3. Implementation. A new algorithm has been introduced

in the Sander module and in the parallel processing PMEMD
module of the AMBER program package, allowing the use of a
force field including a coupling between two torsion coordinates.
A completely new program module was written for the calcula-
tion of energies and forces depending on τ and j. New
subroutines were then required for the input and broadcast of
(1) potential parameters of V(τ,j), (2) atom numbers involved
in the definitions of the two torsions, and (3) a list of atom pairs
whose nonbonded interactions depend on τ and j.
van der Waals interactions between the atom pairs in this last

list were removed by a test function that cross-checks each atom
pair treated by the program with this list. A similar test function
was used to remove the electrostatic energies between the point
charges of atom pairs. Concerning electrostatic interactions,
some care has to be exercised to the use of Ewald sums
techniques,29 which consists in evaluating first the electrostatic
potential due to all charges of the system and then the energy of
each charge in that potential. But, removing the intrachromo-
phore electrostatic energies changes nothing in the potential, and
the final electrostatic energy does include all electrostatic inter-
actions between the chromophore and the protein atoms.
2.4. PES Landscape and MD Simulation in vacuo. A two-

dimensional representation of V(τ,j) is shown in Figure 2. It
should be emphasized that V(τ,j) has been obtained via a
geometry optimization. It means that all internal coordinates
(with the only exception of τ and j) have been optimized in
the excited state. These coordinates include the possible sp3

hybridization of the imidazolinone bridge bond8 as well as the
Franck�Condon active modes described recently.30 From the
point of view of the fluorescence process, it means that the j =
τ = 0 region described by the present potential energy function
V(τ,j) does not correspond to the Franck�Condon (FC) region
resulting from the vertical transition S0 f S1 but to a region
which is reached a very short time after the photon absorp-
tion by relaxing internal coordinates, and that is usually called the
fluorescent state (FS) [ref 18, Figure 3]. It turns out that indeed
one has j = τ = 0 in that region.
The planar FS minimum (τ = j = 0�) lies in the middle of a

low-energy valley that comes to a bottleneck at both ends. These
narrow exits are reached by a concerted rotation of the bridge
bond torsions, τ= 30� andj=�30� or τ=� 30� andj= 30�.
In these geometries, the chromophore is at the edge of two

Figure 2. The excited state potential energy surface with a 20 ps
trajectory of the anionic chromophore in a vacuum, starting at the
planar fluorescent state (FS) minimum (τ = j = 0�). The time step is
1 fs, and coordinates are written out every 0.1 ps.

Figure 3. Distributions of first passage times (FPT) at the single-
twisted geometries TwP or TwI. A comparison between 1000 simula-
tions with the initial parameter set (solid black line) and 1000 simula-
tions with modified parameter sets (solid red line), see section 2.5. The
FPT decay of the initial parameter set is fitted by an exponential (dashed
blue line).
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potential wells, one that leads to the TwP minimum and one that
leads to the TwI minimum, located about 6 and 10 kcal/mol
below the FS, respectively. Thus, the minimum energy path
involves first concerted variations of j and τ with opposite signs
until τ=( 30� andj=-30� and then a direct downhill motion
toward TwP.
All other types of motion are less favorable. A pure j-twist

passes over a 1 kcal/mol barrier and a pure τ-twist over a 2 kcal/
mol barrier. In the same way, the path to TwI can be lowered
from 2 to 1 kcal/mol by a concerted twist of j and τ. The
geometries where the two rings are perpendicular to each other
(τ = ( 45�, j = -45�) lie also about 1 kcal/mol above the FS
geometry. The hula-twist maxima (τ and j close to (90�) are
located about 5 kcal/mol above FS. The path connecting the
planar and these last geometries pass along sharp ridges with
steeply sloping sides, leading either to the TwP or to the TwI
minima. This result implies that the probability of reaching the
hula-twistmaxima is low. In addition, itmight explain the difficulties
reported18 of finding the MEP between the hula-twist and FS.
Further insight into the PES landscape can be obtained by

means of MD simulations of the excited chromophore in vacuo
using the torsional potential. We have performed 1000 10-
ps-long MD simulations, all starting from a unique planar
chromophore structure with randomly generated initial veloci-
ties, giving a mean initial kinetic energy of 7.2 ( 1.2 kcal/mol.
The anionic chromophore model 4-hydroxybenzylidene-1,2-
dimethylimidazolinone (HBDI) was used in these simulations.
Details of the force field can be found in Appendix B.
We observed a j-twist in 90% of the simulations and a τ-twist

in the remaining fraction. The preference for the j-twist is
consistent with the barrierless character of this movement. We
obtained an exponential distribution of joint first passage times
(FPT) at TwP and TwI with a mean value of 5.3 ps. These data
are well described by the nonradiative decay A exp(� t/τnr), with
a nonradiative lifetime of τnr = 5.3 ps (Figure 3, dashed blue line).
Concerning experimental results on fluorescence in vacuo, a

recent work31 mentions that no fluorescence was detected, and
the only quantitative results we can compare to ours come from
ab initio dynamics10 using a CASSCF potential that leads to FPT
values around 0.5 ps. In the present simulations, less than 1%
of the trajectories resulted in a twist within 0.5 ps. The small
number of FPTs observed here within the first picosecond is due
to the bottleneck profile of the FS valley. The chromophore can
only slip through the small exit and reach TwP or TwI in a short
period of time if the direction of the randomly generated initial
velocities leads directly through the passage. Otherwise, the
chromophore will wander within the valley in a random manner
until its trajectory finally crosses the exit, and the chromophore
can leave the FS valley (Figure 2).
2.5. Assessment and Sensibility of the Fit. In order to assess

the fit parameters, we have calculated a new value of the relative
root-mean-square deviation, rrmsd, between V(τ,j) and the
CASPT2 values, where the grid point energies were weighted
by their visitation frequency in the MD simulations of the
chromophore in vacuo. No significant effect was found; the
weighted rrmsd was found to be 10% compared to the initial 7%.
Thus, it seems that the present fit procedure allows one to reach
about the same quality level as what would be obtained by
performing the ab initio calculations on the fly along dynamics
while retaining a systematic and computer-time-saving character.
In addition, the accuracy of the predictions obtained by MD

simulations was tested by evaluating their dependence on small

variations of the parameters. To that end, the distribution of
FPTs obtained with the initial parameters was compared to a
distribution resulting from 1000 new simulations obtained by
randomly modified parameters. The modifications were chosen
in order to reflect the uncertainty of the parameters correspond-
ing to the uncertainty of the fit. They were obtained according to
normal distributions whose centers are on the initial parameter
values, and the standard deviation σk of parameter k is given by
(ref 34, eq 15.6.4)

σ2
k ¼ χ2

Ckk

whereCkk is the diagonal element of the covariant matrix of the fit
functions and χ is the root-mean-square deviation. This expres-
sion makes sense only if the covariant matrix is diagonal, and we
applied it to unitary combinations of parameters that diagonalize
that matrix. In addition, we applied two constraints that locate a
minimum at the planar geometry in the potentials resulting from
the varied parameters.
The two resulting FPT distributions, either from the initial

parameter set or from the 1000 modified parameter sets can be
seen in Figure 3. The shift in themedian, caused by the parameter
modifications, is small (0.4 ps) and not significant compared to
the width of the 50% confidence interval (centered on the
median) of the two distributions (5 ps). We conclude that the
present fit can be used safely to evaluate the fluorescent lifetime.

3. MD SIMULATIONS AND FLUORESCENCE LIFETIME
OF GFP

In the present MD simulations, we have chosen to neglect the
polarization of the electronic wave function of the chromophore
by the protein environment. The polarization effect has been
shown to be important in water8,9,35 and to significantly accelerate
the torsion dynamics compared to the isolated chromophore.8,9

However, the proteic environment is generally less polar than
bulk water and would not influence the chromophore behavior
as much. Indeed, the experimental absorption maximum wave-
length of the anionic chromophore in water,36 in vacuo,37 and in
wt-GFP38 is found at 426 nm, ∼475 nm, and 475 nm, respec-
tively. It suggests a weak influence of the protein matrix in near-
planar geometries, but one cannot rule out a larger effect on
twisted geometries like the hula-twist. Nevertheless, the method
used here is a reasonable compromise between accuracy and
feasibility. It allows one to carry out nanoseconds-longMD of the
protein with a simple force field that captures the main features of
the torsional landscape of the excited chromophore.

We have performed 24 MD simulations of the excited state of
the S65T mutant of green fluorescent protein (S65T-GFP) in
which the chromophore is known to be essentially in its anionic
form.39 All excited state simulations started from structures
randomly extracted from a ground state simulation of the protein
and had a total time duration of 15 ns; further details are given in
Appendices B and C. We observed a 90� twist around j within
a few nanoseconds (0.2�12.9 ns) in all simulations, but no 90�
twist around τ, a result that can be related to the larger sweep of
the conformational space than the one involved in other rota-
tions. The mean first passage time (MFPT) at TwP was 4.0 ns.
Concerning the hula-twist geometry, it is not visited in any of
the 24 trajectories, consistently with its high energy (5 kcal/mol
above FS).
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A striking aspect of the observed twist is that, in all cases, it
occurs suddenly: the values of j and τ oscillate around 0� for a
while, and then, at a given time, the value of j switches from
about 0� to about �90� within a time interval shorter than 5 ps,
while τ slightly increases. This behavior of j is illustrated in
Figure 4 for one of the simulations. The time of 5 ps required by
the j-twist is to be compared to the MFPT found in vacuo
(5.3 ps). The sudden character of the rotation and the time it
requires suggest a description of the interplay between the
chromophore and the protein dynamics: in the excited state,
the chromophore twists within a few picoseconds in vacuo,
but, in the protein, the pocket surrounding the chromophore is
too small and the twist is hindered most of the time. However,
there are some collective motions of the protein with a long
periodicity (several nanoseconds) which modify the pocket and
relax the constraint: in such cases, the chromophore dynamics
becomes the same as that in vacuo, and the twist occurs within a
few picoseconds.

For the time being, this description is just a hypothesis, and in
order to verify it, it would be useful to identify the very low
frequency motion of the protein in the microwave domain
responsible for the constraint removal. That hypothesis suggests
that the fluorescence properties of the FPs depend not only on
the type and strength of the anchoring of the chromophore in its
pocket but also on the nature of the low frequency collective
motions (which might be related to the β-barrel structure).

We now look for an evaluation of the nonradiative decay rate
of S65T-GFP arising from our results. To that end, we need
quantitative information about the link between the twist move-
ment of the excited chromophore and the fluorescence quench-
ing. The process usually invoked for fluorescence quenching of
GFP’s chromophores is a nonradiative relaxation to the ground
state by internal conversion or through a conical intersection,
occurring via the twisted geometries. But, in fact, the oscillator
strengths of the transition S0�S1 have been found to be totally
cancelled (ref 24, Table 1) in the twisted geometries TwP and
TwI. Thus, whatever the fate of the chromophore once it reaches
the TwP geometry, the fluorescence emission is immediately
quenched.

Consequently, the fluorescence lifetime τfluo has to be distin-
guished here from the excited state lifetime τS1. The latter has
been evaluated by multiple spawning AIMS (ref 10, Supporting
Information, Figure S1.7): it has been found that the fluores-
cence is quenched by a 90� j-twist within 0.3 ps but that only
2% of the ground state population is recovered within the total
simulation time of 0.5 ps (average over 15 trajectories), giving
rise to an excited state lifetime on the order of 25 ps. The
experimentally observable quantity τfluo is thus different from
τS1. The two lifetimes are identical only if all excited state
geometries can deactivate by green fluorescence emission.
Therefore, the observed quantum yield should be written here as

φ ¼ τf luo
τr

ð1Þ

(where τr is the radiative lifetime) instead of the usual φ = τS1/τr
(see, for instance, ref 32, eq 3.11; ref 33, eq 1.5).

Similarly, one has to use

1
τf luo

¼ 1
τr
þ 1
τnr

ð2Þ

instead of the usual 1/τS1 = 1/τr þ 1/τnr (ref 32, eq 3.3).
When substituting the experimental values of φ and of τfluo

into eqs 1 and 2, one gets an estimate of the experimental value
of τnr. According to the analysis above, that value should be
compared with the MFPT resulting from the MD simulations
rather than with the excited state lifetime.

Results are shown in Table 2. It appears that our MD
simulations underestimate τnr by approximately 4 ns (50%).
Theoretical values of τfluo and φ can be evaluated by combining
the theoretical nonradiative lifetime and the experimental radia-
tive lifetime. One obtains 2.2 ns for τfluo and 0.46 for φ, in
qualitative agreement with experimental values (3.0 ns and 0.64,
respectively). To the best of our knowledge, this is the first
theoretical evaluation of the fluorescence lifetime and quantum
yield of a fluorescent protein. The radiative lifetime is a char-
acteristic property of a given chromophore, that is only weakly
dependent on the environment.41 As it should remain rather
similar for GFP variants differing only by a few mutations, the
methods developed here may help in predicting their relative
brightness through MD simulations.

We conclude that our method is able to predict the right order
of magnitude of the fluorescent lifetime. Yet, it is useful to
investigate the origin of the difference between our result and the
experimental values. In this respect, one first points out the small
number (24) of FPTs that are used for deducing the MFPT.
Could we expect a better agreement by using more FPT values?

Figure 4. Bridge bond torsions (τ and j) from an excited state MD
simulation of the solvated GFP with the anionic chromophore. Snap-
shots were taken every 2 ps. The inset presents a zoom on the time
window where the j twist occurs.

Table 2. Theoretical versus Experimental Lifetimes (ns) and
Quantum Yield of S65T-GFPa

this work experiment

fluorescence lifetime τfluo 2.20 3.01b

radiative lifetime τr 4.7

non radiative lifetime τnr 4.0 8.3

quantum yield φ 0.46 0.64c

aThe theoretical τnr is obtained directly from the MD simulations; the
experimental τr and τnr are deduced from the experimental τfluo and φ,
according to eq 1; the theoretical τfluo is deduced from the theoretical τnr
and the experimental τr using eqs 2.

bVolkmer et al.40 c Patterson et al.38
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In order to tackle that question, we have assumed that our
24 FPTs can be considered as 24 draws of a random variable with
an exponential probability distribution fsim and an unknown
decay constant. One can then try to compare the resultingMFPT
with what would be obtained using the distribution deduced
from experimental results: fexp(FPT) = exp(�FPT/τnr) with
τnr = 8.3 ns (Table 2). That comparison can bemade indirectly by
first resampling our 24 values using the bootstrap techniques,42

giving a distribution Fsim of MFPTs: that distribution Fsim mimics
what would be obtained if more than 24 simulations were
available and distributed into N bundles of 24 simulations each
in order to get a distribution ofN values of MFPT. Thus, Fsim can
be compared with the distribution Fexp obtained by using a large
number N (= 1000) of sets of n = 24 draws according to fexp,
each set giving a value of MFPT. In fact, we have determined
two distributions Fexp, one distribution using n = 24 and the other
using n = 100. The results are shown in Figure 5.

We first observe in Figure 5 that the two Fexp distributions
are centered close to the exact limit value, 8.3 ns. It means that
24 draws of FPT from an exponential distribution like fsim also
should result in a distribution of MFPT centered close to the
exact limit value obtained if nf¥. Therefore, that limit is closer
to 4.0 ns than to 8.3 ns, and one has to look for another origin of
this difference between the theoretical and experimental τnr than
the small number of FPTs available here.

A possible reason might come from the force field parameters
used here: if the protein is too flexible and/or the anchoring of
the chromophore is too weak, one probably gets a MFPT which
is too short, as found here. Another possible origin can lie in the
choice of the 24 initial geometries for the simulations of the
excited state. They have been extracted from a 5-ns-long simula-
tion of the ground state, which could be too short to trigger all of
the appropriate modes of the protein that can relax or hinder the
chromophore twist.

These tracks will be pursued in future works. Despite these
limitations, this work offers the first precise representation of
the excited chromophore PES and gives access to realistic and
unbiased dynamics of excited FPs on a long time scale.

4. CONCLUSION

We have determined a coupled torsional potential V(τ,j) for
the S1 state of the anionic chromophore of the green fluorescent

protein (GFP), by fitting a grid of SA2-CAS(4,3)-PT2 energy
values, and implemented this potential in the parallel module
PMEMD of the AMBER package. Using this new program, we
have run 24 long trajectories (15-ns-long each) of the brightly
fluorescent S65T-GFP. It is the first time to our knowledge that
such long free simulations have been carried out for a fluorescent
protein with the chromophore in the excited state.We observed a
mean first passage time at the j twisted geometry of 4 ns, which
corresponds to a fluorescence lifetime around 2 ns and a quantum
yield around 0.5, in qualitative agreement with the experimental
data. It appears from these trajectories that the twist movement is
very fast once the chromophore leaves the fluorescent state
valley, suggesting that it happens when collective motions of the
protein allow the chromophore to move in its pocket.

The new tool presented in this work is complementary to the
already existing QM/MD methods applied for the study of
chromophores in a vacuum or solution, or in weakly fluorescent
proteins with a fluorescence lifetime on the picosecond time
scale. It is likely to suffer from limitations inherent in the use
of classical force fields, which does not take into account the
polarization effect between the chromophore and the proteic
environment. However, it captures the main features of the
torsional behavior of the S1 state and leads to satisfactory results
for S65T-GFP. Applied to other FPs it should be able to provide
the right order of magnitude of the nonradiative lifetime τnr.
Since quantum yield values such as 0.6, 0.1, and 0.001 correspond
to different orders of magnitude of τnr (≈ 7, 0.5, and 0.005 ns,
respectively), it should allow one to unambiguously distinguish
proteins with bright, moderate, or very weak fluorescence and to
provide analyses of the structural and dynamical factors respon-
sible for these differences.

’APPENDICES

Appendix A. Choice of Coordinates.There are two technical
difficulties in defining and using the two variables τ and j of the
present 2D potential.
First, each torsion coordinate τ andj can be described by four

dihedral angles, and these angles usually have different values
after geometry optimization as well as along the MD calculation.
Second, the equilibrium angles along the bridge depend on τ

andj. Particularly, they take larger values near planar geometries
than for twisted geometries, to avoid a close approach of O2 or
N2 (on the imidazolinone ring) to HD1 (the H atom linked to
CD1 on the phenolate ring); see Figure 6.
We have adopted the following protocol in order to fix these

two types of problems:
In geometry optimizations of the S1 state, the points of the grid

(τ, j) have been defined by fixing the values of two dihedral
angles, τC = C2�CA2�CB2�CG2 and j1 = CA2�CB2�
CG2�CD1; the other dihedral angles around the CA2�CB2
and CB2�CG2 bonds were let free. The resulting geometry is
then labeled by τ and j values defined through the following
expressions: τ = (τc þ τN � 180�)/2 with τN = N2�CA2�
CB2�CG2 and j = (j1 þ j2 � 180�)/2 with j2 = CA2�
CB2�CG2�CD2. The energy of the optimized geometry
is ascribed to the resulting τ and j values in the fit procedure.
Then, in MD simulation, we have calculated V(τ,j) and the
torsional forces using the values of the dihedral angles (τN or τC,
j1 or j2) as torsion τ/j coordinates. The four values V(τ,j)
obtained in this way are usually different, and the average is
finally used.

Figure 5. MFPT distribution Fsim from Bootstrap-treated MD results
(solid black line). MFPT distribution Fexp (n = 100) from random draws
of 100 FPT values extracted from the nonradiative decay distribution
(exp(�t/τnr) with τnr = 8.3 ns; solid red line). MFPT distribution Fexp
(n = 24) from random draws of 24 FPT values from the nonradiative
decay distribution (dotted black line).
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Concerning the bridge angles, we use an average of the planar
and twisted optimized values.

Appendix B. Force Field. The AMBER 1999 force field,
“ff99”, was used for all standard amino acids.
Concerning the chromophore, atomic charges were derived

from the ab initio molecular potential calculated at the RHF/
6-31G* level for the electronic ground state and CIS/6-31G* for
the excited state, in the corresponding optimized planar cis
geometries. Concerning the simulations of GFP, the chromo-
phore model used for these calculations includes the two peptide
links to the protein. Several constraints were imposed in the
fitting procedure, using a program developed by two of us:43 the
total charge of the atoms capping the chromophore was con-
strained to zero and the charges of those involved in the two
peptide bonds were constrained to their values in the AMBER
force field. Harmonic constraints were set on the atoms of
the Thr65 and Gly67 parts, with target values taken from the
AMBER force field. Weak harmonic constraints with target
values set to zero were applied to all other atoms in order to
avoid large unphysical values. The resulting values are shown in
the Supporting Information.
As concerns the τ,j torsional potential, the coupled potential

developed in this work was used for the excited state simulations.
Concerning the ground state simulation, where the chromo-
phore never explores strongly twisted geometries, we have
assumed that the coupling between the two torsions could be
neglected and used the independent τ andj potentials of Reuter
et al.44 Concerning the other bonded terms, equilibrium values
involved in the bridge and the imidazolinone ring were taken
from the ab initio optimized planar cis geometries. The remaining
equilibrium values and all force constant values were chosen by
analogy with similar chemical situations in the AMBER force field.
An exception concerns the bond angles involving the bridging
bonds in the excited state, which were taken as the average of the
planar and twisted geometries values (see Appendix A).

Appendix C. Molecular Dynamics Details. The starting
coordinates were taken from the crystal structure of S65T-GFP,
in which the chromophore is known to be essentially in its
anionic form (Protein Data Bank entry 1EMA).39 The proton-
ation states of the histidine residues were assigned as described in
the work of Helms et al.45 Glu222 was taken in its protonated
(neutral) form.46 Molecular dynamics (MD) simulations were

carried out using the AMBER 10 suite.20 Hydrogen atoms, water
molecules, and neutralizing ions were added using the LEaP
program. An initial minimization of the energy of the system was
followed by an equilibration procedure consisting of a constant-
volume simulation where the temperature was raised gradually from
100 to 300K and then by a constant-pressure simulation. In order to
avoid large conformational changes, the protein was constrained
by weak harmonic forces (force constant = 5 kcal mol �1 Å �1)
during equilibration. The constraints were then gradually re-
moved, and the equilibration procedure was completed by a
unconstrained MD simulation of 1 ns. Periodic boundary con-
ditions were used, and the particle-mesh Ewald method29 was
used to handle the electrostatic interactions. The cutoff for the van
der Waals interactions and for the direct part of the electrostatic
interactions was set to 10 Å.
A 5-ns-long MD simulation, with the chromophore in its

electronic ground state, was then run in order to obtain initial
coordinates for the excited state simulations. Finally, several
15-ns-long MD simulations, with the chromophore in its elec-
tronic excited state, were run with starting coordinates taken
among these snapshots. The MD simulations were run in the
NPT ensemble, using a time step of 2 fs and with snapshots saved
every 2 ps.
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ABSTRACT: This paper presents a novel algorithm, CrystalOptimizer, for the minimization of the lattice energy of crystals
formed by flexible molecules. The algorithm employs isolated-molecule quantum mechanical (QM) calculations of the
intramolecular energy and conformation-dependent atomic multipoles in the course of the lattice energy minimization. The
algorithm eliminates the need to perform QM calculations at each iteration of the minimization by using Local Approximate
Models (LAMs), with a minimal impact on accuracy. Additional computational efficiencies are achieved by storing QM-derived
components of the lattice energy model in a database and reusing them in subsequent calculations whenever possible. This
makes the approach particularly well suited to applications that involve a sequence of lattice energy evaluations, such as crystal
structure prediction. The algorithm is capable of handling efficiently complex systems with considerable conformational
flexibility. The paper presents examples of the algorithm’s application ranging from single-component crystals to cocrystals and
salts of flexible molecules with tens of intramolecular degrees of freedom whose optimal values are determined by the interplay
of conformational strain and packing forces. For any given molecule, the degree of flexibility to be considered can vary from a
few torsional angles to relaxation of the entire set of torsion angles, bond angles, and bond lengths present in the molecule.

1. INTRODUCTION

The knowledge of the three-dimensional atomic structure of a
crystal is the basis toward understanding and predicting the
physical properties of the material (color, density, solubility, dis-
solution rate, etc.).1 Hence, the development of computational
algorithms to predict the structure and the thermodynamic
stability of single and multicomponent crystals is of significant
practical importance. Prediction of thermodynamic stability re-
quires the minimization of the Gibbs free energy with respect to
the unit cell dimensions and the positions of all atoms in the unit
cell:

min G ¼ minðU þ PV � TSÞ ð1Þ
where U is the internal energy (which includes the zero-point
energy contributions2), V the volume, and S the entropy. The
PV term only becomes significant at very high pressures (typi-
cally above 1 GPa) and is usually neglected. Furthermore, the
thermal, entropic, and zero-point contributions to the Gibbs
free energy of flexible molecules cannot, at present, be readily
and accurately computed. There is also emerging evidence that
most minima on the free energy surface are also minima on the
lattice energy surface.3 Consequently, most of the existing com-
putational approaches for crystal structure prediction focus on
the minimization of lattice energy.4 The lattice energy, Elatt,
refers to the internal energy, U, at 0 K and 0 Pa (ignoring the
zero-point energy) and can be partitioned into the intramole-
cular and intermolecular contributions. The intramolecular
energy, ΔEintra, is the energy required to deform the molecular
conformation from its gas-phase geometry. The intermolecular
contributions, Uinter, consist primarily of the repulsion�
dispersion and electrostatic interactions, although intermole-
cular induction models are also currently being developed.5

The assumption underpinning crystal structure prediction is
that crystal structures that occur in nature correspond to low-
lying minima in the crystal energy landscape, which is usually
approximated as the lattice energy. Crystal structure prediction
methodologies, such as the ones that have been used in the series
of blind tests organized by the Cambridge Crystallographic
Data Centre (e.g., Day et al.4), generally consist of a structure
generation step, in which many possible crystal geometries are
constructed, and a refinement step, in which the most promising
structures are optimized further with more elaborate models. In
the most recent approaches, hundreds of thousands of structures
are generated, while only hundreds to thousands of distinct struc-
tures are retained in the refinement stage. As many hypothetical
crystals have very similar lattice energies,6 their reliable ranking
requires an accurate representation of all components of the lattice
energy. A prerequisite for crystal structure prediction is there-
fore the availability of reliable local lattice energy minimization
methodologies that have a reasonable computational cost. Such
an approach, the CrystalOptimizer algorithm, is presented in
this paper.

Ideally, the lattice energy of a crystal structure would be eval-
uated by modeling the entire crystal quantum mechanically.
Significant progress toward this goal has been made through
the development of the GRACE method,7 which combines full
crystal QM calculations with an empirical dispersion correction.
This, however, remains computationally expensive for many
molecules of interest. Instead, an accurate intermolecular poten-
tial can be obtained by modeling the electrostatic interactions
with distributed multipoles8,9 derived directly from the isolated-
molecule charge density.10,11 In order to avoid unphysical
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distortions of the molecular geometry in the crystal,12 this aniso-
tropic intermolecular energy model needs to be coupled with an
accurate and well-balanced representation of the intramolecular
energy.13 Electronic structure calculations can generally provide
the accuracy required for modeling the deformations of the
molecular structurewithin the crystal.However, the use of quantum
mechanics (QM) in the computation of the lattice energy is
expensive especially for large and flexible molecules, as the
intramolecular energy and atomic multipoles need to be recalcu-
lated after any conformational change. Albeit computationally
demanding, this approach has been successfully embedded in
several lattice energy minimization methodologies described below.

One of the first accurate algorithms to take into account mole-
cular flexibility in lattice energy minimization is UPACK.2,14�16

In this approach, the intramolecular energy is calculated using a
quadratic approximation constructed from the results of an ab
initio molecular geometry optimization. The intermolecular
potential is fitted to high-level quantum mechanical calculations
of alkanes, alcohols, and ethers17 and involves terms for atomic
multipole moments, dipole polarizabilities, and repulsion�
dispersion contributions. In order to model the conformational
dependence of the electrostatic model, the atomic multipole
moments are defined in terms of their local-axis system and
rotated with the local environment. Following a significant
change in conformation during lattice energy minimization, the
intramolecular potential and the electrostatic model are recalcu-
lated to maintain accuracy. A feature of this approach is that the
use of Cartesian coordinates for the representation of the mole-
cular structure during lattice energy minimization forces the user
either to neglect flexibility altogether (rigid-body approach) or to
account for full flexibility (atomistic representation). In the latter
case, the computational cost becomes prohibitive for any mole-
cule of nontrivial size (more than 20 atoms).

An algorithm that allows the optimization of crystal struc-
tures with user-defined flexibility is DMAFlex.13 However, in
order to calculate the lattice energy accurately, the method
incorporates a full isolated-molecule quantum mechanical
molecular geometry optimization and charge density calcula-
tion at every iteration, which results in very high computa-
tional cost. The computational burden is further compounded
by the use of a gradient-free (simplex) minimization
algorithm18 that limits the extent of molecular flexibility that
can be practically handled to a small number (fewer than 10)
of torsional angles.

The CrystalOptimizer algorithm presented in this paper is a
local lattice energy minimization scheme for crystal structures
containing flexible molecules. It is designed to reduce the compu-
tational cost associated with quantum mechanical evaluations
without compromising accuracy. It is applicable to molecules of
the size, complexity, and flexibility typically encountered in
pharmaceutical development. The main novelty of the approach
is the use of local approximate models (LAMs) to represent the
intramolecular energy and conformationally dependent charge
density. These models are practically as accurate as explicit
QM calculations but carry a much smaller computational burden.
They are presented in section 2. This is followed by the for-
mulation of the lattice energy minimization problem (section
3.1) and a description of the structure of the CrystalOptimizer
algorithm (section 3.2). The computational performance and
the accuracy of the algorithm are critically assessed by its
ability to reproduce the lattice geometry and conformational
degrees of freedom for a set of experimentally determined

crystal structures (sections 4.4 and 4.5). Finally, the applic-
ability of CrystalOptimizer to the refinement of hypothetical
crystal structures in crystal structure prediction is discussed
(section 4.6).

2. LOCAL APPROXIMATE MODELS (LAMS)

2.1. Molecular Flexibility. The geometry of a flexible mole-
cule can be completely defined by its Z-matrix consisting of
3N � 6 intramolecular degrees of freedom θ (torsion angles,
bond angles, and bond lengths), where N is the number of
atoms in the molecule. In molecular crystals, the intermolecular
forces are significantly weaker than the energy of typical
covalent interactions. Consequently, only a subset of the
intramolecular degrees of freedom, θ, is expected to deviate
significantly from their gas-phase values. These flexible degrees
of freedom, θf (such as torsions around single bonds), are often
sufficient in capturing the effect of molecular flexibility and thus
need to be explicitly modeled during lattice energy minimiza-
tion. However, as the values of θf for a given molecule change
significantly, the rest of the intramolecular degrees of freedom
adjust so as to minimize the intramolecular energy. Hence,
these remaining, more rigid degrees of freedom, θr (such as
torsions in aromatic ring systems, most bond angles and bond
lengths), and the intramolecular energy, ΔEintra, can be ap-
proximated as functions of the flexible degrees of freedom, θf, in
the solution of a constrained isolated-molecule quantum me-
chanical geometry optimization:

ΔEintraðθf Þ ¼ min
θr

½Eintraðθr; θf Þ� � Evac ð2Þ

where Evac is the global (or at least a local) minimum gas-phase
molecular energy used as a correction and needs to be com-
puted only once. Because the evaluation of ΔEintra requires a
minimization with respect to the “rigid” degrees of freedom, θr,
these are not truly constant. The change θr in response to
changes in the flexible degrees of freedom, θf, can be seen
explicitly in the following equation:

θrðθf Þ ¼ arg min
θr

½Eintraðθr; θf Þ� ð3Þ

where “arg min” denotes the value of the optimization variables
in the solution of the minimization problem shown in eq 2.
These changes, however small, will have an effect on the
intramolecular energy, molecular geometry, and final structure
reproduction (especially for large molecules) and therefore
cannot be ignored by keeping θr fixed at some nominal values,
such as those in the gas-phase conformational minimum. The
validity of this partitioning of intramolecular degrees of free-
dom will be examined in sections 4.4 and 4.5 by comparing the
results obtained with different sets of θf. The main benefit of
considering “rigid” degrees of freedom is a reduction in com-
putational cost with little loss of accuracy. However, the ap-
proach presented is also valid when the vector θr is empty, i.e.,
when all intramolecular variables are treated as flexible, as
shown in section 4.4.
2.2. Intramolecular Energy LAM. The intramolecular en-

ergy for a given conformation in close proximity to a refer-
ence conformation, θref t (θref

f , θref
r ), can be estimated using a

local approximate model (LAM) based on a quadratic Taylor
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expansion:

ΔEintraðθf , θrÞ ¼ ΔEintraðθref Þ þ ∂Eintra

∂θf

" #T

θref

ðθf � θfref Þ

þ ∂Eintra

∂θr

" #T

θref

ðθr � θrref Þ

þ 1
2
ðθf � θfref ÞT

∂
2Eintra

∂θf2

" #
θref

ðθf � θfref Þ

þ ðθr � θrref ÞT
∂
2Eintra

∂θf∂θr

" #T

θref

ðθf � θfref Þ

þ 1
2
ðθr � θrref ÞT

∂
2Eintra

∂θr2

" #
θref

ðθr � θrref Þ ð4Þ

The above equation is valid for any reference point θref t
(θref

f ,θref
r ) in the coordinate space. Throughout this paper, the

subscript “ref” denotes the point around which the Taylor
expansion is constructed. The values of θref

r at the reference
point are obtained via an isolated-molecule quantum-mechan-
ical constrained optimization (eq 2) for the fixed values θf =
θref
f . This calculation also yields the minimum molecular

deformation energy, ΔEintra(θref), and the first- and second-
order derivatives of ΔEintra with respect to all intramolecular
degrees of freedom, θref, necessary to construct the LAM. Since
θref
r is obtained by minimizing ΔEintra, it must satisfy the first-

order optimality condition:

∂Eintra

∂θr

" #
θrref , θfref

¼ 0 ð5Þ

We require that eq 5 also apply to the intramolecular energy
LAM. Hence, if θf is changed by a small amount δθf from the
reference value, then θr needs to change so that the intramo-
lecular energy remains at a minimum. This can be enforced by
ensuring that the first-order optimality conditions continue to
be satisfied at (θr þ δθr, θf þ δθf), i.e.:

∂Eintra

∂θr

" #
θrref þ δθr , θfref þ δθf

¼ 0 ð6Þ

where δθr is the corresponding change in θr. Performing a first-
order Taylor expansion, subtracting eq 5 from eq 6 and solving
for δθr yields the approximate expression:

δθr ¼ � ∂
2Eintra

∂θr2

" #�1

θref

∂
2Eintra

∂θf∂θr

" #T

θref

δθf ð7Þ

which then allows us to approximate θr via an explicit linear
function of θf:

θrðθf Þ ¼ θrref þ Aðθref Þðθf � θfref Þ ð8Þ

where the matrix A(θref) is defined as

Aðθref Þ � ∂θr

∂θf
¼ � ∂

2Eintra

∂θr2

" #�1

θref

∂
2Eintra

∂θf∂θr

" #T

θref

ð9Þ

By substituting eq 8 into eq 4 and also taking account of eq 5,
an estimate for the intramolecular energy as a quadratic function
solely of the flexible degrees of freedom is obtained:

ΔEintraðθf Þ ¼ ΔEintraðθfref Þ þ bðθref ÞTðθf � θfref Þ
þ 1
2
ðθf � θfref ÞTCðθref Þðθf � θfref Þ ð10Þ

where the vector b(θref) and matrix C(θref) are defined as

bðθref Þ � ∂
2Eintra

∂θf

" #
θref

ð11Þ

Cðθref Þ � ∂
2Eintra

∂θf2

" #
θref

� ∂
2Eintra

∂θf∂θr

" #
θref

∂
2Eintra

∂θr2

" #�1

θref

∂
2Eintra

∂θf∂θr

" #T

θref

ð12Þ
Equations 8 and 10 allow the explicit and fast calculation of the

values of θr and ΔEintra for any given values of θf without
performing new quantum mechanical calculations; the values
obtained are accurate in the proximity of a reference point θref. If
a molecule is optimized atomistically, i.e., all intramolecular
degrees of freedom are treated as flexible, then eq 10 reduces
to the standard quadratic Taylor expansion in UPACK.16

2.3. Electrostatic Model LAM. For limited conformational
changes, the conformational dependence of the intermolecular
electrostatic model can be captured by rotating the multipole
moments with their local environment.16,19 Once the distributed
multipolemoments (Ω) have been computed9 (up to the hexadeca-
pole level) for a reference molecular conformation, θref, each atom is
assigned a local axis system using two directly connected atoms (or
first and second bonded atoms for the case of terminal atoms). The
calculated multipole moments are then converted to their Cartesian
form and rotated to the local axis system of each atom. The locally
expressed multipoles are kept constant for small conformational
changes during lattice energy minimization. The conformational
variability of the electrostatic model is limited to the analytical
rotation (using Cartesian tensors) of the local atomic multipoles
to the molecular axis system of each newly generated conformation:

Ωi
k1k2 ... knðθf , θrðθf ÞÞ
� ∑

k01

∑
k02

...∑
k0n

Roti
k1k

0
1
ðθf , θrðθf ÞÞ Roti

k2k
0
2
ðθf , θrðθf ÞÞ ...Rotiknkn0 ðθf , θrðθf ÞÞ

� Ωi
k
0
1k

0
2... k

0
n
ðθfref , θrref ðθfref ÞÞ ð13Þ

where the multipole moment of rank n for atom i is calculated using
the rotation matrix Rot(θf,θr(θf)) that transforms the local axis
system of each atom to themolecular axis system and θr(θf) denotes
the LAM-based estimate of the rigid degrees of freedom θr using
eq 8. After each conformational rotation, the multipoles expressed in
the molecular axis system are used to compute the intermolecular
electrostatic contribution to lattice energy.
The conformational transferability of multipole moments varies

from one molecule to another. For certain functional groups, it
cannot be assumed that the localized multipole moments remain
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constant even for small conformational changes.20 For instance,
the pyramidalization of the �NH2 group has a direct influence
on the position of the electron lone pair on the nitrogen atom
that cannot be captured by the analytical rotation of the atomic
multipole moments. In such cases, improved accuracy may be
obtained by applying a linear correction to the result of eq 13
based on a first-order Taylor expansion:

Ωðθf Þ ¼ Ωðθf , θrðθf ÞÞ þ ∂Ω

∂θf

� �
θfref

ðθf � θfref Þ ð14Þ

The partial derivatives on the right-hand side cannot be
obtained in a straightforward manner from currently available
QM codes, and consequently the derivatives in the current
version of CrystalOptimizer are approximated using finite differ-
ences. This requires one additional QM charge density calcula-
tion for each flexible degree of freedom being perturbed if one-
sided first order finite differences are used.
We note that the correction of eq 14 may not be necessary for

all flexible degrees of freedom under consideration, as in many
cases the computationally cheaper LAMof eq 13 will already lead
to the required accuracy. More research is needed to establish the
functional groups for which the application of 14 is necessary.

Our preliminary analysis indicates that it is advisible to apply the
correction in the case of torsional angles involving nitrogen
atoms (e.g.�NH2 group) or �OH groups.
2.4. Range of LAM Validity. The range of validity of the

proposed LAMs for the estimation of the intramolecular energy
and the rigid degrees of freedom (eqs 10 and 8) has been tested
against ab initio calculations using the GAUSSIAN21 suite of
programs. The tests were carried out for piracetam (2-oxo-pyrro-
lidine-acetamide, Figure 1), a molecule comprising 20 atoms (54
intramolecular degrees of freedom). For the purpose of illustra-
tion, the twomost important torsional angles, N2�C6�C5�N1
and C6�C5�N1�C1, shown as blue arrows in Figure 1, have
been considered as the only flexible degrees of freedom.
The ab initio intramolecular energy surface,ΔEintra (relative to

the energy at the global conformation minimum), is shown in
Figure 2a as a function of the two flexible degrees of freedom.
The results shownwere computed using a total of 64 points on an
8 � 8 grid. At each point, the two flexible degrees of freedom
were fixed at the corresponding grid values, and the remaining
rigid degrees of freedom were determined via a quantummechan-
ical, constrained, isolated-molecule geometry optimization.
As seen in Figure 2b, the intramolecular energy LAM approx-

imates the QM surface with a maximum error of 0.15 kJ mol�1

over a range of 5� around the reference point at 90.8� and 155.6�
for C6�C5�N1�C1 and N2�C6�C5�N1 torsions, respec-
tively. This error is less than 3% of the 5 kJ mol�1 intramolecular
energy variation over the conformational region considered. The
maximum error is reduced to 0.07 kJ mol�1 within 3� of the
reference point and 0.02 kJ mol�1 within 2� of the expansion
point. Similarly, Figure 3 shows that the LAM provides an
excellent approximation for the dependence of the rigid degrees
of freedom on the flexible torsions. The maximum errors for the
rigid degrees of freedom are less than 0.10� for the torsional angle
H7�C5�N1�C1 even though this torsion changes by up to
14.5� as the values of the C6�C5�N1�C1 and
N2�C6�C5�N1 torsions are modified. Correspondingly, the
maximum error is less than 0.06� for bond angle C5�N1�C1
and less than 0.0006 Å for bond length C1�N1. As expected, the
absolute errors are seen to decrease for rigid degrees of freedom
that are less sensitive to changes in the flexible degrees of freedom:

Figure 1. Molecular diagram and atom labeling for piracetam (2-oxo-
pyrrolidine-acetamide).

Figure 2. (a) QM intramolecular energy,ΔEintra,QM at the HF/6-31G(d,p) level of theory and (b) LAM error for the intramolecular energy defined as
ΔEintra,QM�ΔEintra,LAM as a function of two “flexible” dihedral angles (blue arrows in Figure 1) for piracetam. Open circles correspond to the reference
point for the LAM. Reproduced with permission from Adjiman, C. S.; Galindo, A. Process Systems Engineering: Volume 6: Molecular Systems Engineering;
Wiley-VCH Verlag GmbH & Co. KGaA: New York, 2010; p 15.
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bond angle C5�N1�C1 varies by 1.41� over the region con-
sidered and bond length C1�N1 by 0.0094 Å.
Figure 4 is concerned with the accuracy of the multipole

rotation LAM (eq 13) in modeling the electrostatic potential
energy of xylitol (1,2,3,4,5-pentapentanol) as a selected torsional
angle (H1�O1�C1�C2) deviates from the LAM’s reference
point. The latter corresponds to the molecular conformation at
the minimized experimental crystal structure22 using nine major
torsional angles (all angles involving hydroxyl groups, and four
selected backbone torsions, as shown in Table 1). The quantum
mechanical electrostatic potential energy of the reference con-
formation is shown at the center of Figure 4. For the perturbed
conformations, the selected hydroxyl torsion (indicated by a blue
arrow on the molecule in Figure 4) was varied by up to (10�
from its reference value while the other eight flexible degrees
of freedom were held constant at their reference values. For each
perturbedmolecular geometry, the rigid degrees of freedomwere
computed using a LAM (eq 8) constructed at the PBE/6-31G
(d,p) level of theory. The atomic multipole moments and the
electrostatic potential were consequently evaluated using both the
LAM (eq 13) and explicit quantum mechanical isolated-molecule

calculations at the PBE/6-31G(d,p) level of theory. The max-
imum error in the electrostatic potential energy increases the
further the conformation moves away from the reference mo-
lecular geometry but does not exceed 0.03 eV over the entire
range(10� of the flexible torsion angle considered. This error is
approximately 2% of the electrostatic potential energy range for
the reference conformation. The error is reduced to less than
0.02 eV when the LAM is used to model the electrostatic
potential energy within (5� of the reference geometry. Of
course, what is important for the purposes of crystal structure
prediction is not the electrostatic potential energy per se but the
intermolecular electrostatic contributions to the lattice energy. In
section 4.3, we shall return to consider in more detail the
accuracy of the multipole LAMs given by eqs 13 and 14.
In conclusion, the error inherent in any LAM increases as one

moves further away from the reference point around which the
LAMwas constructed. It is therefore necessary to reconstruct the
LAM after a significant change in the flexible degrees of freedom.
What constitutes a significant change is molecule dependent, but
in our experience, ranges of (5� for torsional angles, (5� for
bond angles, and(0.1 Å for bond lengths leads to reliable results

Figure 3. Difference between the quantum mechanical and estimated LAM values for selected “rigid” degrees of freedom (orange arrows, top left) as
a function of two “flexible” dihedral angles (blue arrows in Figure 1) for piracetam (2-oxo-pyrrolidine-acetamide). QM calculations performed at the
HF/6-31G(d,p) level of theory. Open circles correspond to the reference point for the LAM. Reproduced with permission fromAdjiman, C. S.; Galindo,
A. Process Systems Engineering: Volume 6: Molecular Systems Engineering; Wiley-VCH Verlag GmbH & Co. KGaA: New York, 2010; p 16.
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in the majority of systems. These ranges are comparable to the
conformational changes observed during the lattice energy mini-
mization of flexible molecules. Hence, it should be possible to
perform such calculations with only a few explicit quantum
mechanical optimizations, which provides the motivation for
the algorithm presented in this paper.
2.5. Reusability of Results of QM Calculations and LAM/

QM Databases. For a given molecular species, the local approx-
imate models described above are derived completely from the
results of isolated-molecule QM calculations performed at a
certain reference point θref with a certain level of QM theory.
These QM results are independent of the crystalline environ-
ment and the physical conditions (e.g., pressure) under which
lattice energy minimizations took place. Consequently, they can
be reused in repeated calculations involving the same molecule.
This is particularly useful in the case of ab initio crystal structure
prediction studies where it is necessary to perform lattice energy
minimizations starting from a large set (possibly hundreds) of
candidate structures of a given molecule.
To take advantage of this reusability, all QM-computed quan-

tities (reference conformation, the intramolecular energy, first-
and second-intramolecular energy derivatives with respect to all
intramolecular degrees of freedom, the localized atomic multipole
moments, and their gradients with respect to the flexible degrees of

freedom) used to construct a LAM at any point during a
calculation are stored in a database. Torsional angles are allowed
to take any value in the course of lattice energy minimization, but
are stored only in the [�180, þ180�] range in the database. For
molecules exhibiting enantiomerism, an entry for the enantiomer
of the molecule is also automatically generated from the same ab
initio calculation, by inverting the values of the torsional angles,
intramolecular energy derivatives with respect to the torsional
angles, and the relevant components of the multipole moments.
Whenever it is necessary to create LAMs at a new point θf in

the molecule’s conformational space, the corresponding LAM/
QM database is searched to identify whether any existing entry
θref in it can be used to create a LAM that would be valid at θf.
This would be the case if the differences between the values of the
elements of θf and the corresponding values in θref

f are all within
a given tolerance ε. If more than one database entry meets
these validity criteria, the entry with the lowest root-mean-square
deviation from θf is chosen. On the other hand, if no database
entry satisfies the validity criteria, new QM calculations are
performed to construct the required LAMs by solving the
constrained minimization problem defined by eq 2 and perform-
ing a charge density calculation. The QM results are then used
to create a new entry in the database with a reference point
θref = (θf,θr), where θr is given by eq 3.

Figure 4. Error in the electrostatic potential energy (in eV; 1 eV = 96.5 kJ mol�1) on twice the van der Waals radii surface of xylitol (1,2,3,4,5-
pentapentanol) as a function of the H1�O1�C1�C2 torsional angle. LAM used to estimate the rigid degrees of freedom and rotate the atomic
multipolemoments with their local environment. The quantummechanical electrostatic potential energy in eV for the referencemolecular conformation
is also shown for comparison (center). All electrostatic potential energy surfaces were computed with atomic multipoles up to the hexadecapole level, at
the PBE/6-31G(d,p) level of theory, using ORIENT.39 The van der Waals radius for hydroxyl hydrogen atoms was set to 1 au; the radii for other atoms
were taken from the work of Bondi.40 Reproduced with permission from Adjiman, C. S.; Galindo, A. Process Systems Engineering: Volume 6: Molecular
Systems Engineering; Wiley-VCH Verlag GmbH & Co. KGaA: New York, 2010; p 18.
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A LAM/QM database is specific to a particular molecule and
level of QM theory. However, it can be reused and, indeed,
extended during more than one calculation involving this mole-
cule. For example, a database created during the lattice energy
minimization of a given experimentally observed polymorphmay
be used on a later occasion for the minimization of the same
experimental structure under a different pressure, or of a different
polymorph, or of a cocrystal that involves the given molecule
together with a different one. For this reason, LAM/QM
databases are stored as persistent computer files that can be used
in any calculation relating to the corresponding molecule,
potentially being extended during each such calculation to
contain an increasing number of points, thereby becoming more
and more useful as an increasing fraction of the molecule’s
conformational space is covered. An illustrative example of the
performance gain that can be achieved due to the use of databases
in an ab initio crystal structure prediction study is discussed in
section 4.6.
Finally, it is worth pointing out that the information being

stored in a LAM/QM database entry comprises the results of a
QM calculation (i.e., the values of the intramolecular energy
and its partial derivatives appearing on the right-hand side of
eq 4) and not the LAMs of eqs 8 and 10 (e.g., the matrices
A(θref) and C(θref) and the vector b(θref)) derived from them.
Thus, the LAM/QM database entries are independent of
the specific way in which the conformational degrees of free-
dom θr are partitioned between “flexible” θf and “rigid” θr

variables. Consequently, this information may be used for dif-
ferent calculations pertaining to the same molecule under
different degrees of flexibility, provided eq 5 still holds. In
practice, this means that an existing database can be reused by
subsequent calculations considering the same or higher degree
of flexibility. It is worth noting that the requirement for
nondecreasing flexibility does not apply to the atomic multipole
moments; these can be reused across different calculations
involving any degree of flexibility as long as the definition of
the local axis system for each atom in the molecule remains
the same.

3. COMPUTATIONAL METHODOLOGY—
CRYSTALOPTIMIZER

3.1. Lattice Energy Minimization. The lattice energy mini-
mization problem can be written as

min
X, θ

Elatt � min
X, θ

½ΔEintraðθÞ þU interðX; θ,ΩðθÞÞ� ð15Þ

where ΔEintra is the energy required to deform the molecule
from its most stable gas-phase conformation. Stable crystal
forms can therefore be identified by minimizing the lattice
energy with respect to the intramolecular degrees of freedom,
θ (bond lengths, bond angles, and torsional angles), and lattice
variables, X, which include the unit cell geometry and the
position and orientation of all crystallographically independent
molecules in the lattice. Here, Ω(θ) denotes the distributed
multipole model8 used to represent the dominant electrostatic
contributions to the intermolecular energy.
As has already been explained, the dimensionality of the above

optimization problem can be reduced by the partitioning of the
intramolecular degrees of freedom, θ, into flexible, θf, and rigid,
θr, degrees of freedom, leading to the modified minimization

Table 1. SystemsConsidered forCrystalOptimizerRefinement
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problem:

min
X, θf

Elatt � min
X, θf

½ΔEintraðθf Þ þU interðX; θf , θrðθf Þ,Ωðθf , θrðθf ÞÞÞ�

ð16Þ
where ΔEintra(θf) and θr(θf) are defined by eqs 2 and 3,
respectively, and can be approximated accurately and efficiently
via the LAMs shown in eqs 10 and 8, respectively. Themultipoles
Ω(θf,θr(θf)) can also be approximated via the LAMs defined by
eqs 13 and 14.
For a given molecular conformation θ, the minimum inter-

molecular energy with respect to the lattice variables, X, can be
calculated with existing algorithms such as DMACRYS.5 There-
fore, in order to use such codes, eq 16 is further reformulated as

min
θf

Elatt ¼ min
θf

½ΔEintraðθf Þ þ U interðθf Þ� ð17Þ

where the second term on the right-hand side is given by the
solution of another minimization problem:

U interðθf Þ � min
X

U interðX; θf , θrðθf Þ,Ωðθf , θrðθf ÞÞÞ ð18Þ
Equations 17 and 18 define a bilevel optimization problem.

The inner minimization (eq 18) determines the crystal structure
for rigidmolecular entities, whose conformation is determined by
the outer minimization (eq 17) manipulating the flexible degrees
of freedom θf. It should be noted that the DMAflex algorithm13

solves the same bilevel optimization problem, using DMACRYS5

to calculate the intermolecular energy (eq 18).
3.2. The CrystalOptimizer Algorithm. CrystalOptimizer is a

local lattice energy minimization algorithm designed to solve the
optimization problem given by eq 17 and making use of LAMs in

order to reduce the computational cost associated with quantum
mechanical calculations. An overview of the CrystalOptimizer
algorithm is shown in Figure 5 andwill now be discussed in detail.
In the initialization steps, the algorithm requires the user to

specify the starting crystal structure. By representing the mole-
cular geometry in the automatically generated Z-matrix form
(that avoids near-linear bond angles), the proposed algorithm
allows the user to select the extent of molecular flexibility to be
considered during the minimization. This can range from a few
selected torsional angles to full atomistic minimization.
Before the optimization is carried out, the user is also required

to specify several model parameters such as optimization con-
vergence tolerances, the choice of quantummechanical methods
and basis sets, and the tolerance vector ε that defines the range of
LAM validity for different types of flexible degrees of freedom. If
required, different tolerances may be specified for the LAMs
relating, respectively, to intramolecular energy and multipoles.
For each flexible degree of freedom, the user also specifies whether
or not the linear update to the multiple moments (eq 14) is to be
used. Input information relating to DMACRYS, such as the
cutoff range for Ewald summation, the type of repulsion-disper-
sion potential, and the values of parameters within it, must also be
specified.
CrystalOptimizer uses a quasi-Newton algorithm coupled

with a line-search23 to solve the outer minimization problem.
This approach ensures rapid convergence even when there are
many flexible degrees of freedom by using an approximation
of the Hessian matrix of the second-order derivatives of the
lattice energy with respect to the flexible degrees of freedom.
At the start of the lattice energy minimization, this Hessian
approximation is normally initialized to the unit matrix; at each
subsequent iteration, it is updated via the Broyden�Fletcher�
Goldfarb�Shanno (BFGS) method23. This ensures that the
Hessian approximation remains positive-definite, which guaran-
tees the identification of a direction in which to change the
flexible degrees of freedom θf, which results in a reduction of the
lattice energy, thereby avoiding the location of transition states.
The use of the BFGS approximation avoids the evaluation of the
second-order derivatives of the lattice energy at every outer
iteration, instead making use only of values of the lattice energy
and its first-order gradients with respect to the flexible degrees of
freedom.
As can be seen from the right-hand side of eq 17, the computa-

tion of the lattice energy for given θf involves two components.
The first one, ΔEintra(θf), is computed explicitly via the LAM of
eq 10. The second component is computed by solving the inner
minimization problem (eq 18) using DMACRYS,5 with the
molecular conformation and distributed multipole moments
fixed at the values determined via the LAMs of eqs 8, 13, and 14.
In addition to the value of the lattice energy for given θf,

the outer optimization algorithm also requires values of its gra-
dients with respect to θf. The gradients of its first component,
ΔEintra(θf), can be computed in a straightforward manner by
differentiating the LAM of eq 10:

∂ΔEintra

∂θf

�����
θf

¼ bðθref Þ þ Cðθref Þðθf � θfref Þ ð19Þ

The gradients of the second component, U inter, of the lattice
energy with respect to θf cannot be obtained in a closed analytical
form. In CrystalOptimizer, they are computed via a centered
finite difference scheme. The gradient with respect to the kth

Figure 5. CrystalOptimizer local lattice energy minimization algorithm
flowchart. Refer to Figure 6 for procedures for LAM construction
(LAM_Construct), lattice energy (Lattice_Energy), and lattice energy
derivatives (Lattice_Gradients) calculation.
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element θk
f of the vector θf requires a positive and a negative

perturbation of magnitude δθk
f . For each perturbed value, the

LAMs of eqs 8, 13, and, where necessary, 14 are used to update
the values of the rigid degrees of freedom θr and the multipoles
Ω, before calling DMACRYS to determine U inter via the mini-
mization described by eq 18. The required gradient is then
obtained via the finite difference approximation:

∂U inter

∂θfk

�����
θf

� U inter
kþ �U inter

k�
2δθfk

ð20Þ

where Ukþ
inter and Uk�

inter denote the values of U inter returned by
DMACRYS for the positive and negative perturbations,
respectively.
The required gradients ∂Elatt/∂θf are then simply computed as

the sum of expressions 19 and 20. The procedures for calculating
the lattice energy and the gradient of the lattice energy with
respect to the flexible degrees of freedom are shown in Figure 6.
On the basis of the value of the lattice energy and the search

direction calculated using the lattice energy gradient and the
BFGS Hessian matrix approximation, the line-search proce-
dure in the outer minimization algorithm determines a new
set of flexible degrees of freedom that results in a sufficiently
large reduction of the lattice energy. This involves the evaluation
of lattice energy at a sequence of points along the search
direction. All but the last of these points do not fulfill the
criterion of sufficient reduction in the lattice energy and are
immediately discarded from further consideration. As it is not
generally worth performing any expensive QM calculations at
such points, during the line search part of the algorithm, we relax
the LAM validity tolerances ε by a factor n which is typically in
the range 1 < n e 2.
After the line search identifies a new improved point in

conformational space θf, we reset the LAM validity tolerances
to their original value ε, before evaluating the new lattice energy

and its gradients with respect to θf in the manner detailed above.
The BFGS approximation is then used to provide a new estimate
of the Hessian matrix, and the algorithm proceeds to the next
outer iteration by calculating a new search direction and per-
forming a line search along it.
The optimization terminates successfully when either the

changes of all flexible degrees of freedom during the last step
or all the lattice energy gradients with respect to θf are below
specified tolerances. As a final step, CrystalOptimizer uses rigorous
QM calculations (eqs 2 and 3) to recompute the lattice energy
andmolecular conformation at the values of θf determined by the
optimization, thereby eliminating any small inconsistencies that
may have arisen from the use of LAMs. It should be noted,
however, that this final calculation does not eliminate any error
caused by using LAMs in identifying the true minimum.
CrystalOptimizer returns a failure status if either the line

search fails to identify a new set of flexible degrees of freedom
that produce a sufficient reduction in the lattice energy along the
search direction, or when a predefined maximum number of
outer iterations is reached without either of the two convergence
criteria having been satisfied.

4. ALGORITHM TESTING, RESULTS AND DISCUSSION

The main question to be answered in validating the Crystal-
Optimizer algorithm is whether, for a given initial point, the use
of the local approximate models leads to the same local energy
minimum as when using QM calculations at each minimization
iteration. Once this is established, the performance of the algo-
rithm, and particularly the reduction in computational cost for a
given number of flexible degrees of freedom can be investigated.
The use of additional degrees of freedom can also be studied, and
the impact of flexibility on crystal structure can be assessed.
4.1. Systems Studied.The validation of the CrystalOptimizer

algorithm was performed on the systems shown in Table 1.
These were selected because of their scientific and/or practical

Figure 6. Procedures for lattice energy derivatives (top left), lattice energy (right) calculations, and LAM construction (bottom left) in
CrystalOptimizer.
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importance and the fact that they possess sufficient conformational
flexibility to present a significant challenge for lattice energy
minimization using current techniques.
Xylitol, a naturally occurring sugar alcohol, is a stereoisomer of

1,2,3,4,5-pentapentanol (pentose) for which only one crystal
structure has been determined experimentally to date.22 No other
organic systems containing xylitol were found in the Cambridge
Crystallographic Database24 (CSD).
Our second test system is glucose. We consider the structure

of one of its cyclical isomers, R-D-glucose.25 A cocrystal of R-D-
glucose with urea26 is also found in the CSD.
Piracetam (2-oxo-pyrrolidine-acetamide) is a pharmaceutical

nootropic drug. There are five distinct polymorphs determined
experimentally,27�31 twoofwhich are observedonly at high pressure.
Two cocrystals32 of piracetam are also reported in the CSD.
In order to examine the applicability of CrystalOptimizer to a

range of systems of practical interest, three additional crystals
were considered, namely the salt (R)-1-phenyl-2-(4-methylph-
enyl)ethylamonium-(S)-mandelate33 and the cocrystals of the
pharmaceutically important steroid progesteronewith resorcinol34

and pyrene.35 These were selected primarily on the basis of posing
significant computational challenges in terms of both the mo-
lecular size and flexibility.
4.2. Molecular Modeling and Computational Considera-

tions. The quantum mechanical molecular geometry optimiza-
tions and the charge density calculations were both evaluated at
the PBE/6-31G(d,p) level of theory.
The LAM validity tolerances were set at(5� for torsional and

bond angles and(0.02 Å for bond lengths. The linear update to
the multipole moments (eq 14) was used for all flexible torsional
angles that involved the nitrogen atom or the OH groups.
Although the extent to which the LAMs are reliable is system-
dependent, the above range of validity is expected to provide a

sufficiently small error compared with the other approximations
present in the computational model.
The repulsion�dispersion interactions were modeled with an

empirical exp-6 potential10 and were summed in direct space up
to a 30 Å cutoff.
CrystalOptimizer was used to perform local lattice energy

minimizations starting from the experimental structures for each
model system considered. The flexible degrees of freedom that
were taken into consideration for each system are marked in the
molecular diagrams shown in the second column of Table 1.
Most calculations were performed on a single Intel Xeon 5150

2.66 GHz processor using 1500 MB of memory. In the case of
the salt and progesterone cocrystals, the minimizations were
performed on four Intel Xeon 5150 2.66 GHz processors with 7
GB of shared memory. The availability of multiple processors
was exploited for performing the QM computations using the
GAUSSIAN21 code.
4.3. Use of Linear Updates for Multipole LAMs. Section 2.4

examined the range of validity of the LAMs for multipoles in
terms of their ability to reproduce the electrostatic potential field
surrounding an isolated molecule. As noted there, what is more
important is the accuracy with which these LAMs can approx-
imate the intermolecular electrostatic contributions to the lattice
energy.
We now return to consider this question in more detail using

xylitol, with the minimized experimental structure (using nine
flexible hydroxyl and backbone torsions) as the reference point.
The H1�O1�C1�C2 hydroxyl angle is varied by up to (10�
from the reference point while maintaining the remaining flexible
degrees of freedom at their reference values; DMACRYS is used
to reoptimize the crystal lattice at each different conformation
under consideration, and the intermolecular energy contribution
to the lattice energy at the optimal structure is recorded.

Figure 7. Intermolecular energy as a function of the H1�O1�C1�C2 torsional angle (blue arrow in Figure 4) for three different computational
strategies: (1) molecular geometry and the electrostatic potential (ESP) obtained by full quantum mechanical calculations (black diamonds), (2) LAM
used to update rigid degrees of freedom (dof) and multipole rotation (blue dashed line), (3) LAMs used to update the rigid degrees of freedom,
multipole rotation, and a linear update of the multipole moments (continuous green line).
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Figure 7 shows results from three different sets of calculations
performed for several values of the selected torsion angle over the
range mentioned above.
For each value of the flexible hydroxyl angle, the rigid degrees

of freedom were computed explicitly by solving the quantum
mechanical constrained optimization in eq 3. The electrostatic
potential was also calculated quantummechanically for each gen-
erated conformation. These molecular and electrostatic models
were used to compute the intermolecular energy shown as black
diamonds in Figure 7.
Next, the LAM of eq 8 was used to approximate the rigid

degrees of freedom, and themultipoles were rotated according to
eq 13. The results are shown as a blue dashed line in Figure 7. The
maximum error in the intermolecular energy is 1.3 kJ mol�1 and
occurs when the selected flexible torsion angle is 10� from its
reference value. The errors for changes of up to (5� and (2�
from the reference value are 0.6 kJ mol�1 and 0.3 kJ mol�1,
respectively.
The intermolecular energy was also calculated using the LAMs

for the estimation of the rigid degrees of freedom (eq 8),
multipole rotation (eq 13), and a linear update to the multipole
moments (eq 14). The results are shown as a continuous green
line in Figure 7. The error in the intermolecular energy is within
0.06 kJ mol�1 of the ab initio value for all values of the selected
flexible degree of freedom.
The above results indicate that, for this particular system, the

multipole rotation LAM of eq 13 leads to considerable errors in
intermolecular energy. However, the subsequent application of
the linear correction (eq 14) produces an accurate estimate of the
electrostatic potential energy, even for relatively large conforma-
tional changes.
4.4. Application of CrystalOptimizer to Single Component

Crystals.We start by considering the three model systems which
involve single component crystals, namely, xylitol, R-D-glucose,
and piracetam form II.
In order to assess the computational performance and the

effects of varying molecular flexibility on the performance of
the CrystalOptimizer, these systems were studied using different
optimization settings and increasingly wider sets of flexible
degrees of freedom.
Initially, only the hydroxyl (amide for piracetam form II) and

selected backbone dihedrals were treated as flexible degrees of
freedom, while the rings in R-D-glucose and piracetam were
assumed to be rigid. These simplifications result in nine, six, and
four flexible degrees of freedom for xylitol, R-D-glucose, and
piracetam, respectively. Although these minimal sets of flex-
ible torsion angles are not sufficient to capture the whole
molecular flexibility, they have the advantage of being within
the range of applicability of earlier algorithms for lattice
energy. Of particular interest in this context is the DMAFlex
algorithm,13 which has a similar model of inter- and intramo-
lecular interactions as CrystalOptimizer, thereby allowing some
validation of the results obtained with our code, and a direct
comparison of computational performance. Three different
CrystalOptimizer runs were performed with the same number
of degrees of freedom:
Case 1. CrystalOptimizer without LAMs or LAM/QM data-
bases was tested. This requires quantummechanical calculations
at every iteration, as with DMAFlex, and shows the effect of
using a quasi-Newton algorithm instead of a simplex algorithm.
Case 2. All features of CrystalOptimizer are used. The
LAM/QM databases are initially empty and are populated

during these calculations. In fact, for the calculations
reported here, no reuse of information stored in the
databases has actually occurred. Therefore, only the impact
of the LAMs is assessed.
Case 3. All features of CrystalOptimizer are used, including
the use of the LAM/QM databases (cf. section 2.5) already
populated in case 2.
Following this initial study, additional optimizations were

carried out with CrystalOptimizer, by gradually increasing the
degree of molecular flexibility under consideration in two further
steps.
Case 4. All heavy-atom torsions, and all hydroxyl (H�O�C)
and amide (H�N�C) bond angles were additionally treated
as flexible, resulting in 17 flexible degrees of freedom for xylitol
and 19 for R-D-glucose and piracetam.
Case 5. An atomistic representation corresponding to full
molecular flexibility is considered, resulting in 60 flexible
degrees of freedom for xylitol, 66 for R-D-glucose, and 54 for
piracetam.
Note that in the analysis of the results reported in cases 1, 4,

and 5 and also in section 4.5, the LAM/QM database (cf. section
2.5) feature of CrystalOptimizer was disabled. A more detailed
analysis of the effects of using these databases is presented in
section 4.6.
The detailed results from the above studies are provided in

Tables 2, 3, and 4 for xylitol, R-D-glucose, and piracetam form II,
respectively. In all cases, agreement between the predicted crystal
structures and the experimentally observed ones is assessed on
the basis of the root-mean-square deviation of the molecular
conformation and the 15-molecule coordination sphere.36

Overall, there is a gain in stability as we widen the set of flexible
degrees of freedom considered by CrystalOptimizer, which
indicates that the detailed modeling of molecular flexibility is
important in order to capture the full extent of conformational
distortions by the packing forces. For instance, the inclusion of
the selected bond angles (case 4) stabilizes the structures of
xylitol, R-D-glucose, and piracetam by roughly 1 kJ mol�1 com-
pared to the value obtained by considering the flexibility of only
the main torsional angles (cases 1�3). As the number of flexible
degrees of freedom increases, small changes are observed in the
lattice energy, but the balance between intermolecular and intra-
molecular energy tends to shift so that the molecule adopts a less
stable conformation to reduce the energetic cost of intermolecular
interactions. CrystalOptimizer makes it computationally feasible
to consider a large number of degrees of freedom but it is up to the
user to define the extent of flexibility required for each particular
molecule or system.
More generally, explicit consideration of the flexibility of bond

angles and stiff torsions, such as those in polyaromatic ring
systems, is expected to be especially significant for larger systems
and under high pressure. On the other hand, it can be seen by
comparing cases 4 and 5 that the additional energy stabilization
arising from modeling the bond lengths is more limited (unless
proton transfer takes place37). The energy required to perturb a
bond length is usually very large, and consequently the modeled
bond lengths do not change significantly during lattice energy
minimization. Thus, in order to reduce computational cost, the
bond lengths can normally be assumed to be rigid with little loss of
predictive accuracy.
Figure 8 demonstrates the accuracy of reproduction of the

experimental conformation obtained by considering full
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molecular flexibility (atomistic representation). Even with the low-
quality level of theory used for the QM evaluations, the repro-
duction of the crystal structures with CrystalOptimizer is accep-
table for crystal structure prediction. As shown in Tables 2�4, the
maximum error in the root-mean-square deviation of a 15-
molecule coordination sphere in all three cases is below 0.3 Å
which is less than the 0.4 to 0.5 Å criterion usually taken to
indicate a successful prediction in crystal structure blind tests. In
general, structure reproduction improves as a larger number of
flexible degrees of freedom are being considered. An exception to
this trend is observed for xylitol (see the increase in rms15 in the
last three columns of Table 2), but the overall rms15 variation for
this molecule is too small to warrant further attention, consider-
ing that thermal effects are not taken into account.
Comparisons of the DMAFlex results to those of cases 1�3, as

presented in Tables 2�4, indicate that the results obtained from
CrystalOptimizer and DMAFlex in terms of energy and structure
reproduction are within the errors of the underlying numerical
methods, and in particular of the criteria used to determine what
constitutes a “converged” solution of the optimization calcula-
tions. In the case of CrystalOptimizer, some convergence inac-
curacies are introduced by the use of finite differences for the
evaluation of the gradients of the intermolecular energy. For
DMAFlex, there are convergence issues arising from the use of
the gradient-free simplex-based optimization algorithm.
CrystalOptimizer is significantly more computationally effi-

cient than DMAFlex. With all features implemented (case 3),
the CPU time is reduced by∼89% for xylitol,∼ 95% for glucose,
and ∼97% for piracetam when considering the same degree of
molecular flexibility. One reason for this is that CrystalOptimi-
zer’s gradient-based minimization scheme converges in an order
of magnitude fewer outer iterations than the simplex algorithm
in DMAFlex and scales better with the number of modeled

flexible degrees of freedom, as can be observed by comparing the
DMAFlex results and case 1 columns in Tables 2�4. This
accounts for an average reduction in CPU time of 63%. A second
reason for the much improved computational performance of
CrystalOptimizer is that the use of LAMs means that only a small
fraction of the outer iterations requires full quantum mechanical
calculations. It should be noted, however, that the types of QM
calculations required by DMAFlex and CrystalOptimizer are not
the same. Each outer iteration in DMAFlex simply requires one
constrained geometry optimization and one charge density
calculation, the former usually being more computationally
expensive. On the other hand, the construction of the LAMs in
CrystalOptimizer requires a constrained geometry optimization
followed by a (usually much more expensive) analytical evalua-
tion of the intramolecular Hessian matrix (i.e., the second-order
partial derivative matrices appearing on the right-hand side of
eq 4) and a charge density calculation. Moreover, if the LAM
given by eq 14 is used for one or more flexible degrees of freedom,
we also need one or two (depending on the finite difference
method used for approximating the partial derivatives on the
right-hand side of eq 14) additional charge density calculations
for each of such flexible degrees of freedom. Nevertheless,
despite the additional cost of constructing the LAMs in Crystal-
Optimizer, the frequency with which this has to be done is small
(case 2, Tables 2�4), leading to a further reduction in computa-
tional cost of 46%. The poor scaling of the DMAFlex’s simplex
optimization algorithm with the number of minimization vari-
ables, coupled with the significant cost of the QM calculations,
indicates that this approach is unlikely to be practically applicable
to systems of even moderate molecular size if they involve more
than about 10 flexible degrees of freedom. We believe that any
other approach that relies on explicit QM calculations at every
iteration would be subject to similar limitations.

Figure 8. Top row: Overlay of the experimental (colored by element) andminimized (green) structures of xylitol,R-D-glucose, and piracetam when full
molecular flexibility is allowed (atomistic representation). The root-mean-square deviations for one molecule (rms1) and a 15-molecular coordination
sphere (rms15)

36 compared to the experimental structure are shown below. Bottom row: The gas-phase molecular conformations for the three
molecules. Reproduced with permission from Adjiman, C. S.; Galindo, A. Process Systems Engineering: Volume 6: Molecular Systems Engineering; Wiley-
VCH Verlag GmbH & Co. KGaA: New York, 2010; p 36.
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Case 3 in Tables 2�4 indicates the computational cost if all the
information required to construct the LAMs was already avail-
able in a LAM/QMdatabase, which essentially removes the need
to perform QM calculations during the minimization. Note that
one QM geometry optimization and one charge density calcula-
tion are still necessary for the explicit evaluation of the final lattice
energy to remove errors associated with the use of LAMs.
On the basis of cases 2, 4, and 5 in Tables 2�4, the computa-

tional cost of the CrystalOptimizer algorithm seems to scale
linearly with the number of flexible degrees of freedom and is
dominated by two elements, both of them associated with the use
of finite difference approximations to partial derivatives. The first
element arises from the calculation of the gradients of inter-
molecular energy with respect to the flexible degrees of freedom
(cf. eq 20) by repeated calls to the DMACRYS package; for
systems involving more than about 15 flexible degrees of free-
dom, this calculation accounts for more than 60% of the
computational time. The second element is associated with the
numerical calculation of multipole derivatives with respect to the
specified flexible degrees of freedom (cf. eq 14) and can account
for up to 50% of the computational time in cases involving less
than 15 flexible degrees of freedom.
4.5. Application of CrystalOptimizer to Cocrystals and

Salts. CrystalOptimizer is directly applicable to systems with
more than one species in the asymmetric unit, including cocrys-
tals and salts, such as those listed in Table 1. It can also take
account of the effects of pressure on crystal structure, via a simple
extension of the intermolecular energy (eq 18) to lattice en-
thalpy. Table 5 presents results for cocrystals involving R-D-
glucose and piracetam, and all five known forms of piracetam,
two of which (forms IV and V) are studied under elevated

pressures. Table 6 presents further results for a salt and two
cocrystals of progesterone.
As in the case of the systems studied in section 4.4,

agreement with the experimentally observed crystal structures
is generally good, with the rms15 error being below 0.30 Å for
all structures other than the salt and the progesterone�pyrene
2:1 cocrystal.
It is worth noting that the reproduction of these larger

experimental structures is very sensitive to the selected QM
model. Due to the ionic nature of the salt, it is imperative to
accurately capture and reproduce the electrostatic interactions in
the crystal. If the quality of the charge density calculation is
improved to the MP2/6-31G(d,p) level of theory, the rms15
deviation can be reduced from 1.34 Å to 0.84 Å. Similarly, if the
hybrid B3LYP/6-31G(d,p) level of theory is used to represent
the intramolecular interactions and the multipole model during
lattice energy minimization of the progesterone�pyrene (2:1)
cocrystal, the error in rms15 is reduced to 0.35 Å.
The selection of the best available computational and flex-

ibility model is therefore integral to the correct reproduction of
experimental structures. However, this aspect is beyond the
scope of this work.
4.6. Application of CrystalOptimizer to ab initio Crystal

Structure Prediction.Themain purpose for the development of
an accurate local lattice energyminimization algorithm for crystal
structures containing flexible molecules is not the reminimization
of the experimentally determined crystals but the final refine-
ment of a large set of stable hypothetical structures produced
during a crystal structure prediction search. It is in this context
that the performance gains through the use of LAM/QM
databases (cf. section 2.5) become more relevant.

Table 5. Lattice Energy Minimization of Additional Crystal Structures Containing r-D-Glucose and Piracetam in the Asymmetric
Unit (Refer to Table 1 for Molecular Diagrams)

model system

lattice energy

(kJ mol�1) (pressure)a rmsd15
b(Å)

# outer

iterations

# LAM

updatesc
CPU time

(hr:min)d

R-D-glucose urea (1:1) cocrystal �221.62 (0.0 GPa) 0.11 13 2 3 19:08

piracetam

form Ie �91.56 (0.0 GPa) 0.21 5 1 02:58

form II �93.94 (0.0 GPa) 0.22 9 2 04:28

form III �93.97 (0.0 GPa) 0.13 13 3 07:28

form IV �52.51 (0.4 GPa) 0.25 9 2 05:10

form V 291.58 (4.0 GPa) 0.30 12 3 06:04

piracetam gentisic acid (1:1) cocrystal �188.45 (0.0 GPa) 0.26 37 2 1 13:32

piracetam p-hydroxybenzoic acid (1:1) cocrystal �193.22 (0.0 GPa) 0.28 7 2 1 09:37
aTwo pressure polymorphs of piracetam, forms IV and V, were minimized at the experimental pressures of 0.4 and 4.0 GPa, respectively. bRoot-mean-
square deviation in 15-molecule coordination sphere compared with the experimental structure.36 c For eachmolecule in the asymmetric unit as shown in
the model system. d Single Intel Xeon 5150 2.66 GHz processor using 1500MB of memory. eDisordered experimental formwith atoms refined over two
positions with occupancies 0.657:0.343. Only the most abundant conformer used for the minimization.

Table 6. Lattice Energy Minimization of Selected Crystal Structures of Varying Size and Complexity (Refer to Table 1 for
Molecular Diagrams)

model system

lattice energy

(kJ mol�1)

rmsd15
a

(Å)

# outer

iterations

# LAM

updatesb
CPU time

(hr:min)c

(R)-1-phenyl-2-(4-methylphenyl)ethylamonium-(S)-mandelate salt �596.43 1.34 36 8 8 45:55

progesterone resorcinol (1:1) cocrystal �221.92 0.15 61 13 4 179:11

progesterone pyrene (2:1) cocrystal �458.81 0.72 32 3 3 1 130:53
aRoot-mean-square deviation in 15-molecule coordination sphere compared with the experimental structure36 b For each molecule in the asymmetric
unit as shown in the model system. c Four Intel Xeon 5150 2.66 GHz processors with 7 GB shared memory.
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As an illustrative example, we consider the application of
CrystalOptimizer to the refinement of 60 distinct crystal struc-
tures for xylitol using nine main hydroxyl and backbone torsions
as the flexible degrees of freedom (cf. column 3 of Table 2). The
60 structures are typical of those that would be considered in the
context of ab initio crystal structure prediction; in this example
case, they were generated using the CrystalPredictor code38 by
treating xylitol as a rigid molecule.
Figure 9 shows three lines:
• The solid line shows the cumulative number of outer
minimization iterations against the number of crystal struc-
tures analyzed. We can see that a total of 2412 iterations are
needed, each effectively corresponding to a different molec-
ular conformation. The computational cost would be pro-
hibitively high if a newQMevaluation of intramolecular energy
and charge density were performed at each such iteration.
This effectively excludes the use of codes such as DMAFlex
for this kind of application.

• The dashed line shows the number of LAMs created if no
LAM/QM databases are used. This was obtained by a
modified form of the CrystalOptimizer code which, like the
standard form, created and used LAMs; however, if an
iteration involved a molecular conformation outside the
range of validity of the most recently constructed LAM, the
latter was simply discarded (i.e., without any information
being recorded in the LAM/QM database for possible
future use) and a new one created. The total number of
LAMs that need to be constructed in this case is 633.
Comparing this number with the total number of iterations,
we conclude that a LAM is approximately reused over a
sequence of, on average, 3.8 successive iterations.

• The dotted line shows the number of LAMs created if the
standard CrystalOptimizer code (including LAM/QMdata-
bases) is used. In this case, we start the refinement of the first
structure using an empty LAM/QM database, and the
number of entries in the database potentially increases with
the consideration of each new structure. The total number
of LAMs created is 408. The difference between this and the
dashed line is a measure of the savings achieved via the use of
a LAM/QM database.

The savings achieved via the use of a LAM/QM database
would be higher if a larger number of crystal structures were
refined: as the database is enlarged, there is an increasingly higher
probability that a molecular conformation under considera-
tion will be covered by one of the points that are already in the
database, thereby obviating the need to perform a new set of QM
calculations. This is particularly important since, in typical ab
initio crystal structure predictions, it is not uncommon to refine
many hundreds of candidate structures. These structures are
often far from a local minimum, so that additional optimization
iterations are needed for convergence. Thus, reducing the cost of
each iteration is very important for a thorough search.
In summary, the use of LAM/QM databases is of significant

benefit in the context of ab initio crystal structure prediction
studies involving the refinement of large numbers of candidate
crystal structures. It is also advantageous for the computational
screening of compounds with different cocrystal formers and for
crystal structure calculations under different physical conditions
(e.g., a range of different pressures for identification of high-
pressure polymorphs).

5. CONCLUSIONS

For the majority of organic crystal structures of practical
interest, detailed modeling of molecular flexibility is essential
for correct minimization of the lattice energy. In order to obtain
balanced models for the intra- and intermolecular energy con-
tributions, it is necessary to use quantum mechanical molecular
deformation energies and charge densities, making lattice energy
minimization computationally expensive.

An algorithm has been presented that makes it possible to take
molecular flexibility into account when identifying crystal struc-
tures that minimize the lattice energy. This algorithm, Crystal-
Optimizer, is a local optimization method that overcomes the
large computational cost of treating flexibility through the use of
local approximate models (LAMs). This leads to a substantial
reduction in the number of quantum mechanical calculations
required. In addition, the algorithm is based on a quasi-Newton
scheme that ensures rapid convergence even with systems
involving many flexible degrees of freedom.

The results presented for a variety of model systems indicate
that the implementation of local approximate models can sig-
nificantly improve the computational efficiency without ad-
versely affecting accuracy. In practice, during the course of an
optimization, most iterations rely on previously constructed
LAMs (rather than new QM calculations) for the computation
of the values of the rigid degrees of freedom, the intramolecular
energy and the electrostatic multipole model. Moreover, the use
of LAM/QM databases further reduces the computational cost
associated with QM calculations allowing the accurate energy
minimizations performed by CrystalOptimizer to be coupled
directly within the crystal structure prediction techniques. The
low-energy structures computed with CrystalOptimizer can also
be used as input to the study of kinetic effects41 and crystal
growth,42 which play an important role in crystal formation.

Overall, with the CrystalOptimizer code, the computational
cost of QM calculations is no longer the limiting factor in
accurate lattice energy minimization, and this makes it possible
to achieve even higher accuracy by using larger basis sets and/or
post-HF levels of theory. The computational cost of the algo-
rithm seems to scale linearly with the number of flexible degrees
of freedom and is dominated by the calculation of the multipole

Figure 9. Total number of CrystalOptimizer minimization iterations
(solid), number of LAM updates (dashed), and the actual number of
QM evaluation sets necessary to construct the LAM/QM database
(dotted) as a function of the number of crystal structures minimized in
stage 3.
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derivatives and of the intermolecular energy derivatives with
respect to the flexible degrees of freedom. Both currently require
the use of finite difference approximations to partial derivatives.
Removing these computational bottlenecks will extend the prac-
tical applicability of CrystalOptimizer to even larger molecules.

On a more fundamental level, an important aspect of Crystal-
Optimizer is its ability to handle systems with more than one
molecule or ion in the asymmetric unit, whichmakes it applicable
to the prediction of crystal structures of cocrystals and salts. Our
approach to date has been to treat each of these molecules or ions
independently for the purposes of QM calculations and then to
rely on intermolecular descriptions of the interactions between
them. Whether or not this is the most appropriate way of
handling such systems, or related ones such as hydrates, requires
further investigation.
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